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Abstract
In this paper, we investigate Dragomir and Gosa type inequalities in the setting of
b-metric spaces. As an application, we consider some inequalities in b-normed
spaces. We prove that the inequalities admit geometrical interpretation.
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1 Introduction and preliminaries
It is a natural trend in fixed point theory to refine a standard metric space structure with a
weaker one. One of the interesting extensions of the notion of a metric space is the concept
of a b-metric space which was introduced by Czerwik [8].

Definition 1.1 ([8]) Let X be a nonempty set and s ≥ 1 a given real number. A mapping
d : X × X → [0,∞) is said to be a b-metric if for all x, y, z ∈ X the following conditions are
satisfied:

(bM1) d(x, y) = 0 if and only if x = y;
(bM2) d(x, y) = d(y, x) (symmetry);
(bM3) d(x, z) ≤ s[d(x, y) + d(y, z)] (b-triangle inequality).

In this case, the pair (X, d) is called a b-metric space (with constant s).

Clearly, any metric space is a b-metric space (with constant s = 1).

Example 1.2 ([10]) Let X = [0, 1] and let d : X ×X −→ [0,∞) be defined by d(x, y) = (x–y)2.
Then, clearly, (X, d) is a b-metric space with s = 2.

The following is another constructive example of b-metric.

Example 1.3 ([1]) Let X = {xi : 1 ≤ i ≤ M} for some M ∈ N and s ≥ 2. Define d : X × X →
∞ as

d(xi, xj) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if i = j,

s if (i, j) = (1, 2) or (i, j) = (2, 1),

1 otherwise.
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Consequently, we derive that

d(xi, xj) ≤ s
2
[
d(xi, xk) + d(xk , xj)

]
,

for all i, j, k ∈ {1, M}. Thus, (X, d) forms a b-metric for s > 2 where the ordinary triangle
inequality does not hold.

For more examples for b-metric, we may refer, e.g., to [1–7, 9, 12] and the corresponding
references therein.

Example 1.4 (see, e.g., [6]) The space Lp[0, 1] (where 0 < p < 1) of all real functions x(t),
t ∈ [0, 1] such that

∫ 1
0 |x(t)|p dt < ∞, together with the functional

d(x, y) :=
(∫ 1

0

∣
∣x(t) – y(t)

∣
∣p dt

)1/p

, for each x, y ∈ Lp[0, 1],

is a b-metric space. Notice that s = 21/p.

2 Main result
We start this section by recalling an interesting inequality that was proposed by Dragomir
and Gosa in [11]. In what follows we investigate their inequality in the setting of a more
general structure, namely that of b-metric spaces.

Theorem 2.1 Let (X, d) be a b-metric space with constant s ≥ 1, and xi ∈ X, pi ≥ 0 (i ∈
{1, 2, . . . , n}) with

∑n
i=1 pi = 1

s . Then we have

∑

1≤i<j≤n

pipjd(xi, xj) ≤ inf
x∈X

[ n∑

i=1

pid(xi, x)

]

. (1)

The inequality is sharp in the sense that the constant c = 1 in front of the infimum cannot
be replaced by a smaller constant.

Proof Using the b-triangle inequality, for any x ∈ X, i, j ∈ {1, 2, . . . , n} we have

d(xi, xj) ≤ s
[
d(xi, x) + d(x, xj)

]
. (2)

If we multiply (2) by pi, pj and sum over i and j from 1 to n, we get

n∑

i,j=1

pipjd(xi, xj) ≤ s

[ n∑

i,j=1

pipj
[
d(xi, x) + d(x, xj)

]
]

.

Note that by symmetry we have

n∑

i,j=1

pipjd(xi, xj) = 2
∑

1≤i<j≤n

pipjd(xi, xj). (3)
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Now, using the condition
∑n

i=1 pi = 1
s , we can easily deduce that

n∑

i,j=1

pipj
[
d(xi, x) + d(x, xj)

]
=

2
s

n∑

i=1

pid(xi, x).

So, from (3) we have

∑

1≤i<j≤n

pipjd(xi, xj) =
1
2

n∑

i,j=1

pipjd(xi, xj)

≤ s
2

[ n∑

i,j=1

pipj
[
d(xi, x) + d(x, xj)

]
]

=
n∑

i=1

pid(xi, x).

