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Abstract
We establish some new inequalities for the modified Bessel-type function λ

(β)
ν ,σ (x)

studied by Glaeske et al. [in J. Comput. Appl. Math. 118(1–2):151–168, 2000] as the
kernel of an integral transformation that modifies Krätzel’s integral transformation.
The inequalities obtained are closely related to the generalized Hurwitz–Lerch zeta
function and complementary incomplete gamma function. We also deduce some
useful inequalities for the modified Bessel function of the second kind Kν (x) and Mills’
ratio M(x) as worthwhile applications of our main results.
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1 Introduction and motivation
In a series of papers [2–4], E. Krätzel introduced and studied an integral transformation

L(n)
ν {f }(x) =

∫ ∞

0
λ(n)

ν

(
n(xt)1/n)f (t) dt (x ∈R+), (1)

where λ(n)
ν (x) is a Bessel-type function defined by

λ(n)
ν (x) =

(2π )(n–1)/2√n
Γ (ν + 1 – 1

n )

(
x
n

)nν ∫ ∞

1

(
tn – 1

)ν–1/ne–xt dt

(
ν >

1
n

– 1; n ∈N := {1, 2, . . .}
)

.

The integral transformation L(n)
ν reduces to some celebrated integral transformations by

suitably specializing the parameters. For instance, when n = 1, it reduces to the Laplace
transformation L, and when n = 2, we have λ(2)

ν (x) = 21–νxνKν(x), where Kν(x) is the mod-
ified Bessel function of the second kind of order ν . The integral transformation (1) then
becomes the Meijer transformation Kν . Several authors have studied this integral trans-
formation and its variants (see, for example, [5, 6] and [7]).

The kernel λ(n)
ν (x) is of interest and particular significance from the point of view of

the theory of special functions. In a recent work, R.E. Gaunt [8] established the following
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inequality for the function λ(n)
ν (x):

λ(n)
ν (x) ≥ 1√

n

(
n

n – 1

)ν+1–1/n

Pn,ν(x)Qn,n,ν(x)e–x

(
0 ≤ ν ≤ 1

n
; n ∈ {1, 2, 3, . . .}

)
, (2)

where (for convenience)

Pr,s(x) := (2π )(r–1)/2
(

x
r

)sr

(3)

and

Qr,s,t(x) :=
Γ ( x

r–1 + 1
s – t)

Γ ( x
r–1 + 1)

. (4)

The equality in (2) holds if and only if ν = 1
n . If ν > 1

n , the strict inequality is reversed and
holds for all x > (n – 1)(ν – 1

n ). By setting n = 2 in (2), Gaunt [8] obtained a lower bound
for the modified Bessel function Kν(x), that is,

Kν(x) ≥
√

π

2
Γ (x + 1

2 – ν)
Γ (x + 1)

xνe–x
(

0 ≤ ν ≤ 1
2

)
. (5)

It is worth mentioning here that the lower bound in (5) is better than that of Luke men-
tioned in [9, p. 63, Eq. (6.28)] for Kν(x) when x is small (see [8, p. 990, Remark 1]). The
lower bound for Kν(x) in the case ν = 0 was also established by Gaunt [10]. Furthermore,
inequality (2) was obtained actually by generalizing the approach there that Grant had
adopted in [10].

In this paper, we establish some inequalities for the function λ(β)
ν,σ (x) defined by

λ(β)
ν,σ (x) =

β

Γ (ν + 1 – 1
β

)

∫ ∞

1

(
tβ – 1

)ν–1/β tσ e–xt dt

(
β > 0,�(ν) >

1
β

– 1,σ ∈R, x ∈R+

)
. (6)

The function λ(β)
ν,σ (x) was earlier introduced by Glaeske et al. [1] as the kernel of the mod-

ified Bessel-type integral transformation

L(β)
ν,σ {f }(x) =

∫ ∞

0
λ(β)

ν,σ (xt)f (t) dt.

The integral transformation L(β)
ν,σ is in some sense a modification of the Krätzel’s integral

transformation L(n)
ν defined above by (1).

