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Abstract
In this paper, we study methods of solution for some kinds of convolution type
singular integral equations with Cauchy kernel. By means of the classical boundary
value problems for analytic functions and of the theory of complex analysis, we deal
with the necessary and sufficient conditions of solvability and obtain the general
solutions and the conditions of solvability for such equations. All cases as regards the
index of the coefficients in the equations are considered in detail. Especially, we
discuss some properties of the solutions at the nodes. This paper will be of great
significance for the study of improving and developing complex analysis, integral
equation and boundary value problems for analytic functions (that is,
Riemann–Hilbert problems). Therefore, the classical theory of integral equations is
extended.
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1 Introduction
There were rather complete investigations on the method of solution for integral equa-
tions of Cauchy type and integral equations of convolution type [1–5]. The solvability of
a singular integral equation (SIE) of Wiener–Hopf type with continuous coefficients was
considered in [6, 7]. For operators with Cauchy principal value integral and convolution,
the conditions of their Noethericity were discussed in [8, 9]. Recently, Li [10–16] studied
some classes of SIEs with convolution kernels and gave the Noether theory of solvability
and the general solutions in the cases of normal type. It is well known that integral equa-
tions of convolution type, mathematically, belong to an interesting subject in the theory
of integral equations.

In this paper, we study the solvability and the explicit solutions for several classes of SIEs
with Cauchy kernel and convolution kernel, in which include equations with one or two
convolution kernels, equation of Wiener–Hopf type, and dual equations. Here, we give the
new methods of solution for these equations, and our approach of solving the equations
is novel and effective, different from the ones in classical cases. Thus, the results in this
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paper generalize ones in Refs. [1, 2, 10–12], and improve the theory of SIEs and boundary
value theory.

Our study of the following equations is motivated by continuous efforts of those studies
as well as a sufficiently long list of the above-mentioned materials. Now we consider the
following some classes of SIEs of convolution type with Cauchy kernel.

(1) SIEs of dual type
⎧
⎨

⎩

a1ω(t) + b1
π i

∫

R

ω(τ )
τ–t dτ + 1√

2π

∫

R
k1(t – τ )ω(τ ) dτ = g(t), t ∈ R

+;

a2ω(t) + b2
π i

∫

R

ω(τ )
τ–t dτ + 1√

2π

∫

R
k2(t – τ )ω(τ ) dτ = g(t), t ∈ R

–.

(2) SIE of Wiener–Hopf type

aω(t) +
b
π i

∫

R

ω(τ )
τ – t

dτ +
1√
2π

∫

R

k(t – τ )ω(τ ) dτ = g(t), t ∈R
+.

(3) SIEs with one convolution kernel

aω(t) +
b
π i

∫

R

ω(τ )
τ – t

dτ +
1√
2π

∫

R

k(t – τ )ω(τ ) dτ = g(t), t ∈R.

(4) SIEs with two convolution kernels

aω(t) +
b
π i

∫

R

ω(τ )
τ – t

dτ +
1√
2π

∫

R+
k1(t – τ )ω(τ ) dτ

+
1√
2π

∫

R–
k2(t – τ )ω(τ ) dτ = g(t), t ∈ R,

where a, b (b �= 0), aj, bj are constants and bj are not equal to zero simultaneously. For these
equations, we will discuss their Noether theory and methods of solution in a different
class of function, that is, these equations are transformed by integral transformation into
Riemann–Hilbert problems with nodes. Some special kinds of Riemann–Hilbert prob-
lems with discontinuous coefficients appear in the course of solution, which are solved in
the same time. Actually, the problem to find their solutions is very important in practical
applications.

2 Definitions and lemmas
The concepts of classes {{0}} (((0)), 〈〈0〉〉) and {0} ((0), 〈0〉) are introduced as follows.

Definition 2.1 A function F(s) belongs to {{0}}, if the following two conditions are ful-
filled:

(1) F(s) ∈ Ĥ , that is, it satisfies the Hölder condition on R∪ {∞} (for the notation Ĥ , cf.
[2]).

(2) F(s) ∈ L2(R).

Definition 2.2 A function f (t) ∈ {0}, if its Fourier transform

F(s) = Ff (t) =
1√
2π

∫

R

f (t)eist dt, s ∈R, (2.1)

belongs to {{0}}.
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Definition 2.3 Let F(s) be a continuous function on R. If
(1) F(s) ∈ Ĥ . (2) F(s) = O(|s|–ρ), ρ > 1

2 , where |s| is sufficiently large.
Then we write F(s) ∈ ((0)) or ((0))ρ .
If F(s) ∈ ((0)) or ((0))ρ , we write f (t) ∈ (0) or (0)ρ .

Definition 2.4 If (1) F(s) ∈ Ĥ ; (2) F(s) ∈ Hρ(N∞), ρ > 1
2 , i.e., it belongs to H in the neigh-

borhood N∞ of ∞, and F(∞) = 0.
Then we write F(s) ∈ 〈〈0〉〉 or 〈〈0〉〉ρ , and f (t) ∈ 〈0〉 or 〈0〉ρ .
Let H1 = {F(s)|F(s) ∈ L2(R)}, H2 = {F(s)|F(s) = O(|s|–ρ),ρ > 1

2 }, and

H3 =
{

F(s)|F(s) ∈ Hρ(N∞),ρ >
1
2

}

.

Obviously, H3 ⊂ H2 ⊂ H1, hence 〈〈0〉〉 ⊂ ((0)) ⊂ {{0}}, and 〈0〉 ⊂ (0) ⊂ {0}.

We denote by H0 the class of Hölder continuous functions on any closed interval exterior
to s = 0.

