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Abstract
Let {X ,Xn,n ≥ 1} be a sequence of i.i.d. random variables with EX = 0, EX2 = σ 2. Set
Sn =

∑n
k=1 Xk and letN be the standard normal random variable. Let g(x) be a positive

and twice differentiable function on [n0,∞) such that g(x) ↗ ∞, g′(x) ↘ 0 as x → ∞.
In this short note, under some suitable conditions on both X and g(x), we establish
the following convergence rates in precise asymptotics

lim
ε↘0

[ ∞∑

n=n0

g′(n)P
{ |Sn|
σ

√
n

≥ εgs(n)
}
– ε–1/sE|N |1/s

]

= γ – η,

where γ = limn→∞(
∑n

k=n0
g′(k) – g(n)), η =

∑∞
n=n0

g′(n)P{Sn = 0}. It can describe the
relations among the boundary function, weighting function, convergence rate and
the limit value in studies of complete convergence. The result extends and
generalizes the corresponding results of Gut and Steinebach (Ann. Univ. Sci.
Budapest. Sect. Comput. 39:95–110, 2013), Kong (Lith. Math. J. 56(3):318–324, 2016),
Kong and Dai (Stat. Probab. Lett. 119(10):295–300, 2016).
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1 Introduction and main results
Throughout this note, let {X, Xn, n ≥ 1} be a sequence of i.i.d. random variables with
EX = 0, EX2 = σ 2 and set Sn =

∑n
k=1 Xk . Let N be the standard normal random vari-

able; C denotes a positive constant, possibly varying from place to place, the no-
tions an ∼ bn an = O(bn), an 
 bn stand for limn→∞ an

bn
= 1, lim supn→∞

an
bn

< ∞ and
0 < lim infn→∞ an

bn
≤ lim supn→∞

an
bn

< ∞, respectively. We define log x = ln max{e, x} and
log log x = ln ln max{ee, x}.

The concept of complete convergence was first introduced by Hsu and Robbins [4], since
then there have been extensions in several directions. One of them is to discuss the precise
rate and limit value of

∑∞
n=n0

ϕ(n)P{|Sn| ≥ εg(n)} as ε ↘ a, a ≥ 0, where the weighting
function ϕ(x) and boundary function g(x) are positive functions defined on [n0,∞). A first
result in this direction was given by Heyde [5], who proved that

lim
ε↘0

ε2
∞∑

n=1

P
{|Sn| ≥ εn

}
= σ 2.
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The research in this field is called the precise asymptotics. For analogous results in more
general case, see [6–9] and the references therein.

Another interesting direction is to consider the convergence rate for the precise asymp-
totic problems. Klesov [10] obtained the following result:

lim
ε↘0

[ ∞∑

n=1

P
{|Sn| ≥ εn

}
–

σ 2

ε2

]

= –
1
2

,

where {X, Xn, n ≥ 1} is a sequence of i.i.d. normal random variables with EX = 0, EX2 = σ 2,
Sn =

∑n
k=1 Xk .

Recently, Gut and Steinebach [1] obtained the following results:

lim
ε↘0

[ ∞∑

n=1

n
r
p –2P

{ |Sn|
σ
√

n
≥ εn

1
p – 1

2

}

–
p

r – p
ε

– 2(r–p)
2–p )E|N | 2(r–p)

2–p

]

= γ r
p –2 – ηr,p,

where 1 ≤ p < 2, p < r < 3p/2, E|X| 2r
p < ∞, γθ = limn→∞(

∑n
j=1 jθ – nθ+1

θ+1 ), ηr,p =
∑∞

n=1 n
r
p –2 ×

P{Sn = 0}.
Later, Kong [2] proved the convergence rate in precise asymptotics for the law of iterated

logarithm as follows:

lim
ε↘0

[ ∞∑

n=3

1
n log n

P
{ |Sn|

σ
√

n
≥ ε

√
log log n

}

– ε–2

]

= γ – η,

where E|X|q < ∞, 2 < q ≤ 3, γ = limn→∞(
∑n

j=3
1

j log j – log log n), and η =
∑∞

n=3
1

n log n P{Sn =
0}.