The functions λ(β)
ν,σ (x) and λ(n)

ν (x) are related through the formula

Pn,ν(x)λ(n)
ν,0(x) =

√
nλ(n)

ν (x),
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where Pn,ν(x) is given by (3), and in the literature there are several papers devoted to the
function λ(β)

ν,σ (x) and to its related integral transformation L(β)
ν,σ ; see, for example, [11–14]

and [15].
When all parameters and the variable are real, the asymptotic behavior of λ(β)

ν,σ (x) is given
by (see [14, p. 39]; see also [12])

λ(β)
ν,σ (x) ∼ Γ (–ν – σ

β
)

Γ (1 – σ+1
β

)

(
1
β

– 1 < ν < –
σ

β
,σ ∈R,β > 0; x → 0+

)

and

λ(β)
ν,σ (x) ∼ βν+1–1/βx(1/β)–ν–1e–x

(
ν > 1 –

1
β

,σ ∈R,β > 0; x → ∞
)

. (7)

Our main results obtained in Sect. 3 involve the complementary incomplete gamma
function Γ (a, z) and the generalized Hurwitz–Lerch zeta function Φ∗

μ(z, s, a). Their defi-
nitions and various properties are presented in Sect. 2.

2 Definitions and auxiliary results
In this section, we first briefly introduce the complementary incomplete gamma function
and the generalized Hurwitz–Lerch zeta function, and establish for the latter a new prop-
erty that plays an important role when we analyze the accuracy of the bounds obtained in
Sect. 3. We also prove some auxiliary results which are required in the proofs of our main
results.

The complementary incomplete gamma function Γ (a, z) is defined by (see [16, p. 174];
see also [17, Chap. IX])

Γ (a, z) =
∫ ∞

z
ta–1e–t dt, (8)

which by a simple change of variable and a = 1
2 gives

Γ

(
1
2

, z2
)

=
√

π erfc(z), (9)

where erfc(z) is the complementary error function defined in [16, p. 160, Eq. (7.2.2)].
The generalized Hurwitz–Lerch zeta function Φ∗

μ(z, s, a) was introduced in [18] (see also
[19–21] and [22]) and is of the form:

Φ∗
μ(z, s, a) =

∞∑
n=0

(μ)n

n!
zn

(a + n)s

(
μ ∈C; a ∈C \ {0, –1, –2, . . .}; s ∈C when |z| < 1;�(s – μ) > 0 when |z| = 1

)
, (10)

and its integral representation is given by

Φ∗
μ(z, s, a) =

1
Γ (s)

∫ ∞

0
ts–1e–at(1 – ze–t)–μ dt

(
μ ∈C;�(a) > 0;�(s) > 0 when |z| < 1;�(s – μ) > 0 when z = 1

)
. (11)
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It is worth mentioning here that Φ∗
μ(z, s, a) can be viewed as a Riemann–Liouville frac-

tional derivative of the classical Hurwitz–Lerch function Φ(z, s, a) (see [23]; see also [22,
p. 208] and [24]).

By setting μ = 1 in (10), we get the classical Hurwitz–Lerch zeta function Φ(z, s, a) (see
[22, p. 194]). On the other hand, if we put μ = 0 in (11), then we find the following simple
form:

Φ∗
0 (z, s, a) = a–s, (12)

which is also used below. When s = 	 ∈ N in (10), we can make use of the simple relation
that a/(a + n) = (a)n/(a + 1)n to obtain

Φ∗
μ(z,	, a) = a–	

	+1F	

[
μ, a, . . . , a

a + 1, . . . , a + 1
; z

]
.

(
μ ∈C; a ∈C \ {0, –1, –2, . . .} when |z| < 1;�(	 – μ) > 0 when |z| = 1

)
. (13)

If |z| < 1, expression (13) gives immediately

Φ∗
μ(z,	, a) ∼ (1 – z)–μa–	, (14)

as a → +∞. But in Sect. 3 below, we shall use a different asymptotic formula for Φ∗
μ(z,	, a)

for large a when z = 1 and this formula cannot be determined from formula (14). We prefer
here to examine a simpler case of determining the asymptotic behavior of the function
defined by (10) and the result is included in the following proposition.

Proposition 2.1 For 0 ≤ μ < 2, we have

Φ∗
μ(1, 2, a) ∼ Γ (2 – μ)aμ–2, (15)

as a → +∞.

Proof From (13), we readily have

Φ∗
μ(1, 2, a) = a–2

3F2

[
μ, a, a

a + 1, a + 1
; 1

]
.

