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1 Introduction
For given r (0 < r ≤ 1), let Ur = {z ∈ C : |z| < r}, U ≡ U1 be the open unit disk, and let us
denote by T = ∂U := {z ∈ C : |z| = 1} the boundary of U. An analytic function p in U with
p(0) = 1 is said to be a Carathéodory function of order α if it satisfies

Re
{

p(z)
}

> α (0 ≤ α < 1, z ∈U).

We denote by P(α) the class of all Carathéodory functions of order α in U and P ≡ P(0)
[4]. Let A denote the class of analytic functions f defined in U normalized by f (0) = 0 and
f ′(0) = 1. Further, we denote by S∗(α) and K(α) the subclasses of A consisting of starlike
and convex functions of order α in U, respectively. That is, a function f ∈ A belongs to
the classes S∗(α) and K(α) if f satisfies Re{zf ′(z)/f (z)} > α and Re{1 + zf ′′(z)/f ′(z)} > α,
respectively, in U.

For analytic functions f and g , we say that f is subordinate to g , denoted by f ≺ g , if
there is an analytic function w : U → U with |w(z)| ≤ |z| such that f (z) = g(w(z)). Further,
if g is univalent, then the definition of subordination f ≺ g simplifies to the conditions
f (0) = g(0) and f (U) ⊆ g(U) (see [10, p. 36]).

Let us denote by Q the set of functions q that are analytic and injective on U \ E(q),
where

E(q) =
{
ζ ∈ T : lim

z→ζ
q(z) = ∞

}
,

and are such that q′(ζ ) �= 0 for ζ ∈ T \ E(q).
Marx [3] and Strohhäcker [12] showed that if f ∈ K ≡ K(0) then f ∈ S∗(1/2), that is,

K ⊂ S∗(1/2). Later, Miller [4] and Miller, Mocanu and Reade [7] proved the following
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results, respectively. If p is analytic in U, then

Re
{

p(z) + βzp′(z)
}

> 0 (β ≥ 0) �⇒ p ∈P (1)

and

Re

{
p(z) + β

zp′(z)
p(z)

}
> 0

(
β ∈R, p(z) �= 0

) �⇒ p ∈P . (2)

The result given in (2) clearly reduces the earlier works due to Marx and Strohhäcker.
Many kinds of functions with geometric properties, such as starlikeness, convexity, close-
to-convexity, and so on, are closely related to the class of Carathéodory functions and play
a really important role in the study of univalent functions.

In the present paper, we show several new sufficient conditions, which are not connected
to some recent results for Carathéodory functions of order α, which incorporate the im-
plications given by (1) and (2). In addition to applying the well known Jack’s Lemma, we
approach the results in a quite different way than methods used in other papers. More-
over, we obtain other criteria for Carathéodory functions of order α. Many of the earlier
results given by Marx [3], Strohhäcker [12] and others are shown here to follow as special
cases of the results presented in this paper. Thus the various properties associated with
the class P(α) obtained here can be viewed as extensions and generalizations of numerous
previously-obtained results in Geometric Function Theory.

2 Main results
In proving our results, we need the following lemmas due to Jack [2], and Miller and Mo-
canu [5] (see also [6, p. 24, Lemma 2.2d]).

Lemma 2.1 Suppose that function w is analytic for |z| ≤ r, w(0) = 0 and |w(z0)| =
max|z|=r |w(z)|. Then z0w′(z0) = kw(z0), where k is a real number with k ≥ 1.

Lemma 2.2 Let q ∈ Q, with q(0) = a, and let p(z) = a + anzn + · · · be analytic in U with
p(z) �≡ a and n ≥ 1. If p is not subordinate to q, then there exist points z0 = r0eiθ0 ∈ U and
ζ0 ∈ T \ E(q), and an m ≥ n ≥ 1 for which p(Ur0 ) ⊂ q(U),

(i) p(z0) = q(ζ0),
(ii) z0p′(z0) = mζ0q′(ζ0) and

(iii) Re{1 + z0p′′(z0)
p′(z0) } ≥ m Re{1 + ζ0q′′(ζ0)

q′(ζ0) }.