For two functions k(t) and f (t), their convolution is defined by the formula

k ∗ f (t) =
1√
2π

∫

R

k(t – τ )f (τ ) dτ , t ∈R. (2.2)

It is well known that F(k ∗ f ) = KF , where K , F are the Fourier transforms of k, f , respec-
tively.

Lemma 2.1 is obvious fact and we omit its proof here.

Lemma 2.1
(1) If k, f ∈ {0} (〈0〉), then k ∗ f ∈ {0} (〈0〉).
(2) If f ∈ {0} and k ∈ (0) (〈0〉), then k ∗ f ∈ (0) (〈0〉).
We also introduce the Cauchy operator T :

Tf (t) =
1
π i

∫

R

f (τ )
τ – t

dτ , t ∈R. (2.3)

It follows from [15, 16] that T maps {0} and 〈0〉 into themselves, respectively, and T2 = I
(identity).

We define the operators N and S as follows:

Nf (t) = f (–t), Sf (t) = f (t) sgn t, (2.4)

obviously, N2 = S2 = I , and SN = –NS.
For the inverse Fourier transform operator F–1:

F
–1F =

1√
2π

∫

R

F(s)e–ist ds, t ∈R. (2.5)

It is evident that

F
–1 = NF = FN , F

2 = N , (2.6)
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and for any f ∈ {0}, we have

FSf = TFf . (2.7)

Lemma 2.2 plays an important role in our paper.

Lemma 2.2 Let f (t) ∈ {0}, F(s) = Ff (t), then F[Tf (t)] = –SF(s), that is,

F

[
1
π i

∫

R

f (τ )
τ – t

dτ

]

= –F(s) sgn s. (2.8)

Proof Since

F
[
Tf (t)

]
=

1√
2π

∫

R

[
1
π i

∫

R

f (τ )
τ – t

dτ

]

eist dt

= –
1√
2π

∫

R

[
1
π i

∫

R

eist

t – τ
dt

]

f (τ ) dτ , (2.9)

by the extended residue theorem [1], we have

1
π i

∫

R

eist

t – τ
dt =

⎧
⎪⎪⎨

⎪⎪⎩

eisτ , if s > 0,

0, if s = 0,

–eisτ , if s < 0.

(2.10)

Substituting (2.10) into (2.9), we obtain

F
[
Tf (t)

]
= – sgn s · 1√

2π

∫

R

f (t)eist dt = – sgn sF(s). (2.11)

�

Lemma 2.3 If f ∈ {0} and F(0) = 0, then Tf ∈ {0}.

Proof Since f ∈ {0}, then F = Ff ∈ {{0}} and F ∈ C(R). By F(0) = 0 and F(s) ∈ L2(R), we
have F(s) sgn s ∈ C(R) ∪ L2(R). For any two points s1, s2 in the neighborhood of +∞ (or
–∞), that is, there exists a sufficiently large constant M such that sj > M (or sj < –M). Since

∣
∣F(s1) sgn s1 – F(s2) sgn s2

∣
∣ =

∣
∣F(s1) – F(s2)

∣
∣, (2.12)

we can obtain F(s) sgn s ∈ Hρ from F(s) ∈ Hρ , where ρ is the Hölder exponent.
On the other hand, for any s1, s2 ∈ [–M, M], when s1s2 > 0, (2.12) is fulfilled; when s1s2 ≤

0, since

∣
∣F(s1) sgn s1 – F(s2) sgn s2

∣
∣ =

∣
∣F(s1) + F(s2)

∣
∣

=
∣
∣F(s1) – F(0) + F(s2) – F(0)

∣
∣

≤ ∣
∣F(s1) – F(0)

∣
∣ +

∣
∣F(s2) – F(0)

∣
∣

≤ D1|s1|ρ1 + D2|s2|ρ2 ≤ (D1 + D2)|s1 – s2|ρ , (2.13)
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F(s) sgn s ∈ Ĥ , where Dj (j = 1, 2) are positive constants, and

ρ =

⎧
⎨

⎩

max{ρ1,ρ2}, if |s1 – s2| ≥ 1,

min{ρ1,ρ2}, if |s1 – s2| < 1.

Through the above discussion, we obtain F(s) sgn s ∈ {{0}} and then Tf ∈ {0}. �

In Lemma 2.3, note that F(0) = 0 is a necessary condition, otherwise the lemma is invalid.
Similarly, we can prove that, if f ∈ (0) (〈0〉), and F(0) = 0, then Tf ∈ (0) (〈0〉).

In order to transform the above-mentioned SIEs into Riemann–Hilbert problems, we
give Lemma 2.4.

Lemma 2.4 Let ω(t) ∈ {0}, Ω(x) = Fω(t), and Ω̃(z) = 1
2π i

∫

R

Ω(s)
s–z ds, then, we have

(1) Im z > 0, Ω̃(z) = 1√
2π

∫

R+ ω(t)eitz dt.
(2) Im z < 0, Ω̃(z) = – 1√

2π

∫

R– ω(t)eitz dt.
(3) Im z = 0, Ω̃(z) = 1√

2π

∫

R
ω(t)eitz sgn t dt.