The problem is now converted into studying the asymptotics of the 3F2-function with four
large parameters. Recall that (see [25, p. 246, Eq. (17)]; see also [26, p. 537, Eq. (49)])

3F2

[
μ, a, a
a + 1, a + 1

; 1

]
=

aΓ (1 – μ)Γ (a + 1)
Γ (1 + a – μ)

[
ψ(1 + a – μ) – ψ(a)

]
, (16)

where �(μ) < 2 and ψ(z) is the digamma function defined by (see [22, p. 24])

ψ(z) :=
d
dz

lnΓ (z) =
Γ ′(z)
Γ (z)

. (17)
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It is well-known that (see [16, p. 140, Eq. (5.11.2)])

ψ(z) ∼ ln z –
1
2z

–
∞∑

k=1

B2k

2kz2k , as z → ∞ in
∣∣arg(z)

∣∣ ≤ π – δ < π ,

where B2k are the Bernoulli numbers, and also in view of [16, p. 141, Eq. (5.11.12)]:

Γ (z + a)
Γ (z + b)

∼ za–b
∞∑

k=0

Gk(a, b)
zk ,

where G0(a, b) = 1, G1(a, b) = 1
2 (a – b)(a + b – 1), . . . , can be expressed in terms of the gen-

eralized Bernoulli polynomials. Hence from (16), we find that

3F2

[
μ, a, a
a + 1, a + 1

; 1

]
∼ Γ (1 – μ)a1+μ ln

(
1 +

1 – μ

a

)
∼ Γ (2 – μ)aμ,

as a → +∞. �

We now prove the following useful lemma.

Lemma 2.2 Let ρ > 1 and α, u ∈R+, then

ρ

ρ – 1
(
eαu – 1

)
>

(
1 +

αu
ρ – 1

)ρ

– 1. (18)

Proof Let a function f (u) be defined by

f (u) := eαu – 1 –
ρ – 1

ρ

(
1 +

αu
ρ – 1

)ρ

+
ρ – 1

ρ
.

To prove inequality (18), it suffices to establish the positivity of the function f when ρ > 1
and α, u ∈R+. Since f (0) = 0, we only need to show that

f ′(u) = α

[
eαu –

(
1 +

αu
ρ – 1

)ρ–1]
> 0,

which, however, follows directly from the elementary inequality:
(

1 +
x
y

)y

< ex (x > 0, y > 0). (19)
�

Remark 2.3 A special case of (18) when α = 2 and ρ is restricted to N was already proved
by Gaunt [8, p. 989] using a different approach.

Let us now consider an integral of the form:

Z(α,β ,ν, x;σ ) :=
∫ ∞

0

(
eαu – 1

)ν–1/βuσ e–αxu/(β–1) du, (20)

where β > 1, x ∈ R+, σ ∈ R and 0 ≤ ν ≤ 1
β

. We show below in Lemma 2.4 that this inte-
gral can be expressed in terms of the generalized Hurwitz–Lerch zeta function Φ∗

μ(z, s, a)
defined by (11).
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Lemma 2.4 Let x ∈R+, β > 1, 0 ≤ ν ≤ 1
β

and σ > 1
β

– ν – 1. Then

Z(α,β ,ν, x;σ ) =
Γ (σ + 1)

ασ+1 Φ∗
(1/β)–ν

(
1,σ + 1,

x
β – 1

+
1
β

– ν

)
, (21)

where Φ∗
μ(x,α, a) is the generalized Hurwitz–Lerch zeta function defined by (11).

Furthermore, we have

Z(α,β ,ν, x; 0) =
1
α

Γ

(
ν –

1
β

+ 1
)

Qβ ,β ,ν(x), (22)

where Qβ ,β ,ν(x) is given by (4).