By using Lemma 2.1, we now derive the following theorem.

Theorem 2.3 Let p be analytic in U with p(0) = 1. If

Re
{

p(z) + βzp′(z)
}

> α –
β

2(1 – α)
(
1 – 2α +

∣∣p(z)
∣∣2) (0 ≤ α < 1,β ≥ 0), (3)

then p ∈P(α).

Proof Define function w by

p(z) =
1 + (1 – 2α)w(z)

1 – w(z)
(z ∈U). (4)
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We know that w is analytic in U with w(0) = 0. Suppose that there exists a point z0 in U

such that

Re
{

p(z)
}

> α for |z| < |z0| and Re
{

p(z0)
}

= α. (5)

Then we have

∣∣w(z)
∣∣ < 1 for |z| < |z0| and

∣∣w(z0)
∣∣ = 1. (6)

By using Lemma 2.1, we get

z0w′(z0) = kw(z0), (7)

where k is a real number with k ≥ 1. We note that z0p′(z0) is a nonpositive real number,
since

1
2k(1 – α)

z0p′(z0) =
w(z0)

(1 – w(z0))2 =
2(Re{w(z0)} – 1)

|1 – w(z0)|4 (8)

and, by (6), Re{w(z0)} ≤ 1. Moreover, by putting

p(z0) = α + iy (y ∈R), (9)

we obtain

w(z0) = 1 –
2(1 – α)2

(1 – α)2 + y2 + i
2(1 – α)y

(1 – α)2 + y2 (10)

and

z0p′(z0) = –k
(1 – α)2 + y2

2(1 – α)
. (11)

Therefore, from equations (9) and (11), we have

Re
{

p(z0) + βz0p′(z0)
}

= α – βk
(1 – α)2 + y2

2(1 – α)

≤ α –
β

2(1 – α)
(
1 – 2α +

∣∣p(z0)
∣∣2). (12)

This contradicts assumption (3). Therefore we complete the proof of Theorem 2.3. �

Taking α = 0 and β = 1 in Theorem 2.3, we have the following result by Nunokawa et
al. [9].

Corollary 2.4 Let p be analytic in U with p(0) = 1. If

Re
{

p(z) + zp′(z)
}

> –
1 + |p(z)|2

2
,

then p ∈P .
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Remark 2.5 Corollary 2.4 is an improvement of the result by Miller [4].

The right-hand side of assumption (3) in Theorem 2.3 depends on |p(z)|. But applying
the same method as in the proof of Theorem 2.3 and using the new formula (12) where y
is ignored, we can derive a similar result (Theorem 2.6 below) without requiring |p(z)| in
assumption (3) of Theorem 2.3.

Theorem 2.6 Let p be analytic in U with p(0) = 1. If

Re
{

p(z) + βzp′(z)
}

> α –
β(1 – α)

2
(0 ≤ α < 1,β ≥ 0),

then p ∈P(α).

Letting β = 1 in Theorem 2.6, we have the following corollary.

Corollary 2.7 Let p be analytic in U with p(0) = 1. If

Re
{

p(z) + zp′(z)
}

>
3α – 1

2
(0 ≤ α < 1),

then p ∈P(α).

Remark 2.8 Corollary 2.7 is an improvement of the result by Nunokawa [8].

For given γ and c satisfying γ > 0 and c > –γ , let us consider an integral operator Ic,γ :
A→A defined by

F(z) := Ic,γ [f ](z) =
(

c + γ

zc

∫ z

0
ξ c–1f γ (ξ ) dξ

)1/γ

. (13)

By taking p(z) = F ′(z)(F(z)/z)γ –1, we have

γ p(z) + c
(

F(z)
z

)γ

= (c + γ )
(

f (z)
z

)γ

. (14)

Moreover, taking derivatives of both sides of (14) leads to the equality

f ′(z)
(

f (z)
z

)γ –1

= p(z) +
1

c + γ
zp′(z).