Proof Since ω(t) ∈ {0}, we have

Ω̃(z) =
1

2π i

∫

R

1
s – z

[
1√
2π

∫

R

ω(t)eist dt
]

ds

=
1√
2π

∫

R–
ω(t) dt

1
2π i

∫

R

eist

s – z
ds +

1√
2π

∫

R+
ω(t) dt

1
2π i

∫

R

eist

s – z
ds. (2.14)

Let Θ = 1
2π i

∫

R

eist

s–z ds. By the generalized residue theorem, when Im t > 0, we have

Θ =

⎧
⎨

⎩

eitz, Im z > 0,

0, Im z < 0;
(2.15)

and when Im t < 0,

Θ =

⎧
⎨

⎩

–e–itz, Im z < 0,

0, Im z > 0.
(2.16)

Therefore, when Im z > 0, we get

1√
2π

∫

R–
ω(t) dt

1
2π i

∫

R

eist

s – z
ds = 0

and

1√
2π

∫

R+
ω(t) dt

1
2π i

∫

R

eist

s – z
ds =

1√
2π

∫

R+
ω(t)eitz dt;

when Im z < 0, we have

1√
2π

∫

R+
ω(t) dt

1
2π i

∫

R

eist

s – z
ds = 0
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and

1√
2π

∫

R–
ω(t) dt

1
2π i

∫

R

eist

s – z
ds = –

1√
2π

∫

R–
ω(t)eitz dt;

when Im z = 0, by applying Plemelj formula [12], we find

Ω̃+(x) =
1
2
Ω(x) + Ω̃(x), Ω̃–(x) = –

1
2
Ω(x) + Ω̃(x), (2.17)

therefore,

Ω̃(x) =
1
2
[
Ω̃+(x) + Ω̃–(x)

]
(2.18)

and

Ω̃+(x) =
1√
2π

∫

R+
ω(t)eitx dt; Ω̃–(x) = –

1√
2π

∫

R–
ω(t)eitx dt. (2.19)

Then, we have

Ω̃(x) =
1

2π i

∫

R

Ω(s)
s – x

ds =
1√
2π

∫

R+
ω(t)eitx dt –

1√
2π

∫

R–
ω(t)eitx dt

=
1√
2π

∫

R

ω(t)eitx sgn t dt. (2.20)

�

Remark 2.1 If ω(t) ∈ L1(R), then Ω(0) = 0 if and only if
∫

R
ω(t) dt = 0.

Remark 2.2 Note that, for the class (0) or 〈0〉, the index ρ is invariant, provided 1
2 < ρ < 1.

In Sects. 3–6, we shall study the Noether theory of solvability and methods of solution
for some classes of SIEs of convolution type with Cauchy kernel.

3 Dual equations
Let us consider the following SIEs of dual type:

⎧
⎨

⎩

aω(t) + b
π i

∫

R

ω(τ )
τ–t dτ + 1√

2π

∫

R
k1(t – τ )ω(τ ) dτ = g(t), t ∈R

+;

aω(t) + b
π i

∫

R

ω(τ )
τ–t dτ + 1√

2π

∫

R
k2(t – τ )ω(τ ) dτ = g(t), t ∈R

–,
(3.1)

where a, b are constants and b �= 0. The given functions kj, g ∈ {0} (j = 1, 2), and an un-
known function ω ∈ {0}, then their Fourier transforms belong to class {{0}}. In order to
solve Eq. (3.1), we rewrite it as

⎧
⎨

⎩

aω(t) + b
π i

∫

R

ω(τ )
τ–t dτ + 1√

2π

∫

R
k1(t – τ )ω(τ ) dτ = g(t) – f–(t);

aω(t) + b
π i

∫

R

ω(τ )
τ–t dτ + 1√

2π

∫

R
k2(t – τ )ω(τ ) dτ = g(t) + f+(t),

t ∈R, (3.2)

where f ∈ {0} is an undetermined function.

f+(t) =

⎧
⎨

⎩

f (t), t ≥ 0,

0, t < 0;
f–(t) =

⎧
⎨

⎩

0, t ≥ 0,

–f (t), t < 0
(3.3)
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and f (t) = f+(t) – f–(t).
Taking Fourier transforms in both sides of (3.2), by Lemmas 2.1 and 2.2 we obtain

⎧
⎨

⎩

aΩ(s) – b sgn sΩ(s) + K1(s)Ω(s) = G(s) + F–(s);

aΩ(s) – b sgn sΩ(s) + K2(s)Ω(s) = G(s) + F+(s),
(3.4)

where Kj(s) = Fkj(t), Ω(s) = Fω(t), G(s) = Fg(t), F±(s) = Ff±(t), j = 1, 2.
By Lemma 2.4, we know that F±(s) are the boundary values of the Cauchy type integral

F(z) =
1

2π i

∫

R

F(τ )
τ – z

dτ , Im z �= 0,

and it is well known that F±(s) also are the one-sided Fourier transforms of f (t), that is,

F+(s) =
1√
2π

∫

R+
f (t)eits dt; F–(s) = –

1√
2π

∫

R–
f (t)eits dt.

It is evident that F(s) = F+(s) – F–(s).
Since Ω(s) is continuous at s = 0, thus Ω(0) = 0 by (3.4). We assume

Kj(s) �=
⎧
⎨

⎩

–(a – b), 0 < s < +∞,

–(a + b), –∞ < s < 0,
j = 1, 2, (3.5)

which is called the normal case of (3.1). By eliminating Ω(s) in (3.4) we get

[
a – b sgn s + K1(s)

][
G(s) + F+(s)

]
=

[
a – b sgn s + K2(s)

][
G(s) + F–(s)

]
, (3.6)

so that (3.6) may be written as the following Riemann–Hilbert problems with discontinu-
ous coefficients:

F+(s) = Φ(s)F–(s) + Υ (s), s ∈ R, (3.7)

where

Φ(s) =
a – b sgn s + K2(s)
a – b sgn s + K1(s)

, Υ (s) =
[K2(s) – K1(s)]G(s)
a – b sgn s + K1(s)

. (3.8)

We remark that the Riemann boundary value problem (3.7) can be directly solved by
the methods in [1] under certain conditions through Fredholm integral equations (see
also Muskhelishvili [17]). But in this paper we shall apply Fourier theory to solve (3.7),
which may enable us to deal with other equations.