Also Kong and Dai [3] established the following convergence rate in precise asymptotics
for the Davis law of large numbers with EX2(log(1 + |X|))1+δ < ∞:

lim
ε↘0

[ ∞∑

n=1

(log n)δ

n
P
{ |Sn|

σ
√

n
≥ ε

√
log n

}

– ε–2(δ+1) E|N |2(δ+1)

δ + 1

]

= γδ – ηδ ,

where γδ = limn→∞(
∑n

j=1
(log j)δ

j – (log n)δ+1

δ+1 ), ηδ =
∑∞

n=1
(log n)δ

n P{Sn = 0}, and δ ≥ 0.
In this note we will extend the scope of the weighting and boundary functions, and give

more general convergence rates in precise asymptotics of i.i.d. random variables, which
extends and generalizes the above results. The main result of this note is the following.

Theorem 1.1 Let g(x) be a positive and twice differentiable function defined on [n0,∞),
which is strictly increasing to ∞. Assume g ′(x) is strictly decreasing to 0 and g ′(n) 


1
nα1 (log n)α2 (log log n)α3 where αi, i = 1, 2, 3 are defined later. Assume that

(1) EX2(log(1 + |X|)) < ∞, for α1 = 1, α2 > 0, α3 ∈R;
(2) EX2(log(1 + |X|))1–α2 < ∞, for α1 = 1, α2 ≤ 0, α3 ≥ 0;
(3) E|X|4–2α1 < ∞, for 1/2 < α1 < 1, α2 ≥ 0, α3 ≥ 0.
Then for any s > 0, we have

lim
ε↘0

[ ∞∑

n=n0

g ′(n)P
{ |Sn|

σ
√

n
≥ εgs(n)

}

– ε–1/sE|N |1/s

]

= γg – ηg , (1.1)

where γg = limn→∞(
∑n

k=n0
g ′(k) – g(n)), ηg =

∑∞
n=n0

g ′(n)P{Sn = 0}.
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Remark 1.2 There are many functions satisfying the assumptions of g(x), such as g(x) =
xβ1 (log x)β2 (log log x)β3 with some suitable conditions of βi, i = 1, 2, 3. The following corol-
laries are some typical examples.

Corollary 1.3 Let g(x) = (log x)δ+1, δ > –1, and s > 0 in Theorem 1.1. If EX2(log(1 +
|X|))max{1,1+δ} < ∞, then

lim
ε↘0

[ ∞∑

n=1

(log n)δ

n
P
{ |Sn|

σ
√

n
≥ ε(log n)(δ+1)s

}

– ε–1/s E|N |1/s

δ + 1

]

= γδ – ηδ ,

where γδ = limn→∞(
∑n

j=1
(log j)δ

j – (log n)δ+1

δ+1 ), ηδ =
∑∞

n=1
(log n)δ

n P{Sn = 0}.

Corollary 1.4 Let g(x) = (log log x)b+1, b > –1, and s > 0 in Theorem 1.1. If EX2(log(1 +
|X|)) < ∞, then

lim
ε↘0

[ ∞∑

n=1

(log n)b

n log n
P
{ |Sn|

σ
√

n
≥ ε(log log n)(b+1)s

}

– ε–1/s E|N |1/s

b + 1

]

= γb – ηb,

where γb = limn→∞(
∑n

j=1
(log j)b

j log j – (log log n)b+1

b+1 ), ηb =
∑∞

n=1
(log n)b

n log n P{Sn = 0}.

Corollary 1.5 Let g(x) = x
r
p –1, 0 < p < 2, p < r < 3p/2, and s > 0 in Theorem 1.1. If E|X| 2r

p <
∞, then

lim
ε↘0

[ ∞∑

n=1

n
r
p –2P

{ |Sn|
σ
√

n
≥ εn

(r–p)s
p

}

–
p

r – p
ε–1/sE|N |1/s

]

= γ r
p –2 – �r,p,

where γθ = limn→∞(
∑n

j=1 jθ – nθ+1

θ+1 ), �r,p =
∑∞

n=1 n
r
p –2P{Sn = 0}.