Proof Making a change of variable τ = αu, we obtain

Z(α,β ,ν, x;σ ) =
1

ασ+1

∫ ∞

0
τσ

(
1 – e–τ

)ν–1/βe–(x/(β–1)+(1/β)–ν)τ dτ . (23)

When σ + 1 > 1
β

– ν and

x
β – 1

+
1
β

– ν > 0, (24)

the integral on the right-hand side of (23) converges and can be expressed in terms of the
generalized Hurwitz–Lerch zeta function with the help of the integral representation (11)
with x = 1. Condition (24) can be removed because its equivalent form x > (β – 1)(ν – 1

β
)

always holds due to the assumption x ∈R+. This proves the first assertion of the lemma.
When σ = 0, the generalized Hurwitz–Lerch zeta function on the right-hand side of

(21) remains well-defined and thus its integral representation can be applied to evaluate
Φ∗

(1/β)–ν(1, 1, x
β–1 + 1

β
– ν). We have then

Φ∗
(1/β)–ν

(
1, 1,

x
β – 1

+
1
β

– ν

)
=

∫ ∞

0

(
1 – e–τ

)ν–1/βe–(x/(β–1)+(1/β)–ν)τ dτ

= Γ

(
ν –

1
β

+ 1
)

Γ ( x
β–1 + 1

β
– ν)

Γ ( x
β–1 + 1)

. (25)

The desired second assertion of (22) now follows from (21) in conjunction with (4) and
(25), and the proof is complete. �

We shall need the following version of Čebyšev inequality [27, p. 40, Theorem 10]; see
also [28, 29] and [30].

Lemma 2.5 Let f and g be two functions which are integrable and monotone in the same
sense on X := (a, b) and let μ be a positive and integrable function on X. Then

∫
X

μ(t) dt
∫

X
f (t)g(t)μ(t) dt ≥

∫
X

f (t)μ(t) dt
∫

X
g(t)μ(t) dt, (26)

with equality if and only if one of the functions f , g reduces to a constant.
If f and g are monotone in the opposite sense, inequality (26) reverses.
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We also need Hölder’s inequality for p ∈ (0, 1) and q ∈ (–∞, 0). For q ∈ (–∞, 0), we define
(see [31, p. 404, Definition 16.53])

‖g‖q :=
(∫

X
|g|q dμ

)1/q

∈ [0,∞];

it is understood that if
∫

X |g|q dμ = ∞, then ‖g‖q = 0 and if
∫

X |g|q dμ = 0, then ‖g‖q = ∞.

Lemma 2.6 ([31, p. 404, Theorem 16.54]) Given a measure space (X,U,μ), let p ∈ (0, 1)
and q ∈ (–∞, 0) be such that 1

p + 1
q = 1. Let f and g be two extended complex-valued U-

measurable functions on X such that |f | < ∞ a.e. on X and 0 < |g| < ∞ a.e. on X with
0 < ‖g‖q < ∞. Then

‖fg‖1 ≥ ‖f ‖p‖g‖q. (27)

If 0 < ‖fg‖1 < ∞ and 0 < ‖g‖q < ∞, then the equality in (27) holds if and only if

A|f |p = B|g|q a.e. on X for some A, B > 0.

3 Main results
Theorem 3.1 Let x ∈ R+, β > 1, 0 ≤ ν ≤ 1

β
, σ ∈R and let λ(β)

ν,σ (x) be defined by (6).
(i) For σ ≥ 0, we have

λ(β)
ν,σ (x) ≥ Cσ

(
β

β – 1

)ν+1–1/β

Qβ ,β ,ν(x)e–x +
Cσ

(β – 1)σ

(
β

β – 1

)ν+1–1/β

· Γ (σ + 1)
Γ (ν + 1 – 1

β
)
Φ∗

(1/β)–ν

(
1,σ + 1,

x
β – 1

+
1
β

– ν

)
e–x, (28)

where Φ∗
μ(z, s, a) is given by (11) and Cσ is given below by (31).

(ii) For σ < 0, we have

λ(β)
ν,σ (x) >

(
β

β – 1

)ν+1–1/β

Qβ ,β ,ν(x – σ )e–x, (29)

where Qβ ,β ,ν(x) is given by (4).

Proof Setting t = αu
β–1 + 1 in (6), we find that

λ(β)
ν,σ (x) =

α

Γ (ν + 1 – 1
β

)
β

β – 1
e–x

·
∫ ∞

0

[(
αu

β – 1
+ 1

)β

– 1
]ν–1/β(

αu
β – 1

+ 1
)σ

e–αxu/(β–1) du.