Therefore,

∑

1≤i<j≤n

pipjd(xi, xj) ≤
n∑

i=1

pid(xi, x)

for any x ∈ X. Using the fact that the infimum is the greatest lower bound, we deduce (1).
Now, suppose that there exists c > 0 such that

∑

1≤i<j≤n

pipjd(xi, xj) ≤ c inf
x∈X

[ n∑

i=1

pid(xi, x)

]

;

and choose n = 2, p1 = p and p2 = 1 – p where p ∈ (0, 1). Then,

p(1 – p)d(x1, x2) ≤ c
[
pd(x1, x) + (1 – p)d(x, x2)

]
. (4)

If we let x = x1 in (4), we get

p(1 – p)d(x1, x2) ≤ c(1 – p)d(x1, x2).

As d(x1, x2) > 0 and 1 – p > 0, so p ≤ c for any p ∈ (0, 1). Using the fact that the supremum
is the least upper bound, we deduce that c ≥ 1. �

The following corollary is a generalization of Corollary 1 in [11] to the case of a b-metric
space.

Corollary 2.2 Let (X, d) be a b-metric space with constant s ≥ 1, and xi ∈ X, i ∈
{1, 2, . . . , n}, then

∑

1≤i<j≤n

d(xi, xj) ≤ n
s

inf
x∈X

[ n∑

i=1

d(xi, x)

]

.
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The proof follows directly by taking pi = 1
ns , i ∈ {1, 2, . . . , n} in the previous theorem.

The above corollary can be interpreted geometrically as follows: The sum of all edges
and diagonals of a polygon with n vertices in a b-metric space is less than or equal to
n
s -times the sum of the distances from any arbitrary point in the space to its vertices.

The next corollary is a generalization of Corollary 2 in [11] in the framework of b-metric
spaces.

Corollary 2.3 Let (X, d) be a b-metric space with constant s and xi ∈ X, i ∈ {1, 2, . . . , n}. If
there exist z ∈ X and r > 0 such that the closed ball B(z, r) = {y ∈ X : d(z, y) ≤ r} contains all
the points xi, then for any pi ≥ 0 with

∑n
i=1 pi = 1

s we have

∑

1≤i<j≤n

pipjd(xi, xj) ≤ r
s

.

Proof Using (1) we have

∑

1≤i<j≤n

pipjd(xi, xj) ≤ inf
x∈X

[ n∑

i=1

pid(xi, x)

]

≤
n∑

i=1

pid(xi, z)

≤ r
s

. �

3 Applications
In this section we define a new notion of a b-normed space and study some of its proper-
ties.

Definition 3.1 Let X be a vector space over a field K and let s ≥ 1 be a constant. A function
‖·‖b : X −→ [0,∞) is said to be a b-norm if the following conditions hold for every x, y ∈ X,
c ∈ K :

(Nb1) ‖x‖b ≥ 0;
(Nb2) ‖x‖b = 0 ⇐⇒ x = 0;
(Nb3) ‖cx‖b = |c|log2 s+1‖x‖b (b-homogeneity);
(Nb4) ‖x + y‖b ≤ s[‖x‖b + ‖y‖b] (b-norm triangle inequality).
In this case (X,‖ · ‖b) is called a b-normed space with constant s.

Here we give an example of a b-normed space.

Example 3.2 Let X = R and define ‖ · ‖b : X −→ [0,∞) by ‖x‖b = |x|p where p ∈ (1,∞),
then, using the relation (x + y)p ≤ 2p–1(x + y), we can easily deduce that (X,‖ · ‖b) is a b-
normed space with constant s = 2p–1.

Remark 3.3 Let (X,‖ · ‖b) be a b-normed space with constant s ≥ 1, xi ∈ X, i ∈ {1, . . . , n}.
Then it is easy to prove the following generalized b-triangle inequality:

∥
∥
∥
∥
∥

n∑

i=1

xi

∥
∥
∥
∥
∥

≤
n∑

i=1

si‖xi‖.