Corollary 1.6 Let g(x) = xa

(log x)b , 0 < a < 1/2, b > 0, and s > 0 in Theorem 1.1. If E|X|2(1+a) <
∞, then

lim
ε↘0

[ ∞∑

n=1

[

a –
b

log n

]
1

n1–a(log n)b P
{ |Sn|

σ
√

n
≥ ε

nas

(log n)bs

}

– ε–1/sE|N |1/s

]

= γa,b – �a,b,

where γa,b = limn→∞(
∑n

j=1[a – b
log j ]

1
j1–a(log j)b – na

(log n)b ) and �a,b =
∑∞

n=1[a – b
log n ] 1

n1–a(log n)b ×
P{Sn = 0}.

Remark 1.7 Obviously, Corollary 1.3 with s = 1
2(δ+1) extends Theorem 1.1 in Kong and Dai

[3] with the scope of δ from δ ≥ 0 to δ > –1; Corollary 1.4 with s = 1
2(b+1) extends Theorem 1

from Kong [2] with the scope of b from b = 0 to b > –1 and the moment condition from
E|X|q < ∞ (2 < q ≤ 3) to EX2(log(1 + |X|)) < ∞; Corollary 1.5 with s = 2–p

2(r–p) extends Theo-
rem 2.2(a) from Gut and Steinebach [1] with the scope of r, p from 1 ≤ p < 2, p < r < 3p/2
to 0 < p < 2, p < r < 3p/2. Therefore our results extend the known results.

2 Proof of Theorem 1.1
The following lemmas are useful for the proof of Theorem 1.1.
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Lemma 2.1 Let {X, Xn, n ≥ 1} be a sequence of i.i.d. random variables with EX = 0, EX2 =
σ 2 and set Sn =

∑n
k=1 Xk . Then

∞∑

n=1

1
n1–δ/2 sup

x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣ < ∞,

if and only if E|X|2+δ < ∞ for 0 < δ < 1. Also

∞∑

n=1

(log n)δ

n
sup

x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣ < ∞,

if and only if E|X|2(log(1 + |X|))1+δ < ∞ for δ ≥ 0.

Proof The first part can be found in a theorem from Heyde [11] or Theorem 1 from Heyde
and Leslie [12] (with k = 0), the second part can be found in Proposition 3.2 from Kong
and Dai [3]. �

Lemma 2.2 Under the conditions of Theorem 1.1, we have

∞∑

n=n0

g ′(n) sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣ < ∞.

Proof If α1 = 1, α2 > 0, α3 ∈R, we know that EX2 log(1 + |X|) < ∞, and then, by the second
part of Lemma 2.1 (with δ = 0),

∞∑

n=n0

g ′(n) sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣

≤
∞∑

n=n0

C
n(log n)α2 (log log n)α3

sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣

≤
∞∑

n=n0

C
n

sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣ < ∞.

If α1 = 1, α2 ≤ 0, α3 ≥ 0, we know that EX2(log(1 + |X|))1–α2 < ∞, and then, by the second
part of Lemma 2.1 (with δ = –α2 ≥ 0),

∞∑

n=n0

g ′(n) sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣

≤
∞∑

n=n0

C
n(log n)α2 (log log n)α3

sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣

≤
∞∑

n=n0

C(log n)–α2

n
sup

x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣ < ∞.
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If 1/2 < α1 < 1, α2 ≥ 0, α3 ≥ 0, we know that E|X|4–2α1 = E|X|2+δ < ∞ (with δ = 2(1 – α1) ∈
(0, 1)), and then, by the first part of Lemma 2.1,

∞∑

n=n0

g ′(n) sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣

≤
∞∑

n=n0

1
nα1 (log n)α2 (log log n)α3

sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣

≤
∞∑

n=n0

C
nα1

sup
x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣

≤
∞∑

n=n0

C
n1–δ/2 sup

x

∣
∣
∣
∣P

{
Sn

σ
√

n
≤ x

}

– P{N ≤ x}
∣
∣
∣
∣ < ∞.