Since Kj(s) ∈ {{0}}, then Kj(∞) = 0 (j = 1, 2), so Φ(∞) = 1 and Υ (∞) = 0. Thus s = ∞ is
not a nodal point of (3.7), and its unique nodal point is s = 0. Note that F(s) is continuous
on the whole real axis and F(∞) = 0. We take a continuous branch of logΦ(s) such that it
is continuous at s = ∞, e.g., logΦ(∞) = 0, and denote

1
2π i

{
logΦ(+0) – logΦ(–0)

}
= γ0 = δ0 + iη0. (3.9)
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We choose an integer κ such that 0 ≤ δ = δ0 – κ < 1, and call κ the index of (3.7). The
homogeneous problem of (3.7) is denoted by

F+(s) = Φ(s)F–(s), s ∈R. (3.10)

Without loss of generality, we take the fixed point z0 such that Im z0 > 0, and z̄0 denotes
the conjugate complex number of z0. In order to solve (3.10), we define the following sec-
tionally holomorphic function:

V (z) =

⎧
⎨

⎩

(z – z̄0)–κeΓ (z), Im z > 0;

(z – z0)–κeΓ (z), Im z < 0,
(3.11)

where

Γ (z) =
1

2π i

∫

R

logΦ0(t)
t – z

dt, (3.12)

and

Φ0(t) =
(

t – z0

t – z̄0

)–κ

Φ(t), (3.13)

in which we have taken the definite branch of

logΦ0(t) = –k log
t – z0

t – z̄0
+ logΦ(t), (3.14)

provided that we have chosen log t–z0
t–z̄0

|t=∞ = 0, or, which is the same, log t–z0
t–z̄0

|t=Re z0 = ±iπ .
From (3.11) and (3.12), we have

V +(s) = Φ(s)V –(s), s ∈R.

Since

F+(s)
V +(s)

=
F–(s)
V –(s)

,

D(z) = F(z)
V (z) is analytic on R

2 and has the order κ – 1 at ∞. By the generalized Liouville
theorem [14], we can get a general solution of (3.10),

F(z) = V (z)Pκ–1(z), (3.15)

and when κ > 0, Pκ–1(z) = e0 + e1z + · · · + eκ–1zκ–1 is a polynomial of degree κ – 1; when
κ ≤ 0, Pκ–1(z) ≡ 0, that is, (3.10) only has zero solution.

Next, we consider the solutions and the conditions of solvability for (3.7). To do this, we
define Y (z) as follows:

Y (z) =

⎧
⎨

⎩

eΓ (z), Im z > 0;

( z–z0
z–z̄0

)–κeΓ (z), Im z < 0.
(3.16)
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According to the method used in [17–19], (3.7) can be transformed into

F+(s)
Y +(s)

=
F–(s)
Y –(s)

+
Υ (s)
Y +(s)

. (3.17)

We again define the following sectionally holomorphic function:

Ψ (z) =
1

2π i

∫

R

Υ (t)
Y +(t)(t – z)

dt, z ∈̄R. (3.18)

By applying Plemelj’s formula to Ψ (z) in (3.18), we rewrite (3.17) as

F+(s)
Y +(s)

– Ψ +(s) =
F–(s)
Y –(s)

– Ψ –(s). (3.19)

It is easily seen that,

D(z) =
F(z)
Y (z)

– Ψ (z)

is possibly analytic exterior to z = z̄0. In order to guarantee that D(z) is bounded at z = z̄0,
we have that

(z – z̄0)κD(z) = Pκ–1(z).

Thus, the general solution of Eq. (3.7) is given by formula

F(z) = Y (z)
[

Ψ (z) +
Pκ–1(z)

(z – z̄0)κ

]

, κ > 0, (3.20)

and

Pκ–1(z) = e0 + e1z + · · · + eκ–1zκ–1,

which is a polynomial of degree κ – 1 with arbitrary complex coefficients. If κ ≤ 0, then
Pκ–1(z) ≡ 0, in this case, (3.7) has the unique solution

F(z) = Y (z)Ψ (z). (3.21)

And when κ ≤ –1, (3.7) is solvable if the conditions

∫

R

Υ (t)
Y +(t)

(z – z̄0)–j dt = 0, j = 1, 2, . . . , –κ (3.22)

are also satisfied.
By taking the boundary values to Y (z) in (3.16), we have

Y +(t) =
√

Φ0(t)eΓ (t), Y –(t) =
1√

Φ0(t)
eΓ (t), (3.23)
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where
√

Φ0(t) = exp{ 1
2 logΦ0(t)} has definite value. By applying the Plemelj formula to

(3.20), we get

F+(s) =
1
2
Υ (s) + Y +(s)

[

Ψ (s) +
Qk–1(s)
(s – z̄0)k

]

;

F–(s) = –
1
2

Υ (s)
Φ(s)

+ Y –(s)
[

Ψ (s) +
Qk–1(s)
(s – z̄0)k

]

.
(3.24)

Therefore, the general solution of (3.7) may also be written in the following form:

F(s) =
1 + Φ(s)

2Φ(s)
Υ (s) +

[
Y +(s) – Y –(s)

]
[

Ψ (s) +
Qk–1(s)
(s – z̄0)k

]

. (3.25)

Since Y ±(s) are bounded and nonzero on R, we can prove that F±(s), F(s) ∈ L2(R) ∩ H0. In
order to guarantee that F±(s), F(s) ∈ {{0}}, we need to consider some properties of F±(s),
F(s) at s = 0.