Example 2.9 Taking p(z) = f ′(z) in Theorem 2.3 with α = 0, p(z) = f ′(z) in Theorem 2.6
with α = 0 and β = 1, p(z) = f (z)/z in Theorem 2.3 with α = 0 and β = 1 and p(z) =
F ′(z)/(F(z)/z)γ –1, where F is defined in (13), in Theorem 2.6 with β = 1/(c + γ ), respec-
tively, we have the following results: If f ∈A, then

(i) Re{f ′(z) + βzf ′′(z)} > – β

2 (1 + |f ′(z)|2) (β > 0) implies Re{f ′(z)} > 0 (cf. [1]);
(ii) Re{f ′(z) + zf ′′(z)} > –1/2 implies Re{f ′(z)} > 0;

(iii) Re{f ′(z)} > – 1
2 (1 + |f (z)/z|2) implies Re{f (z)/z} > 0;

(iv) Re{f ′(z)(f (z)/z)γ –1} > α – 1–α
2(c+γ ) (0 ≤ α < 1, γ > 0, c > –γ ) implies

Re{F ′(z)(F(z)/z)γ –1} > α, where F is defined as in (13) (cf. [11]).
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Theorem 2.10 Let p be analytic in U with p(0) = 1. If

Re

{
p(z) +

zp′(z)
βp(z) + γ

}
> δ

(
α,β ,γ ,

∣∣p(z)
∣∣), (15)

where

δ
(
α,β ,γ ,

∣∣p(z)
∣∣) = α –

(αβ + γ )(1 – 2α + |p(z)|2)
2(1 – α)(γ 2 + 2αβγ + β2|p(z)|2)

(0 ≤ α < 1,β �= 0,αβ + γ > 0), (16)

then p ∈P(α).

Proof At first, we note that p(z) �= –γ /β for z ∈ U. In fact, if βp(z) + γ has a zero of order
m at z = z1 ∈U, then we can write

βp(z) + γ = (z – z1)mp1(z) (m ∈N),

where p1 is analytic in U and p1(z1) �= 0. Then we have

p(z) +
zp′(z)

βp(z) + γ
=

1
β

{
(z – z1)mp1(z) – γ +

mz
z – z1

+
zp′

1(z)
p1(z)

}
. (17)

Thus choosing z → z1 suitably, the real part of the right-hand side of (17) can take any
negative infinite values, which contradicts hypothesis (15). Defining w by (4), we see that
function w is analytic in U with w(0) = 0. Suppose that there exists a point z0 ∈U satisfying
(5). Then we have (6). By Lemma 2.1, there exists a real number k with k ≥ 1 satisfying (7).
Using the fact that z0p′(z0) is a real number, from (4) and (8), we can obtain

Re

{
p(z0) +

z0p′(z0)
βp(z0) + γ

}

= Re
{

p(z0)
}

+ z0p′(z0) Re

{
1

βp(z0) + γ

}

= Re
{

p(z0)
}

+ 2(1 – α)k
(

w(z0)
(1 – w(z0))2

)
Re

{
1 – w(z0)

β + γ + (β – 2αβ – γ )w(z0)

}
. (18)

We now set p(z0) as in (9). Then we have the same function value of w(z0) which satisfies
formula (10), and it follows from (18) with (10) and k ≥ 1 that

Re

{
p(z0) +

z0p′(z0)
βp(z0) + γ

}

= α – 2(1 – α)k
(

(1 – α)2 + y2

4(1 – α)2

)(
αβ + γ

γ 2 + 2αβγ + β2(α2 + y2)

)

≤ α –
(αβ + γ )(1 – 2α + α2 + y2)

2(1 – α)(γ 2 + 2αβγ + β2(α2 + y2))

= δ
(
α,β ,γ ,

∣∣p(z0)
∣∣),
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where δ(α,β ,γ , |p(z0)|) is given by (16), which contradicts assumption (15). Therefore we
complete the proof of Theorem 2.10. �

Remark 2.11 For γ = 0, Theorem 2.10 is an improvement of the result by Miller et al. [7].

Taking β = 1 and γ = 0 in Theorem 2.10, we have the following result.