The proof of Lemma 2.2 is completed. �

The existence and finiteness of γg and ηg can be obtained by the following two lemmas.

Lemma 2.3 Under the conditions of Theorem 1.1, we have

γn,g = γg + O
(
g ′(n)

)
,

where γn,g =
∑n

k=n0
g ′(k) – g(n) and γg is a constant depending only on function g satisfying

–g(n0) ≤ γg ≤ g ′(n0) – g(n0).

Proof Note that g(x) is a positive and twice differentiable function defined on [n0,∞),
which is strictly increasing to ∞; g ′(x) is strictly decreasing to 0. Then, by the mean value
theorem for g(x), we know

γn+1,g – γn,g = g ′(n + 1) –
(
g(n + 1) – g(n)

)
= g ′(n + 1) – g ′(ξn) ≤ 0,

where n < ξn < n + 1, then we obtain that {γn,g , n ≥ n0} is a decreasing sequence. Note that
g ′(x) is strictly decreasing to 0, and then we have

γn,g =
n∑

k=n0+1

∫ k

k–1

[
g ′(k) – g ′(x)

]
dx + g ′(n0) – g(n0) ≤ g ′(n0) – g(n0),

and

γn,g =
n∑

k=n0+1

∫ k

k–1

[
g ′(k) – g ′(x)

]
dx + g ′(n0) – g(n0)

≥
n∑

k=n0+1

[
g ′(k) – g ′(k – 1)

]
+ g ′(n0) – g(n0)

= g ′(n) – g ′(n0) + g ′(n0) – g(n0) ≥ –g(n0), as n → ∞.
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The above two inequalities mean that {γn,g , n ≥ n0} is a bounded sequence, so, by the
monotone bounded sequence theorem, also that {γn,g , n ≥ n0} is a convergent sequence,
and therefore –g(n0) ≤ γg ≤ g ′(n0) – g(n0).

Finally, for any m > n, by the monotonicity of g ′(x), we have

γg – γn,g = lim
m→∞[γm,g – γn,g] = lim

m→∞

[ m∑

k=n+1

g ′(k) –
∫ m

n
g ′(x) dx

]

= lim
m→∞

[ m∑

k=n+1

∫ k

k–1

[
g ′(k) – g ′(x)

]
dx

]

≥ lim
m→∞

[ m∑

k=n+1

[
g ′(k) – g ′(k – 1)

]
]

= lim
m→∞

[
g ′(m) – g ′(n)

]
= –g ′(n),

which means that Lemma 2.3 holds since the sequence {γn,g , n ≥ n0} is decreasing. �

Lemma 2.4 Under the conditions of Theorem 1.1, we have

ηg =
∞∑

n=n0

g ′(n)P{Sn = 0} < ∞.

Proof Note that

P
{

|N | <
1
n2

}

=
√

2
π

∫ 1
n2

0
e–t2/2 dt ≤ C

1
n2 ,

so, by Lemma 2.2 and the monotonicity of g ′(x), we know

ηg =
∞∑

n=n0

g ′(n)P{Sn = 0} ≤
∞∑

n=n0

g ′(n)P
{ |Sn|

σ
√

n
<

1
n2

}

≤
∞∑

n=n0

g ′(n)
∣
∣
∣
∣P

{ |Sn|
σ
√

n
<

1
n2

}

– P
{

|N | <
1
n2

}∣
∣
∣
∣ +

∞∑

n=n0

g ′(n)P
{

|N | <
1
n2

}

≤
∞∑

n=n0

g ′(n) sup
x

∣
∣
∣
∣P

{ |Sn|
σ
√

n
≤ x

}

– P
{|N | ≤ x

}
∣
∣
∣
∣ +

∞∑

n=n0

Cg ′(n)
1
n2 < ∞.