When ν – 1
β

≤ 0, we have by Lemma 2.2,

[(
α

β – 1
u + 1

)β

– 1
]ν–1/β

≥
(

β

β – 1

)ν–1/β(
eαu – 1

)ν–1/β .
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Thus, for 0 ≤ ν ≤ 1
β

, we obtain the following inequality:

λ(β)
ν,σ (x) ≥ α

Γ (ν + 1 – 1
β

)

(
β

β – 1

)ν+1–1/β

I(α,β ,ν, x;σ )e–x, (30)

where I(α,β ,ν, x;σ ) is defined by

I(α,β ,ν, x;σ ) :=
∫ ∞

0

(
eαu – 1

)ν–1/β
(

αu
β – 1

+ 1
)σ

e–αxu/(β–1) du.

In order to estimate a lower bound of I(α,β ,ν, x;σ ), we need to take into account the cases
σ ≥ 0 and σ < 0, which are considered as follows:

Case 1: σ ≥ 0. Let us recall that for a, b ∈ R+, we have (a + b)σ ≥ Cσ (aσ + bσ ), where Cσ

is defined by

Cσ :=

⎧⎨
⎩

1, σ ≥ 1;

2σ–1, 0 ≤ σ < 1.
(31)

Thus, for the case σ ≥ 0, we have

(
αu

β – 1
+ 1

)σ

≥ Cσ

[
1 +

(
α

β – 1

)σ

uσ

]
.

Therefore,

I(α,β , x;σ ) ≥ CσI(α,β ,ν, x; 0) + Cσ

(
α

β – 1

)σ

Z(α,β ,ν, x;σ ),

where Z(α,β ,ν, x;σ ) is the integral defined in (20) and

I(α,β ,ν, x; 0) = Z(α,β ,ν, x; 0) =
1
α

Γ

(
ν –

1
β

+ 1
)

Qβ ,β ,ν(x).

Hence, we have

I(α,β ,ν, x;σ ) ≥ Cσ

α
Γ

(
ν –

1
β

+ 1
)

Qβ ,β ,ν(x)

+
Cσ

α

Γ (σ + 1)
(β – 1)σ

Φ∗
(1/β)–ν

(
1,σ + 1,

x
β – 1

+
1
β

– ν

)

(
x ∈R+,β > 1, 0 ≤ ν ≤ 1

β
;σ ≥ 0

)
.

Combining this inequality with (30), we get the first inequality of Theorem 3.1.
Case 2: σ < 0. By using inequality (19), we readily get

(
αu

β – 1
+ 1

)σ

> eασu/(β–1),
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and thus

I(α,β ,ν, x;σ ) >
1
α

Γ

(
ν –

1
β

+ 1
)

Qβ ,β ,ν(x – σ )

(
x ∈R+,β > 1, 0 ≤ ν ≤ 1

β
;σ < 0

)
. (32)

Now applying (32) to (30), we obtain the second inequality of Theorem 3.1. �

Corollary 3.2 Let x ∈R+ and 0 ≤ ν ≤ 1
2 , then

Kν+1(x) ≥
√

π

2

[
Γ (x + 1

2 – ν)
Γ (x + 1)

+
Φ∗

(1/2)–ν(1, 2, x + 1
2 – ν)

Γ (ν + 1
2 )

]
xνe–x. (33)

Proof Let β = 2 and σ = 1 in (28), then we get

λ
(2)
ν,1(x) ≥ 2ν+1/2

[
Q2,2,ν(x) +

Φ∗
(1/2)–ν

(1, 2, x + 1
2 – ν)

Γ (ν + 1
2 )

]
e–x.

It is known for ν ∈C (�(ν) > – 1
2 ) and z ∈C (�(z) > 0) that (see [11, p. 97, Eq. (3.3)])

λ
(2)
ν,1(z) = 2ν+1π–1/2z–νK–(ν+1)(z). (34)

Using (34) and the fact that Kν(z) = K–ν(z), we get inequality (33). �

Remark 3.3 Let us denote the lower bound in (33) by Dν(x). Then for ν = 1
2 and using (12),

we have

D1/2(x) =
√

π

2

[
Γ (x)