Corollary 2.12 Let p be analytic in U with p(0) = 1 and 0 ≤ α < 1. If

Re

{
p(z) +

zp′(z)
p(z)

}
>

α(1 – 2α)(|p(z)|2 – 1)
2(1 – α)|p(z)|2 ,

then p ∈P(α).

Applying Theorem 2.10 leads us to get the following theorem which doesn’t depend on
|p(z)|.

Theorem 2.13 Let p be analytic in U with p(0) = 1 and 0 ≤ α < 1. If p satisfies one of the
following conditions:

(i) Re{p(z) + zp′(z)
βp(z)+γ

} > α – αβ+γ

2β2(1–α) (–αβ < γ < β(1 – 2α) for β > 0 or –αβ < γ < –β for
β < 0),

(ii) Re{p(z) + zp′(z)
βp(z)+γ

} > α – 1–α
2(αβ+γ ) (γ ≥ β(1 – 2α) for β > 0 or γ ≥ –β for β < 0),

then p ∈P(α).

Proof First of all, we consider a function ψ : [0,∞) →R defined by

ψ(x) =
(1 – α)2 + x

(αβ + γ )2 + β2x
. (19)

By differentiating ψ , we obtain

[
(αβ + γ )2 + β2x

]2
ψ ′(x) = (β + γ )

(
γ + β(2α – 1)

)
.

Therefore the derivative of ψ is negative when –αβ < γ < –β(2α – 1) for β > 0 and –αβ <
γ < –β for β < 0, which means that function ψ is decreasing. Hence

ψ(x) ≥ lim
x→∞ψ(x) =

1
β2 (x ≥ 0). (20)

On the other hand, the derivative of ψ is positive when –β(2α –1) < γ for β > 0 and –β < γ

for β < 0, which means that function ψ is increasing. In this case, the following inequality
holds:

ψ(x) ≥ ψ(0) =
(

1 – α

αβ + γ

)2

(x ≥ 0). (21)
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According to the same contradiction method as in Theorem 2.10, when p(z0) is defined
by (9), we now have

Re

{
p(z0) +

z0p′(z0)
βp(z0) + γ

}
≤ α –

(αβ + γ )(1 – 2α + α2 + y2)
2(1 – α)(γ 2 + 2αβγ + β2(α2 + y2))

= α –
(αβ + γ )
2(1 – α)

ψ
(
y2), (22)

where ψ is the function defined by (19).
When –αβ < γ < –β(2α – 1) for β > 0 and –αβ < γ < –β for β < 0, by (22) and (20), we

have

Re

{
p(z0) +

z0p′(z0)
βp(z0) + γ

}
≤ α –

(αβ + γ )
2β2(1 – α)

.

This is a contradiction to the assumption. And, when –β(2α – 1) < γ for β > 0 and –β < γ

for β < 0, by (22) and (21), we have

Re

{
p(z0) +

z0p′(z0)
βp(z0) + γ

}
≤ α –

(1 – α)
2(αβ + γ )

.

But this also contradicts our assumption. Hence the proof of Theorem 2.13 is com-
pleted. �

Letting β = 1 and γ = 0 in Theorem 2.13, we have the following corollary.

Corollary 2.14 Let p be analytic in U with p(0) = 1. If function p satisfies the following
condition, then p ∈P(α):

Re

{
p(z) +

zp′(z)
p(z)

}
>

⎧
⎨

⎩

α–2α2

2(1–α) , when 0 ≤ α < 1/2,
(1+α)(2α–1)

2α
, when 1/2 ≤ α < 1.

Remark 2.15 Taking p(z) = zf ′(z)/f (z) and α = 1/2 in Corollary 2.14, we have the classical
result by Marx [3] and Strohhäcker [12], that is, K ⊂ S∗(1/2).

Let α and β be real numbers such that 0 ≤ α < 1 and β ≥ (3α – 1)/2. Then it can be easily
shown that

α – β –
(1 – α)2 + y2

2(1 – α)
k ≤ α – β –

(1 – α)2 + y2

2(1 – α)
≤ 0, y ∈R, k ≥ 1.