�

Remark 2.5 Obviously, if X is a continuous random variable, then ηg = 0. For the simplest
discrete case, if we take P(X = 1) = P(X = –1) = 1

2 , it is easy to check that P{S2n+1 = 0} = 0
and P{S2n = 0} = Cn

2n
1

22n ∼ 1√
π

1
n1/2 ; therefore, 0 < ηg < ∞.

Lemma 2.6 Under the conditions of Theorem 1.1, we have

lim
ε↘0

[
2√
2π

∞∑

k=n0

g(k)
∫ εgs(k+1)

εgs(k)
e–t2/2 dt – ε–1/sE|N |1/s

]

= 0, (2.1)

lim
ε↘0

2γg√
2π

∞∑

k=n0

∫ εgs(k+1)

εgs(k)
e–t2/2 dt = γg , (2.2)
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lim
ε↘0

2√
2π

∞∑

k=n0

g ′(k)
∫ εgs(k+1)

εgs(k)
e–t2/2 dt = 0. (2.3)

Proof By the mean value theorem for integrals, there exists a constant ξk ∈ (k, k + 1) such
that

∫ εgs(k+1)

εgs(k)
e–t2/2 dt = ε

[
gs(k + 1) – gs(k)

]
e–ε2g2s(ξk )/2. (2.4)

Using Taylor expansion, we know

e–ε2g2s(ξk )/2 = e–ε2g2s(k)/2 + ε2O
(
g2s–1(k)g ′(k)e–ε2g2s(k)/2),

gs(k + 1) – gs(k) = sgs–1(k)g ′(k) + O
(
gs–2(k)

(
g ′(k)

)2 – gs–1(k)g ′′(k)
)
.

Therefore we have

∫ εgs(k+1)

εgs(k)
e–t2/2 dt = sεgs–1(k)g ′(k)e–ε2g2s(k)/2

+ εO
((

gs–2(k)
(
g ′(k)

)2 – gs–1(k)g ′′(k)
)
e–ε2g2s(k)/2)

+ ε2O
(
g3s–2(k)

[
g ′(k)

]2e–ε2g2s(k)/2). (2.5)

By the monotonicity of g(x) and g ′(x), we have

2sε√
2π

∞∑

k=n0

g(k)gs–1(k)g ′(k)e–ε2g2s(k)/2

=
2sε√

2π

∫ ∞

n0

gs(x)g ′(x)e–ε2g2s(x)/2 dx + O(ε)

=
2sε√

2π

∫ ∞

g(n0)
ys(x)e–ε2y2s/2 dy + O(ε)

= ε–1/s 2 1
2s√
π

∫ ∞

ε2g2s(n0)/2
t

1
2s – 1

2 e–t dt + O(ε)

= ε–1/s 2 1
2s√
π

∫ ∞

0
t

1
2s – 1

2 e–t dt – ε–1/s 2 1
2s√
π

∫ ε2g2s(n0)/2

0
t

1
2s – 1

2 e–t dt + O(ε)

= ε–1/s 2 1
2s√
π

Γ

(
1
2s

+
1
2

)

+ O(ε) = ε–1/sE|N |1/s + O(ε). (2.6)

Since g ′(x) is strictly decreasing to 0, there exists a constant k0 such that g ′(k) < δ, for
any k > k0. Then by monotonicity of g(x) and g ′(x), we obtain

lim
ε↘0

[
2ε√
2π

∞∑

k=n0

g(k)gs–2(k)
[
g ′(k)

]2e–ε2g2s(k)/2

]

≤ lim
ε↘0

[
2ε√
2π

k0∑

k=n0

gs–1(k)
[
g ′(k)

]2e–ε2g2s(k)/2

]
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+ lim
ε↘0

[
2εδ√

2π

∞∑

k=k0+1

gs–1(k)
[
g ′(k)

]
e–ε2g2s(k)/2

]