Now we discuss the behaviors of the solution near s = 0.
(1) Let s = 0 be an ordinary node. Then, 0 < δ < 1, γ = γ0 – κ = δ + iη0 �= 0 and eγπ i �= 1. It

is easy to verify that, in the neighborhood of s = 0,

Y +(s) =
√

Φ0(s)sγ eΓ0(s), Γ0(s) ∈ H ,

where Γ0(s) = Γ (s) – γ ln s. Moreover, we can prove that,

√
Φ0(±0) = exp

1
2
[±κπ i + logΦ(±0)

]
;

√
Φ0(–0) = eγπ i

√
Φ0(+0).

(3.26)

Similar to the discussion in [12, 20, 21], when s > 0, we have

Ψ (s) =
i cscγπ

2sγ eΓ0(s)

[

e–γπ i Υ (–0)√
Φ0(–0)

– cosγπ
Υ (+0)√
Φ0(+0)

]

+ A(s), (3.27)

where A(s) = Ψ ∗(s)
|s|δ′ (0 < δ′ < δ) and Ψ ∗(s) ∈ H . We apply (3.26) to simplify (3.24) and obtain

F+(+0) =
i cscγπ

2e2γπ i

[
Υ (–0) – e3γπ iΥ (+0)

]
. (3.28)

When s < 0, we have

Ψ (s) =
i cscγπ

2sγ eΓ0(s)

[

cosγπ
Υ (–0)√
Φ0(–0)

– eγπ i Υ (+0)√
Φ0(+0)

]

+ A(s), (3.29)

and then

F+(–0) =
i cscγπ

2eγπ i

[
Υ (–0) – e3γπ iΥ (+0)

]
. (3.30)

By comparing (3.28) with (3.30), we know that F(s) is continuous at s = 0 if and only if

Υ (–0) = e3γπ iΥ (+0). (3.31)
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Therefore, we obtain

F+(0) = F–(0) = 0 (3.32)

and

F(0) = 0. (3.33)

By (3.4), we also have

Ω(0) = 0 (3.34)

and

G(0) = 0. (3.35)

Conversely, if (3.35) is fulfilled, then (3.32) and (3.33) are valid, and F±(s), F(s) ∈ H in the
neighborhood of s = 0. Therefore, we have F±(s), F(s) ∈ {{0}}. In conclusion, it is necessary
that G(0) = 0.

(2) Let s = 0 be a special node. In this case, δ = 0 and γ = iη0.
If η0 = 0, that is, γ = 0, then Φ(s) must be continuous at s = 0. It follows from b �= 0 that

K1(0) = K2(0) = 0, so E(0) = 1, Υ (0) = 0, and F(0) = 0. Thus, F(s) is continuous at s = 0, and
s = 0 is not a nodal point at all. There is no boundary value problem in this case.

If η0 �= 0, then (3.27) and (3.29) remain valid. We can prove that A(s) ∈ H0 and A(±0)
exist, thus we have

F+(+0) =
i cscγπ

2e2γπ i

[
Υ (–0) – e3γπ iΥ (+0)

]
+ lim

s→+0

√
Φ0(+0)eΓ0(0)siη0

[
A(s) + B0

]
, (3.36)

where B0 = (z̄0)κe0 when κ > 0; and B0 = 0 when κ ≤ 0. And a similar formula for F+(–0)
can be obtained, that is,

F+(–0) =
i cscγπ

2e2γπ i

[
Υ (–0) – e3γπ iΥ (+0)

]
+ lim

s→–0

√
Φ0(–0)eΓ0(0)siη0

[
A(s) + B0

]
. (3.37)

In order that F+(±0) exist, we should have

A(±0) =

⎧
⎨

⎩

(z̄0)κe0, κ > 0;

0, κ ≤ 0.

By (3.28), (3.30) and (3.31), we get (3.35) again. Once (3.35) is fulfilled, then Υ (0) = 0 and
Ψ (s) ∈ H near s = 0. Since we require F+(s) is continuous at s = 0, thus, when κ > 0, the
constant term e0 of Pκ–1(z) should take the value

e0 =
(–1)κ–1(z̄0)κ

2π i

∫

R

Υ (t)
Y +(t)t

dt; (3.38)

and when κ ≤ 0, the following condition of solvability must be satisfied:

∫

R

Υ (t)
Y +(t)t

dt = 0. (3.39)
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Once (3.38) and (3.39) are fulfilled, we can readily verify F±(0) = F(0) = 0. In all of the
above cases, it is easy to see that F±(s), F(s) ∈ {{0}}.

Moreover, we have the following results.

Theorem 3.1 Assume that (3.5) and (3.35) are fulfilled.
(1) Let s = 0 be an ordinary node, when κ ≥ 0, (3.1) always has a solution; when κ < 0,

provided that (3.22) are fulfilled, (3.1) has the unique solution (3.21).
(2) Let s = 0 be a special node, when K1(0) = K2(0), the results obtained in (1) remain

true; when K1(0) �= K2(0), if κ > 0 and (3.38) is fulfilled, (3.1) has a solution; if κ ≤ 0,
when (3.22) and (3.39) are fulfilled, (3.1) is solvable.

Under the above suppositions, Eq. (3.1) is solvable in class {0} and has the solution ω(t) =
F

–1Ω(s), where Ω(s) is given by (3.6). Obviously, F(s) ∈ {{0}} and so ω(t) ∈ {0}.

Remark 3.1 In Eq. (3.1), if kj ∈ {0} (j = 1, 2), g ∈ (0), then ω ∈ (0); if kj, g ∈ 〈0〉 (j = 1, 2),
then ω ∈ 〈0〉. Similarly, we can also obtain that, if kj, g ∈ (0)ρ (j = 1, 2), then ω ∈ (0)ρ , and if
kj, g ∈ 〈0〉ρ (j = 1, 2), then ω ∈ 〈0〉ρ , provided 0 < ρ < 1.