Hence it follows that the following inequality holds for y ∈R and k ≥ 1:

(
α – β –

(1 – α)2 + y2

2(1 – α)
k
)2

+ y2 ≥
(

α – β –
(1 – α)2 + y2

2(1 – α)
k
)2

+ y2. (23)
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Now let p(z0) and z0p′(z0) be given as in (9) and (11), respectively. Then, from (23) and
replacing y2 by |p(z0)|2 – α2, we have

∣∣p(z0) + z0p′(z0) – β
∣∣2 =

(
α – β –

(1 – α)2 + y2

2(1 – α)
k
)2

+ y2

≥
(

1 – α + β +
|p(z0)|2 – 1

2(1 – α)

)2

+
∣∣p(z0)

∣∣2 – α2. (24)

Now, applying the same method as in the proof of Theorems 2.3 and 2.10 and inequality
(24), we obtain the following result.

Theorem 2.16 Let α and β be real numbers such that 0 ≤ α < 1 and β ≥ (3α – 1)/2. Let p
be analytic in U with p(0) = 1. If

∣∣p(z) + zp′(z) – β
∣∣ < δ

(
α,β ,

∣∣p(z)
∣∣),

where

δ
(
α,β ,

∣∣p(z)
∣∣) =

{(
1 – α + β +

|p(z)|2 – 1
2(1 – α)

)2

+
∣∣p(z)

∣∣2 – α2
}1/2

,

then p ∈P(α).

Corollary 2.17 Let 0 ≤ α < 1 and β ≥ (3α – 1)/2. And let p be an analytic function in U

with p(0) = 1. If p satisfies

∣∣p(z) + zp′(z) – β
∣∣ <

√(
1 – α + β –

1
2(1 – α)

)2

– α2,

then p ∈P(α).

Taking α = 0 and β = 1 in Theorem 2.16 and Corollary 2.17, we have Corollary 2.18
below.

Corollary 2.18 Let p be analytic in U with p(0) = 1. If

∣∣p(z) + zp′(z) – 1
∣∣ <

√(
3 + |p(z)|2

2

)2

+
∣∣p(z)

∣∣2,

or

∣∣p(z) + zp′(z) – 1
∣∣ <

3
2

,

then p ∈P .

With the aid of Lemma 2.2, we prove the following result.
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Theorem 2.19 Let α and A be real numbers with 0 ≤ α < 1 and A ≥ 0. And let B and C be
functions defined in U such that Re{B(z)} > A for all z ∈ U. If p is analytic in U with p(0) = 1
and

Re
{

Az2p′′(z) + B(z)zp′(z) + C(z)p(z)
}

> δ
(
α, A, B(z), C(z)

)
,

where

δ
(
α, A, B(z), C(z)

)
=

(1 – α)[(Im{C(z)})2 – (Re{B(z) – A})2]
2(Re{B(z) – A}) + α Re

{
C(z)

}
,

then p ∈P(α).

Proof Define function w as in (4). We see that w is analytic inUwith w(0) = 0. Suppose that
there exists a point z0 in U satisfying (5). Then we have (6). By Lemma 2.1, there exist a real
number k ≥ 1 satisfying (7). Moreover, by hypothesis (5), we have p ⊀ h, where h : U →C

is the function defined by h(z) = (1 + (1 – 2α)z)/(1 – z). Note that

Re

{
1 +

ζh′′(ζ )
h′(ζ )

}
= 0

for ζ ∈ T. Lemma 2.2 with the equality above leads to the inequality

Re

{
1 +

z0p′′(z0)
p′(z0)

}
≥ 0. (25)

Since z0p′(z0) is a nonpositive real number, from (25), we have

Re
{

z2
0p′′(z0)

} ≤ –z0p′(z0). (26)

Putting

p(z0) = α + iy (y ∈R),

we obtain the same function value of w(z0) which satisfies equation (5). Then, by (26) and
(11), we have the following inequalities:

Re
{

Az2
0p′′(z0) + B(z0)z0p′(z0) + C(z0)p(z0)

}

≤ (
Re

{
B(z0)

}
– A

)
z0p′(z0) + α Re

{
C(z0)

}
– y Im

{
C(z0)

}

≤ 1
2
(
A – Re

{
B(z0)

})
(1 – α) +

A – Re{B(z0)}
2(1 – α)

y2 + α Re
{

C(z0)
}

– y Im
{

C(z0)
}

≤ (1 – α)[(Im{C(z0)})2 – (Re{B(z0) – A})2]
2(Re{B(z0) – A}) + α Re

{
C(z0)

}

= δ
(
α, A, B(z0), C(z0)

)
.