≤ lim
ε↘0

Cεδ

∫ ∞

k0

gs–1(x)g ′(x)e–ε2g2s(x)/2 dx

= lim
ε↘0

Cεδ

∫ ∞

g(k0)
ys–1e–ε2y2s/2 dy

≤ lim
ε↘0

Cδ

∫ ∞

ε2g2s(k0)/2
t–1/2e–t dy

= Cδ

∫ ∞

0
t–1/2e–t dy = CδΓ

(
1
2

)

,

and

lim
ε↘0

[
2ε3
√

2π

∞∑

k=n0

g(k)g3s–2(k)
[
g ′(k)

]2e–ε2g2s(k)/2

]

≤ lim
ε↘0

Cε3δ

∫ ∞

k0

g3s–1(x)g ′(x)e–ε2g2s(x)/2 dx

= lim
ε↘0

Cε3δ

∫ ∞

g(k0)
y3s–1e–ε2y2s/2 dy

≤ lim
ε↘0

Cδ

∫ ∞

ε2g2s(k0)/2
t1/2e–t dy

= Cδ

∫ ∞

0
t1/2e–t dy = CδΓ

(
3
2

)

.

Then, by the arbitrariness of δ and letting δ → 0, we derive

lim
ε↘0

[
2ε√
2π

∞∑

k=n0

g(k)gs–2(k)
[
g ′(k)

]2e–ε2g2s(k)/2

]

= 0, (2.7)

lim
ε↘0

[
2ε3
√

2π

∞∑

k=n0

g(k)g3s–2(k)
[
g ′(k)

]2e–ε2g2s(k)/2

]

= 0. (2.8)

From the fact that g ′(x) is strictly decreasing to 0, we know g ′′(x) ≤ 0, and then, by using
integration by parts, similar to the above discussion, one can get

lim
ε↘0

–ε

∫ ∞

n0

gs(x)g ′′(x)e–ε2g2s(x)/2 dx

= lim
ε↘0

–ε

∫ ∞

n0

gs(x)e–ε2g2s(x)/2 dg ′(x)

= lim
ε↘0

–ε
[
gs(x)e–ε2g2s(x)/2g ′(x)

]∣
∣∞
n0

+ lim
ε↘0

ε

∫ ∞

n0

g ′(x)
[
sgs–1(x)g ′(x) – sε2g2s–1(x)g ′(x)

]
e–ε2g2s(x)/2 dx

= s lim
ε↘0

ε

∫ ∞

n0

gs–1(x)
[
g ′(x)

]2e–ε2g2s(x)/2 dx – s lim
ε↘0

ε3
∫ ∞

n0

g2s–1(x)
[
g ′(x)

]2e–ε2g2s(x)/2 dx
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≤ sδ lim
ε↘0

ε

∫ ∞

k0

gs–1(x)g ′(x)e–ε2g2s(x)/2 dx + sδ lim
ε↘0

ε3
∫ ∞

k0

g2s–1(x)g ′(x)e–ε2g2s(x)/2 dx

≤ Cδ.

Then, by letting δ → 0, we can derive

lim
ε↘0

[
–2ε√

2π

∞∑

k=n0

g(k)gs–1(k)g ′′(k)e–ε2g2s(k)/2

]

≤ lim
ε↘0

[

–Cε

∫ ∞

n0

gs(x)g ′′(x)e–ε2g2s(x)/2 dx
]

= 0. (2.9)

Finally, (2.1) can be obtained by combining (2.4)–(2.9).
It is obvious that

lim
ε↘0

2γg√
2π

∞∑

k=n0

∫ εgs(k+1)

εgs(k)
e–t2/2 dt = lim

ε↘0

2γg√
2π

∫ ∞

εgs(n0)
e–t2/2 dt =

2γg√
2π

∫ ∞

0
e–t2/2 dt = γg ,

thus (2.2) is proved.
Since g ′(x) is strictly decreasing to 0, there exists a constant k0 such that g ′(k) < δ, for

any k > k0, and

lim
ε↘0

2√
2π

∞∑

k=n0

g ′(k)
∫ εgs(k+1)

εgs(k)
e–t2/2 dt

≤ lim
ε↘0

CP
{|N | ≤ εgs(k0 + 1)

}
+ δP

{|N | ≥ εgs(k0 + 1)
}

= δ.