Γ (x + 1)
+ Φ∗

0 (1, 2, x)
]

x1/2e–x =
√

π

2

(
1
x

+
1
x2

)
x1/2e–x

=
√

π

2
(1 + x)x–3/2e–x = K3/2(x),

which means the equality in (33) holds when ν = 1
2 . For ν ∈ [0, 1

2 ), we have from Proposi-
tion 2.1 that

Dν(x) ∼
√

π

2
x–1/2e–x +

√
π

2
Γ (ν + 3

2 )
Γ (ν + 1

2 )
x–3/2e–x, (35)

as x → ∞. The second term in (35) can be omitted. Recall that (see [16, p. 249,
Eq. (10.25.3)])

Kν(x) ∼
√

π

2x
e–x, as x → ∞,

and we have for ν ∈ [0, 1
2 ): Dν(x) ∼ Kν+1(x) as x → ∞. When ν ∈ (0, 1

2 ), we always have
limx→0+ Dν(x) = 0. But for ν = 0, we have

lim
x→0+

D0(x) =
π

√
2

2
+

√
2

2
Φ∗

1/2

(
1, 2,

1
2

)
, (36)
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which is finite. Note that the lower bound Dν(x) does not have a singularity for ν ∈ [0, 1
2 )

while, in view of [16, p. 252, Eqs. (10.30.2) and (10.30.3)]

Kν(x) ∼
⎧⎨
⎩

2ν–1Γ (ν)x–ν , x → 0,�(ν) > 0,

– ln x, x → 0,ν = 0,

we know Kν(x) has a singularity at x = 0. The limiting form (36) is of particular interest
because its exact value is easily obtainable. Using (13) and (16), we have

Φ∗
1/2

(
1, 2,

1
2

)
= 43F2

[
1
2 , 1

2 , 1
2

3
2 , 3

2
; 1

]
=

[
Γ

(
1
2

)]2[
ψ(1) – ψ

(
1
2

)]
. (37)

Since ψ(1) = –γ and ψ( 1
2 ) = –γ – 2 ln 2, we obtain

Φ∗
1/2

(
1, 2,

1
2

)
= 2π ln 2,

and therefore,

lim
x→0+

D0(x) =
π

√
2

2
+

√
2π ln 2. (38)

The value of 3F2[1] appearing in (37) can also be evaluated by using the following formula
(see [32, p. 592, Eq. (24)]):

3F2

[
1
2 , 1

2 , 1
2

3
2 , 3

2
; z

]
=

1
2
√

z
Cl2(2 arcsin

√
z) +

arcsin
√

z√
z

ln(2
√

z),

where Cl2(θ ) is the Clausen integral (or function) defined by (see [22, p. 182, Eq. (45)])

Cl2(θ ) :=
∞∑

n=1

sin(nθ )
n2 = –

∫ θ

0
ln

[
2 sin

(
t
2

)]
dt,

satisfying the property that Cl2(nπ ) = 0 (n ∈ Z) (see [22, p. 182, Eq. (49)]).

Theorem 3.4 Let x ∈ R+, β > 1, 0 ≤ ν ≤ 1
β

and σ ≤ 0, then

λ(β)
ν,σ (x) ≥

(
β

β – 1

)ν+1–1/β

Qβ ,β ,ν(x)Γ (σ + 1, x)x–σ , (39)

where Qβ ,β ,ν(x) is given by (4).

Proof Let f (t) := (tβ – 1)ν–1/β and g(t) := tσ . Since ν – 1
β

≤ 0 and σ ≤ 0, f and g are both
decreasing (i.e., monotone in the same sense) on (1,∞), and thus Čebyšev inequality (26)
with μ(t) = e–xt and X = (1,∞) is applicable to get the following result:

∫ ∞

1

(
tβ – 1

)ν–1/β tσ e–xt dt
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≥
(∫ ∞

1
e–xt dt

)–1 ∫ ∞

1

(
tβ – 1

)ν–1/βe–xt dt
∫ ∞

1
tσ e–xt dt

= exx–σΓ (σ + 1, x)
∫ ∞

1

(
tβ – 1

)ν–1/βe–xt dt.