But this contradicts our assumption. Hence the proof is completed. �

Taking A = 0, B(z) = C(z) ≡ 1 and α = 0 in Theorem 2.19, then we have the following
result.
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Corollary 2.20 Let p be analytic in U with p(0) = 1. Then

Re
{

p(z) + zp′(z)
}

> –
1
2

�⇒ Re
{

p(z)
}

> 0.

Remark 2.21 Corollary 2.20 is the result obtained by Miller [4]. And this is also shown by
Corollary 2.7.

Taking A = 0, B(z) = C(z) ≡ 1 and α = 1/2 in Theorem 2.19, we have the following result.

Corollary 2.22 Let p be analytic in U with p(0) = 1. Then

Re
{

p(z) + zp′(z)
}

>
1
4

�⇒ Re
{

p(z)
}

>
1
2

.

Letting p(z) = (Iγ ,β [f ](z)/z)β (f ∈A), where Iγ ,β : A→A is the integral operator defined
by (13), in Theorem 2.19 with A = 0, B(z) ≡ 1, C(z) ≡ γ +β and α = 0, we have the following
result.

Corollary 2.23 Let f ∈A and let β and γ be complex numbers. If

Re

{
(γ + β)

(
f (z)

z

)β}
>

1
2
[(

Im{γ + β})2 + 2α Re{γ + β} – 1
]
,

then

Re

{(
Iγ ,β [f ](z)

z

)β}
> 0.

By a similar method as in the proof of Theorem 2.19, we can obtain the following result,
which shows that the condition Re{B(z)} ≥ A (z ∈ U) can be established in Theorem 2.19
when Im{C(z)} = 0 (z ∈U).

Theorem 2.24 Let α and A be real numbers with 0 ≤ α < 1 and A ≥ 0. And let B and C be
functions defined in U such that Re{B(z)} = A and Im{C(z)} = 0 for all z ∈U. If p is analytic
in U with p(0) = 1 and

Re
{

Az2p′′(z) + B(z)zp′(z) + C(z)p(z)
}

> α Re
{

C(z)
}

,

then p ∈P(α).

Taking A = 1, B(z) = C(z) ≡ 1 in Theorem 2.19, then we have the following result.

Corollary 2.25 Let p be analytic in U with p(0) = 1. Then

Re
{

z2p′′(z) + zp′(z) + p(z)
}

> α �⇒ Re
{

p(z)
}

> α.

Next, we derive another conditions for Carathéodory functions of order α in Theo-
rems 2.26 and 2.27 below.
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Theorem 2.26 Let p be analytic in U with p(0) = 1 and 0 ≤ α < 1. If p satisfies

zp′(z)
p(z) – α

�= iΛ (27)

for all Λ ∈R with |Λ| ≥ 1, then p ∈P(α).

Proof Let

q(z) =
1

1 – α

(
p(z) – α

)
.

Then q is analytic in U with q(0) = 1. Here, we note that p(z) �= α for z ∈U. In fact, if there
exists a point z1 ∈U such that p(z1) = α and hence q(z1) = 0 then q(z) can written by

q(z) = (z – z1)mq1(z) (m ∈N),

where q1 is analytic in U and q1(z1) �= 0. Hence we have

zp′(z)
p(z) – α

=
zq′(z)
q(z)

=
mz

z – z1
+

zq′
1(z)

q1(z)
. (28)

But the imaginary part of the right-hand side of (28) can take any value when z approaches
z1. This contradicts our assumption (27). Suppose that there exists a point z0 ∈U such that

Re
{

q(z)
}

> 0 for |z| < |z0| and Re
{

q(z0)
}

= 0
(
q(z0) �= 0

)
.