Karapınar and Noorwali Journal of Inequalities and Applications         (2019) 2019:29 Page 5 of 7

Remark 3.4 Any b-norm with s ≥ 1 defines a b-metric as follows:

d(x, y) = ‖x – y‖b.

The question now is the following: Is any b-metric induced from a b-norm? The follow-
ing remark can answer this question.

Remark 3.5 Let X be a vector space over a field K . Any b-metric d : X × X −→ [0,∞)
with constant s ≥ 1 induced from a b-norm must satisfy the following properties for each
x, y, z ∈ X, c ∈ K :

(i) d(x + z, y + z) = d(x, y) (translation invariance);
(ii) d(cx, cy) = |c|log2 s+1d(x, y) (b-homogeneity).

Proposition 3.6 A b-homogeneous translation invariant b-metric d : X × X −→ [0,∞)
with constant s ≥ 1 can define a b-norm ‖ · ‖b : X −→ [0,∞) as follows:

‖x‖b = d(x, 0) ∀x ∈ X.

Proof Clearly, (Nb1) and (Nb2) are satisfied.
As d is homogeneous, ‖cx‖ = d(cx, 0) = |c|log2 s+1d(x, 0) = |c|log2 s+1‖x‖b.
As d is translation invariant,

‖x + y‖b = d(x + y, 0) ≤ s
[
d(x + y, x) + d(x, 0)

]

= s
[
d(y, 0) + d(x, 0)

]

= s
[‖x‖b + ‖y‖b

]
,

which prove (Nb3) and (Nb4), respectively. �

Now, we rewrite inequality (1) in the sense of b-normed spaces and obtain some corol-
laries.

If (X,‖ ·‖b) is a b-normed space with constant s ≥ 1, xi ∈ X, and pi ≥ 0, i ∈ {1, . . . , n} with
∑n

i=1 pi = 1
s , then by (1) we have

∑

1≤i<j≤n

pipj‖xi – xj‖ ≤ inf
x∈X

[ n∑

i=1

pi‖xi – xj‖
]

. (5)

The following proposition is a generalization of Proposition 2 in [11] to the case of a
b-normed space.

Proposition 3.7 Let (X,‖ · ‖b) be a b-normed space with constant s ≥ 1, xi ∈ X and pi ≥ 0,
i ∈ {1, . . . , n} with

∑n
i=1 pi = 1

s . Let xp =
∑n

i=1 pixi, then

1
2

n∑

i=1

pi‖xi – xp‖ ≤ sn
∑

1≤i<j≤n

pipj‖xi – xj‖ ≤ sn
n∑

i=1

pi‖xi – xp‖. (6)
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Proof As the infimum is a lower bound, the second part of inequality (6) is trivial. For the
first part, we use a generalized b-norm inequality as follows:

1
2

n∑

i=1

pi‖xi – xp‖ =
1
2

n∑

i=1

pi

∥
∥
∥
∥
∥

xi –
n∑

j=1

pjxj

∥
∥
∥
∥
∥

=
1
2

n∑

i=1

pi

∥
∥
∥
∥
∥

n∑

j=1

(xi – pjxj)

∥
∥
∥
∥
∥

≤ 1
2

n∑

i,j=1

pisj‖xi – pjxj‖

≤ sn

2

n∑

i,j=1

pipj‖xi – xj‖

= sn
∑

1≤i<j≤n

pipj‖xi – xj‖,

which completes the proof. �

We have the following corollary, which has a nice geometric interpretation.

Corollary 3.8 Let (X,‖ · ‖b) be a b-normed space with constant s ≥ 1 and xi ∈ X, i ∈
{1, . . . , n}. If x = x1+···+xn

n is the gravity center of the vectors {x1, . . . , xn}, then we have

n
2

n∑

i=1

‖xi – x‖ ≤ sn
∑

1≤i<j≤n

‖xi – xj‖ ≤ nsn
n∑

i=1

‖xi – x‖.

Geometrically, the last corollary means that the sum of the edges and diagonals of a
polygon with n vertices in a b-normed space is less than or equal to n-times the sum of
the distances from the gravity center to its vertices and greater than or equal to n

2sn -times
this quantity.

4 Conclusion
Similarly, we can generalize more inequalities on metric and normed spaces.
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