By using (6), we obtain that

λ(β)
ν,σ (x) ≥ exx–σΓ (σ + 1, x)λ(β)

ν,0(x). (40)

For the Bessel-type function λ
(β)
ν,0(x), by putting σ = 0 in (28) and making use of formula

(25) and relation (31), we infer that

λ
(β)
ν,0(x) ≥

(
β

β – 1

)ν+1–1/β

Qβ ,β ,ν(x)e–x
(

x ∈R+,β > 1, 0 ≤ ν ≤ 1
β

)
. (41)

Combining now (40) with (41), we get the desired inequality (39). �

Remark 3.5 Let us put

B2(x) =
(

β

β – 1

)ν+1–1/β

Qβ ,β ,ν(x)Γ (σ + 1, x)x–σ .

In view of [16, p. 179, Eq. (8.11.2)], we have

Γ (σ + 1, x)x–σ ∼ e–x (x → ∞). (42)

Applying the familiar Stirling formula [16, p. 141, Eq. (5.11.7)], we find that

Qβ ,β ,ν(x) ∼ (β – 1)ν+1–1/βx(1/β)–ν–1 (x → ∞), (43)

and upon using now (42) and (43), together with the above mentioned expression for B2(x),
we get

B2(x) ∼ βν+1–1/βx(1/β)–ν–1e–x (x → ∞).

If we denote the lower bound in (29) by B1(x), then, by following the same arguments as
described above for B2(x), we obtain

B1(x) ∼ βν+1–1/βx(1/β)–ν–1e–x (x → ∞).

Therefore, when σ ≤ 0, we have B2(x) ∼ B1(x) (x → ∞) and, in view of (7), we also know
that both B1(x) and B2(x) have the same behavior as λ(β)

ν,σ (x) at infinity. Now we consider
the case when x → 0+. For B2, we have

lim
x→0+

B2(x) =
(

β

β – 1

)ν+1–1/β Γ (–ν – σ
β–1 + 1

β
)

Γ (1 – σ
β–1 )

.
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In order to find the asymptotic behavior of B1(x) as x → 0+, we only need to study the
behavior of Γ (σ + 1, x)x–σ , which follows immediately from the fact that

Γ (σ + 1, x) ∼ Γ (σ + 1) –
xσ+1

σ + 1
[
1 + O(x)

]
,

as x → 0+.

We observe that, when σ > 0, the functions f and g defined in the proof of Theorem 3.4
are monotone in the opposite sense. We cannot therefore use Čebyšev inequality to find a
lower bound for this case. However, the use of Hölder inequality (27) enables us to unify
the cases σ > 0 and σ ≤ 0 more efficiently.

Theorem 3.6 Let x ∈ R+, β > 1, 0 ≤ ν ≤ 1
β

and σ ∈ R. If p ∈ (0, 1) and q ∈ (–∞, 0) are
such that 1

p + 1
q = 1, then

λ(β)
ν,σ (x) ≥ β1/q

(
β

β – 1

)ν–(1/β)+1/p [Γ (νp – p
β

+ 1)]1/p

Γ (ν + 1 – 1
β

)

· [Qβ ,β/p,νp(x)
]1/p[

Γ (σq + 1, x)
]1/qx–σ–1/qe–x/p, (44)

where Qβ ,β/p,νp(x) and Γ (α, x) are respectively defined by (4) and (8). The equality in (44)
holds if and only if ν = 1

β
and σ = 0.

Proof Let f (t) := (tβ – 1)ν–1/βe–xt/p and g(t) := tσ e–xt/q, then we have

‖f ‖p =
1

β1/p

[
Γ

(
νp –

p
β

+ 1
)

λ
(β)
νp–(p/β)+1/β ,0(x)

]1/p

,

‖g‖q = x–σ–1/q[Γ (σq + 1, x)
]1/q

and ‖fg‖1 = 1
β
Γ (ν + 1 – 1

β
)λ(β)

ν,σ (x), where x ∈R+, σ ∈R, β > 1 and 0 ≤ ν ≤ 1
β

.
Using Hölder’s inequality (27), we have

λ(β)
ν,σ (x) ≥ β1/q

[Γ (νp – p
β

+ 1)]1/p

Γ (ν + 1 – 1
β

)
[
λ

(β)
νp–(p/β)+1/β ,0(x)

]1/p[
Γ (σq + 1, x)

]1/qx–σ–1/q. (45)

Letting ν → νp – p
β

+ 1
β

in inequality (41), which does not change the range of parameters
as stated in the theorem, we obtain