Setting

φ(z) =
1 – q(z)
1 + q(z)

,

we have

∣∣φ(z)
∣∣ < 1 for |z| < |z0| and

∣∣φ(z0)
∣∣ = 1

(
φ(0) = 0

)
.

Let q(z0) = iy (y ∈R \ {0}). Then, by Lemma 2.1, we obtain

z0φ
′(z0)

φ(z0)
=

–2z0q′(z0)
1 – q2(z0)

=
–2z0q′(z0)

1 + y2 = k,

where k is a real number with k ≥ 1, and so

–z0q′(z0) ≥ 1 + y2

2
.

Therefore, z0q′(z0) is a negative real number. At first, suppose that y > 0. Then we have

z0p′(z0)
p(z0) – α

=
z0q′(z0)

q(z0)
=

–iz0q′(z0)
y

≡ iΛ.
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Hence we obtain

Λ =
–z0q′(z0)

y
≥ 1 + y2

2y
≥ 1,

which contradicts assumption (27). Next, for y < 0, we have

z0p′(z0)
p(z0) – α

=
z0q′(z0)

q(z0)
=

iz0q′(z0)
|q(z0)| =

iz0q′(z0)
|y| ≡ iΛ

and Λ is a real number with Λ ≤ –1. This also contradicts assumption (27). Hence we
complete the proof of Theorem 2.26. �

Theorem 2.27 Let 0 ≤ α < 1 and let p be analytic in U with p(0) = 1. If p satisfies

zp′(z)
p(z) – α

(p(z) – α)2 – (1 – α)2

(p(z) – α)2 + (1 – α)2 �= i (29)

for all  ∈R with || ≥ 2, then p ∈P(α).

Proof Firstly, using a proof similar to that of Theorem 2.26 and assumption (29), we can
derive easily that

p(z) �= α and p2(z) – 2αp(z) + 2α2 – 2α + 1 �= 0 (30)

for all z ∈U. Let

q(z) =
1

1 – α

(
p(z) – α

)
=

1 + w(z)
1 – w(z)

.

Then we see that w is analytic in U with w(0) = 0. We claim that |w(z)| < 1 in U. Suppose
that there exists a point z0 ∈U such that max|z|<|z0| |w(z)| = |w(z0)| = 1. By Lemma 2.1, there
exists a real number k ≥ 1 satisfying (7). Writing w(z0) = eiθ with

–π < θ < π (θ �= 0,±π/2), (31)

we obtain that

q(z0) =
1 + eiθ

1 – eiθ = i cot(θ/2)

and

z0q′(z0)
q(z0)

=
2kw(z0)

1 – w2(z0)
= i

k
sin θ

.

Therefore we have the following identities:

z0p′(z0)
p(z0) – α

(p(z0) – α)2 – (1 – α)2

(p(z0) – α)2 + (1 – α)2 =
z0q′(z0)

q(z0)
q2(z0) – 1
q2(z0) + 1

= –i
k

sin θ

1 + cot2(θ/2)
1 – cot2(θ/2)

≡ –i.
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It is now sufficient to show that

 ≥ 2 or  ≤ –2 (32)

for all θ satisfying (31), since (32) contradicts the assumption (29). For this, let us define a
function ϕ : (0, 1) →R by

ϕ(t) =
(1 + t2)2

2t(1 – t2)
.

We can check ϕ′(t) = 0 occurs only at t =
√

2 – 1 =: t0 ∈ (0, 1). Moreover, we have ϕ′′(t0) =
12 + 8

√
2 > 0. Therefore, on the interval (0, 1), function ϕ has its minimum at t = t0. That

is,

ϕ(t) ≥ ϕ(t0) = 2 (0 < t < 1). (33)

And, by (33), the following inequality holds for t ∈ (1,∞):

ϕ(t) = –ϕ(1/t) ≤ –2 (t > 1). (34)

Consider the case 0 < θ < π/2. Then, we have cot(θ/2) > 1 and it follows from (34) that

 = kϕ
(
cot(θ/2)

) ≤ –2.