4 Equation of Wiener–Hopf type
In this section, we discuss method of solution for the following SIE of Wiener–Hopf type:

aω(t) +
b
π i

∫

R

ω(τ )
τ – t

dτ +
1√
2π

∫

R

k(t – τ )ω(τ ) dτ = g(t), t ∈R
+, (4.1)

where a, b are as the above, k(t), g(t) ∈ (0)ρ ( 1
2 < ρ < 1) and ω(t) is required to be in {0}.

Extending t in (4.1) to t ∈ R, the right-hand side of (4.1) is augmented with an unknown
function –ω–(t). Rewrite (4.1) as

aω+(t) +
b
π i

∫

R

ω+(τ )
τ – t

dτ +
1√
2π

∫

R

k(t – τ )ω+(τ ) dτ = g(t) – ω–(t), t ∈R. (4.2)

Taking Fourier transformations on both sides of (4.2), we get by Lemma 2.2

aΩ+(s) – b sgn sΩ+(s) + K(s)Ω+(s) = G(s) + Ω–(s), (4.3)

that is,

Ω+(s) = Φ(s)Ω–(s) + W (s), (4.4)

where

Φ(s) =
1

a – b sgn s + K(s)
, W (s) =

G(s)
a – b sgn s + K(s)

. (4.5)

Note that Ω±(s), G(s) belong to class {{0}} on R. Here we only consider the case of
normal type, that is,

K(s) �=
⎧
⎨

⎩

–(a – b), 0 < s < +∞,

–(a + b), –∞ < s < 0.
(4.6)



Li Journal of Inequalities and Applications         (2019) 2019:22 Page 13 of 19

Denote

1
2π i

{
logΦ(+∞) – logΦ(–∞)

}

=
1

2π i
{
log(a – b) – log(a + b)

}

= δ∞ + iη∞ = γ∞, (4.7)

where logΦ(s) is taken to be continuous branch for s > 0 and s < 0 respectively such that
it is continuous at s = ∞, and 0 ≤ δ∞ < 1. Since b �= 0, thus γ∞ �= 0. We again denote

1
2π i

{
logΦ(+0) – logΦ(–0)

}
= δ0 + iη0 = γ0. (4.8)

Then we choose an integer κ , the index of (4.4), such that 0 ≤ δ = δ0 – κ < 1. Denote γ =
γ0 – κ = δ + iη0. Note that Ω+(∞) = 0, then we also have Ω–(∞) = Ω(∞) = 0. Therefore, it
is necessary that Ω(∞) = 0. Since b �= 0, we get γ �= 0. It is seen from the above discussion
that both s = 0 and s = ∞ are nodes of (4.4).

Similar to the discussion in [17, 22, 23] and Sect. 3, we can obtain the general solution
of (4.4)

Ω(z) = Y (z)
[

M(z) +
Pκ–1(z)

(z – z̄0)κ

]

, (4.9)

where

M(z) =
1

2π i

∫

R

z – z̄0

t – z̄0

W (t)
Y +(t)(t – z)

dt, z ∈̄R, (4.10)

when κ > 0, Pκ–1(z) = e0 + e1z + · · · + eκ–1zκ–1 is an arbitrary polynomial of degree κ – 1,
and Y (z), z0 are still given by (3.16); when κ ≤ 0, Pκ–1(z) ≡ 0, and the following conditions
of solvability must be fulfilled:

∫

R

W (t)
Y +(t)(t – z̄0)j dt = 0, j = 1, 2, . . . , –κ + 1. (4.11)

Note that, in (4.10), since k, g ∈ (0), then W (∞) = 0, by [12] we get

M(s) =
M∗(s)
|s|δ′ , 0 < δ′ < δ,

where M∗(s) ∈ H . Therefore, a factor z–z̄0
t–z̄0

should be multiplied in the integrand of (4.10).
And we also have Y –(s) = ξ (s)

sγ∞ , here ξ (s) ∈ H2.
Taking the boundary values for Ω(z) in (4.9), we have

Ω+(s) =
1
2

W (s) + Y +(s)
[

M(s) +
Pκ–1(s)

(s – z̄0)κ

]

(4.12)

and

Ω–(s) = –
1
2

W (s)
E(s)

+ Y –(s)
[

M(s) +
Pk–1(s)

(s – z̄0)k

]

. (4.13)
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In the following, we consider some properties of the solutions at nodes. First, we con-
sider the situation near s = ∞.

(1) Let s = ∞ be an ordinary node, we have the following two cases.
(a) When 0 ≤ δ∞ ≤ 1

2 , we easily find that W (s)[Y (s)]–1 ∈ H2 since W (s) ∈ H2.
In order to guarantee that Ω(s) ∈ {{0}}, when κ ≥ 0, the constant term e0 of

Pκ–1(z) should take the value

e0 = –
1

2π i

∫

R

W (t)
Y +(t)(t – z̄0)

dt; (4.14)

and when κ < 0, we have the following conditions of solvability:

∫

R

W (t)
Y +(t)t(t – z̄0)j dt = 0, j = 1, 2, . . . , –κ . (4.15)

(b) When 1
2 < δ∞ < 1, if ρ ≤ δ∞, by [20] we have

Y (s)M(s) = O
(|s|–δ∞+ε

)
,

where ε > 0 is arbitrarily small such that δ∞ – ε > 1
2 ; if ρ > δ∞, then M(s) is

bounded and so

Y (s)M(s) = O
(|s|–δ∞)

near s = ∞. Thus we also obtain Ω±(s) ∈ H2 and so Ω(s) ∈ H2. In conclusion, in
any case, we have F(s) = O(|s|–μ), where μ = min{ρ, δ∞ – ε}, obviously, μ > 1