λ
(β)
νp–(p/β)+1/β ,0(x) >

(
β

β – 1

)νp–(p/β)+1

Qβ ,β/p,νp(x)e–x

(
x ∈R+,β > 1, 0 ≤ ν ≤ 1

β

)
. (46)

Substituting inequality (46) into (45), we arrive at the desired inequality (44). �

Corollary 3.7 Let x ∈R+ and 0 ≤ ν ≤ 1
2 . Then we have

Kν+1(x) >
1√
2π

[Γ ( ν
3 + 5

6 )Q2,6,ν/3(x)]3

Γ (ν + 1
2 )[erfc(

√
x)]2

xν+1e–3x. (47)
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Proof Letting β = 2 and σ = 1 and q = – 1
2 (p = 1

3 ) in (44), we get

λ
(2)
ν,1(x) >

2ν+1/2

π

[Γ ( ν
3 + 5

6 )Q2,6,ν/3(x)]3

Γ (ν + 1
2 )[erfc(

√
x)]2

xe–3x,

where we have used relation (9). Now using (34) and the fact that Kν(z) = K–ν(z), we get
inequality (47). �

Remark 3.8 If we denote the lower bound in (47) by D∗
ν(x), then, by using the fact that (see

[16, p. 164, Eq. (7.12.1)])

erfc(x) ∼ 1√
πx

e–x2
, as x → ∞,

and the asymptotic behavior for the ratio of two gamma functions [16, p. 141, Eq. (5.11.12)]
for the function Q2,6,ν/3(x) involved in D∗

ν(x) and defined above by (4), we have, taking
x → ∞ and after elementary calculations, the following:

D∗
ν(x) ∼ c(ν)

√
π

2x
e–x, where c(ν) :=

[Γ ( ν
3 + 5

6 )]3

Γ (ν + 1
2 )

.

If we take ν = 1
2 , then c( 1

2 ) = 1 and D∗
1/2(x) has the same behavior as the modified Bessel

function Kν+1(x) at infinity. Further, we observe the property that 0 < c(ν) ≤ 1 for ν ∈ [0, 1
2 ].

To verify this property for function c(ν), we apply the logarithmic derivative to function
c(ν) with respect to ν to get

d
dν

ln c(ν) = 3
d

dν
lnΓ

(
ν

3
+

5
6

)
–

d
dν

lnΓ

(
ν +

1
2

)
= ψ

(
ν

3
+

5
6

)
– ψ

(
ν +

1
2

)
.

The digamma function ψ(x) is increasing on R+ and ( ν
3 + 5

6 ) – (ν + 1
2 ) = 1

3 (1 – 2ν) ≥ 0 for
ν ∈ [0, 1

2 ], therefore d
dν

ln c(ν) ≥ 0, and thus we conclude that c(ν) is increasing on [0, 1
2 ]

with 1 as its maximum. On the other hand, for ν = 1
2 , we have

D∗
1/2(x) =

1√
2π

x–3/2e–3x

[erfc(
√

x)]2 ,

which implies that

D∗
1/2(x) ∼ x–3/2

√
2π

, as x → 0+.

Moreover, for ν ∈ [0, 1
2 ), we note that

D∗
ν(x) ∼ c(ν)√

2π

[
Γ

(
1
6

–
ν

3

)]3

xν+1, as x → 0+.

Let us close this paper with an application of Corollary 3.7, leading to an interesting
inequality for the Mills’ ratio M(x) defined by (see [16, p. 163, Eq. (7.8.1)])

M(x) := ex2
∫ ∞

x
e–t2

dt.
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The Mills’ ratio can be expressed using the complementary error function erfc(x) defined
in (9) as

M(x) =
√

π

2
ex2

erfc(x). (48)

The study of inequalities involving Mills’ ratio M(x) and other related functions has a rich
literature. The interesting reader may refer to [33–36].

Corollary 3.9 For x ≥ 0, we have

M(x) >
1

2
√

1 + x2
. (49)

Proof By putting ν = 1
2 in (47), we get

1√
2π

[
erfc(

√
x)

]–2x–3/2e–3x < K3/2(x) =
√

π

2
x–3/2e–x(1 + x),

which in turn gives a new inequality for erfc(x), that is,

erfc(x) >
e–x2

√
π (1 + x2)

.

Inequality (49) now follows from (48). �
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