Thus (2.3) holds in view of the arbitrariness of δ. This completes the proof. �

Lemma 2.7 Under the conditions of Theorem 1.1, we have

lim
ε↘0

[ ∞∑

k=n0

g ′(k)P
{|N | ≥ εgs(k)

}
– ε–1/sE|N |1/s

]

= γg .

Proof By Fubini’s theorem, Lemmas 2.3 and 2.6, we derive that

lim
ε↘0

[ ∞∑

k=n0

g ′(k)P
{|N | ≥ εgs(k)

}
– ε–1/sE|N |1/s

]

= lim
ε↘0

[
2√
2π

∞∑

k=n0

g ′(k)
∞∑

j=k

∫ εgs(j+1)

εgs(j)
e–t2/2 dt – ε–1/sE|N |1/s

]

= lim
ε↘0

[
2√
2π

∞∑

j=n0

j∑

k=n0

g ′(k)
∫ εgs(j+1)

εgs(j)
e–t2/2 dt – ε–1/sE|N |1/s

]

= lim
ε↘0

[
2√
2π

∞∑

j=n0

g(j)
∫ εgs(j+1)

εgs(j)
e–t2/2 dt – ε–1/sE|N |1/s

]
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+ lim
ε↘0

2√
2π

∞∑

j=n0

γg

∫ εgs(j+1)

εgs(j)
e–t2/2 dt

+ lim
ε↘0

2√
2π

∞∑

j=n0

O
(
g ′(j)

)
∫ εgs(j+1)

εgs(j)
e–t2/2 dt

= γg . �

Lemma 2.8 Under the conditions of Theorem 1.1, we have

lim
ε↘0

∞∑

k=n0

g ′(k)
[

P
{ |Sk|

σ
√

k
≥ εgs(k)

}

– P
{|N | ≥ εgs(k)

}
]

= –ηg .

Proof By Lemma 2.2, we have

∞∑

k=n0

g ′(k)
∣
∣
∣
∣P

{ |Sk|
σ
√

k
≥ εgs(k)

}

– P
{|N | ≥ εgs(k)

}
∣
∣
∣
∣

≤
∞∑

k=n0

g ′(k) sup
x

∣
∣
∣
∣P

{ |Sk|
σ
√

k
≥ x

}

– P
{|N | ≥ x

}
∣
∣
∣
∣ < ∞.

Then, by the dominated convergence theorem and continuity of N , we have

lim
ε↘0

∞∑

k=n0

g ′(k)
[

P
{ |Sk|

σ
√

k
≥ εgs(k)

}

– P
{|N | ≥ εgs(k)

}
]

= lim
ε↘0

∞∑

k=n0

g ′(k)
[

P
{|N | < εgs(k)

}
– P

{ |Sk|
σ
√

k
< εgs(k)

}]

=
∞∑

k=n0

g ′(k) lim
ε↘0

[

P
{|N | < εgs(k)

}
– P

{ |Sk|
σ
√

k
< εgs(k)

}]

= –
∞∑

k=n0

g ′(k)P{Sk = 0] = –ηg .
�

Proof of Theorem 1.1 By combining Lemmas 2.7 and 2.8, we obtain Theorem 1.1. �

3 Conclusions
In this paper, using the rate of convergence to the normal distribution and Fubini theo-
rem, under some suitable conditions, the convergence rates in precise asymptotics for the
complete convergence have been discussed with more general boundary functions. The
result extends and generalizes the corresponding results of Gut and Steinebach [1], Kong
[2], and Kong and Dai [3]. However, this paper has only studied the convergence rates
for complete convergence. In the future research, we will discuss the convergence rates
in precise asymptotics for complete moment convergence, which was first studied by Liu
and Lin [13], as it is more difficult to handle the moment terms.
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