2 .
(2) Let s = ∞ be a special node, then δ∞ = 0 and γ∞ = iη∞ �= 0. In this case, the

discussion is the same as that in (1), and we can obtain Ω(s) ∈ H and Ω(s) ∈ H2.
Next, we consider the behavior of the solution near s = 0.
Since Ω(s) is continuous at s = 0, similar to the discussion in Sect. 3, we may get W (+0) =

e–3γπ iW (–0). From (4.5), we have W (±0) = G(0)Φ(±0). Therefore, we can obtain

G(0)
[
Φ(–0) – e3γπ iΦ(+0)

]
= 0. (4.16)

Note that Φ(+0) = e2γ0π iΦ(–0) and γ = γ0 – κ �= 0, so

Φ(–0) – e3γπ iΦ(+0) = Φ(–0)
(
1 – e5γ0π i) �= 0, (4.17)

and by (4.16) and (4.17), we get G(0) = 0 again.
Moreover, in the case δ∞ > 1

2 , when κ ≥ 0, for the constant term e0 of Pκ–1(s) must be
taken the value

e0 =
(–1)κ (z̄0)κ+1

2π i

∫

R

W (t)
Y +(t)(t – z̄0)t

dt; (4.18)

when κ ≤ –1, there is the following condition of solvability:

∫

R

W (t)
Y +(t)(t – z̄0)t

dt = 0. (4.19)
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It is seen from the above discussions that Ω(0) = 0, Ω(s) ∈ {{0}}. In fact, when δ∞ > 1
2 ,

we can get Ω(s) ∈ ((0)) and hence ω(t) ∈ (0).
Now we can formulate the main results about the solutions of Eq. (4.1) in following form.

Theorem 4.1 Under condition (4.6), the necessary condition of the existence of solution to
Eq. (4.1) is G(0) = 0 in class {0}.

(1) Let s = 0 be a node, if 1
2 < δ∞ < 1, when κ ≥ 0, (4.1) always has a solution, and the

constant term of Pκ–1(s) takes value as (4.18); and when κ < 0, (4.11) and (4.19)
should be supplemented, then Eq. (4.1) has a solution. If 0 ≤ δ∞ ≤ 1

2 , when κ ≥ 0, the
constant term of Pκ–1(s) should be taken as (3.34); when κ < 0, the conditions of
solvability (3.22) and (3.35) are fulfilled.

(2) Let s = ∞ be a node, if 1
2 < δ∞ < 1, when κ ≥ 0, (4.1) has a solution; when κ < 0,

provided that (4.11) are satisfied, (4.1) is solvable. If 0 ≤ δ∞ ≤ 1
2 , when κ ≥ 0, (4.1)

has the solution; when κ < 0, the conditions of solvability (4.15) must be augmented.

Assume that the above (1) and (2) are fulfilled, then (4.1) has the following general so-
lution:

ω+(t) = F
–1Ω+(s),

where Ω+(s) is given by (4.12).

Remark 4.1 We should note that M(z) cannot be separated as, in general,

M(z) =
1

2π i

∫

R

W (t)
Y +(t)(t – z)

dt –
1

2π i

∫

R

W (t)
Y +(t)(t – z̄0)

dt, (4.20)

because two integrals in (4.20) may be divergent. But, in case (1) of Theorem 4.1, when
δ∞ ≤ 1

2 , (4.20) becomes valid, and the integrals in (4.20) are convergent now. In this case,
we also have Y (s)Ψ (s) ∈ H2.

Remark 4.2 In Eq. (4.1), if a �= 0 is real, b is purely imaginary, and k1(t), k2(t) are real func-
tions, then (4.1) is a real equation. In this case, s = 0 is an ordinary node of (4.1). It is also
easily seen that the characteristic feature is for δ∞ > 1

2 or δ∞ ≤ 1
2 . By (4.7), when δ∞ > 1

2 ,
we have

π < arg(a + b) – arg(a – b) < 2π ,

then, a + b lies in the quadrant 2 or 4; when δ∞ < 1
2 ,

0 < arg(a + b) – arg(a – b) < π ,

and a + b lies in the quadrant 1 or 3.
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5 Equations with two convolution kernels
The above method is applicable to solving the SIEs with two convolution kernels

aω(t) +
b
π i

∫

R

ω(τ )
τ – t

dτ +
1√
2π

∫

R+
k1(t – τ )ω(τ ) dτ

+
1√
2π

∫

R–
k2(t – τ )ω(τ ) dτ = g(t), t ∈R, (5.1)

where a, b are as the above, k1, k2, g ∈ 〈0〉 and the unknown function ω ∈ {0}.
Taking the Fourier transform on both sides of (5.1), we obtain

(a – b sgn s)Ω(s) + K1(s)Ω+(s) – K2(s)Ω–(s) = G(s), (5.2)

where Ω±(s) are respectively the Fourier transforms of ω±(t). In fact, Ω±(s) also are the
boundary values of the holomorphic function

Ω(z) =
1√
2π

∫

R

ω(t)eitz dt (5.3)

in the upper and the lower half planes, respectively.
In order to guarantee that Ω±(s), Ω(s) are continues at s = 0, it is necessary that Ω(0) = 0,

that is, Ω+(0) = Ω–(0). Restricted to the case of normal type, i.e., K(s) satisfying (4.6). From
(5.2), we get the following Riemann–Hilbert problem:

Ω+(s) = Φ(s)Ω–(s) + W (s), s ∈R, (5.4)

in which we have put

Φ(s) =
a – b sgn s + K2(s)
a – b sgn s + K1(s)

, W (s) =
G(s)

a – b sgn s + K1(s)
. (5.5)

Similarly, we easily verify that s = ∞ is not a nodal point of (5.4), and s = 0 is its unique
nodal point. The solution of (5.4) be discussed by using the same method as shown in
Sect. 3. The remaining discussions will be omitted also.

6 Equations with one convolution kernel
Finally, we solve SIEs with one convolution kernel

aω(t) +
b
π i

∫

R

ω(τ )
τ – t

dτ +
1√
2π

∫

R

k(t – τ )ω(τ ) dτ = g(t), t ∈ R, (6.1)

where a, b are as the above, k, g ∈ {0} and the unknown function ω ∈ {0}. Taking Fourier
transforms on both sides of (6.1), we get by Lemma 2.2

aΩ(s) – b sgn sΩ(s) + K(s)Ω(s) = G(s). (6.2)

Note that (6.2) is not a Riemann–Hilbert problem. Without loss of generality, we only
discuss the function a – b sgn s + K(s) �= 0 (s ∈R). From (6.2) we get

Ω(s) =
G(s)

a – b sgn s + K(s)
. (6.3)
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Since G(s) is continuous at s = 0 and

G(0) = 0, (6.4)

thus G(s) ∈ {{0}}. Note that a – b sgn s + K(s) is bounded and non-zero on R, we get Ω(s) ∈
{{0}} and hence ω(t) = F

–1Ω(s) is the solution of (6.1) in {0}.
Thus, we obtain the following conclusions.

Theorem 6.1 If k(t), g(t) ∈ {0}, in the case of normal type, that is, (4.6) is valid, then (6.1)
is solvable if and only if (6.4) is satisfied. Assume that this is fulfilled, (6.1) has a solution

ω(t) = F
–1Ω(s)

in {0}, where Ω(s) is given by (6.3).

After simplification, ω(t) may be written as

ω(t) = q(t) – p ∗ q(t), (6.5)

where p(t) = F
–1P(s), q(t) = F

–1Q(s), in which

P(s) =
K(s)

a – b sgn s + K(s)
, Q(s) =

G(s)
a – b sgn s

. (6.6)

Noting that, although P(s) is discontinuous at s = 0, it would not influence the property
p ∗ q ∈ {0} since G(0) = 0.

7 Comments
Here, we shall discuss the equations of dual type in the more general case

⎧
⎨

⎩

a1ω(t) + b1Tω(t) + k1 ∗ ω(t) = g(t), t ∈R
+;

a2ω(t) + b2Tω(t) + k2 ∗ ω(t) = g(t), t ∈R
–,

(7.1)

where aj, bj are constants and all the functions appeared belong to {0}. Assume b1, b2 are
not equal to zero simultaneously. Actually, (3.1) is a special case of (7.1). In order to solve
Eq. (7.1), we rewrite (7.1) as

⎧
⎨

⎩

a1ω(t) + b1Tω(t) + k1 ∗ ω(t) = g(t) – f–(t);

a2ω(t) + b2Tω(t) + k2 ∗ ω(t) = g(t) + f+(t),
t ∈ R, (7.2)

where f±(t) are as the above. Taking Fourier transforms in both sides of (7.2), we obtain

⎧
⎨

⎩

[a1 – b1 sgn s + K1(s)]Ω(s) = G(s) + F–(s);

[a2 – b2 sgn s + K2(s)]Ω(s) = G(s) + F+(s).
(7.3)
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In the case of normal type, that is,

Kj(s) �=
⎧
⎨

⎩

–(aj – bj), 0 < s < +∞,

–(aj + bj), –∞ < s < 0
(7.4)

for any j = 1, 2. By eliminating Ω(s) in (7.3), it gives rise to

F+(s) = Φ(s)F–(s) + Υ (s), s ∈ R, (7.5)

where

Φ(s) =
a2 – b2 sgn s + K2(s)
a1 – b1 sgn s + K1(s)

and

Υ (s) =
[a2 – a1 – (b2 – b1) sgn s + K2(s) – K1(s)]G(s)

a1 – b1 sgn s + K1(s)
.

Equation (7.5) is a Riemann–Hilbert problem with discontinuous coefficients and nodes
s = 0, ∞, and its method of solution may be made fully analogous to those in Sect. 4. In
order that Ω(s) is continuous at s = 0, it is necessary that F(s) is continuous at s = 0 and
F±(0) = –G(0). Since F+(s) is continuous at s = 0, we should again get G(0) = 0. Hence all
the results as stated in Theorem 4.1 remain true and ω(t) = F

–1Ω(s), in which Ω(s) is given
by (7.3). The only difference lies in that γ∞ and γ may be zero, for instance, when a1 = a2,
b1 = b2, we have γ∞ = 0, then this case may be transformed to that in Sect. 3. Here, we will
not elaborate on the solving method of (7.5).

8 Conclusions
In this paper, we study some classes of SIEs with convolution kernels and Cauchy kernels in
the different classes of functions. By Fourier transform, these equations are transformed
into Riemann–Hilbert problems with discontinuous coefficients. The general solutions
denoted by integrals and the solvable conditions are obtained for the equations. Here, our
method is different from the classical ones, and it is novel and effective. Thus, this paper
generalizes the theory of the classical Riemann–Hilbert problems and SIEs. Meanwhile,
we remark that the methods of this paper may be used to solving the above equations
in the non-normal case. Indeed, it is possible to study the above-mentioned equation in
Clifford analysis, which is similar to that in [24–28]. Further discussion is omitted here.
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