For the case π/2 < θ < π , we have 0 < cot(θ/2) < 1 and (33) gives us that

 = kϕ
(
cot(θ/2)

) ≥ 2.

A similar method as above leads us to inequality (32) for the case –π < θ < 0 with θ �= –π/2
and the proof of Theorem 2.27 is now completed. �

Remark 2.28 Taking p to be appropriate analytic functions in Theorems 2.26 and 2.27, we
can find conditions for univalence, starlikeness, convexity, and so on.

Theorem 2.29 Let 0 ≤ α < 1 and 0 < β ≤ 1. If p is analytic in U with p(0) = 1 and

Re

{(
p(z) – α

)β

(
1 +

zp′(z)
p(z) – α

)}
> h

(
δ(α,β),α,β

)
,

where

h(x,α,β) =
1

2(1 – α)

(
–xβ+1 sin

(
π

2
β

)
+ 2(1 – α)xβ cos

(
π

2
β

)

– (1 – α)2xβ–1 sin

(
π

2
β

))

and

δ(α,β) =
1 – α

(1 + β) sin( π
2 β)

(
β cos

(
π

2
β

)
+

√
(
1 – 2β2

)
sin2

(
π

2
β

)
+ β2

)
,

then p ∈P(α).
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Proof First, we note that p(z) �= α for 0 ≤ α < 1. Defining function w by (4), we see that w
is analytic in U with w(0) = 0. Suppose that there exists a point z0 in U satisfying (5). Then
we have (6). By using Lemma 2.1, we obtain

z0w′(z0) = kw(z0),

where k is a real number with k ≥ 1. Putting p(z0) = α + iy with y ∈ R \ {0}, we obtain (10).
Then we have

Re

{(
p(z0) – α

)β

(
1 +

z0p′(z0)
p(z0) – α

)}

= Re
{(

p(z0) – α + z0p′(z0)
)(

p(z0) – α
)β–1}

= Re

{(
iy –

k((1 – α)2 + y2)
2(1 – α)

)
(iy)β–1

}

= Re

{(
iy –

k((1 – α)2 + y2)
2(1 – α)

)
|y|β–1

(
cos

(
± (β – 1)π

2

)
+ i sin

(
± (β – 1)π

2

))}
.

At first, we consider the case 0 < β < 1.
(i) For the case y > 0, we have

Re

{(
p(z0) – α

)β

(
1 +

z0p′(z0)
p(z0) – α

)}

= Re

{(
–

k
2(1 – α)

(
(1 – α)2yβ–1 + yβ+1) + iyβ

)(
sin

(
π

2
β

)
– i cos

(
π

2
β

))}

= –
k

2(1 – α)
(
(1 – α)2yβ–1 + yβ+1) sin

(
π

2
β

)
+ yβ cos

(
π

2
β

)

≤ 1
2(1 – α)

(
–yβ+1 sin

(
π

2
β

)
+ 2(1 – α)yβ cos

(
π

2
β

)
– (1 – α)2yβ–1 sin

(
π

2
β

))

= h(y,α,β).

Then, by a simple calculation, we obtain

h(y,α,β) ≤ h
(
δ(α,β),α,β

)
,

which is a contradiction to our assumption.
(ii) For the case y < 0, we have

Re

{(
p(z0) – α

)β

(
1 +

z0p′(z0)
p(z0) – α

)}

= Re

{(
–

k
2(1 – α)

(
(1 – α)2|y|β–1 + |y|β+1) – i|y|β

)(
sin

(
π

2
β

)
+ i cos

(
π

2
β

))}

= –
k

2(1 – α)
(
(1 – α)2|y|β–1 + |y|β+1) sin

(
π

2
β

)
+ |y|β cos

(
π

2
β

)

≤ h
(|y|,α,β

) ≤ h
(
δ(α,β),α,β

)
.
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We also come up to the same contradiction to our assumption under y < 0 condition. Now,
we consider the case β = 1 and obtain

Re
{

p(z0) – α + z0p′(z0)
}

= –k
(

(1 – α)2 + y2

2(1 – α)

)

≤ –
(1 – α)2 + y2

2(1 – α)

≤ –
1 – α

2
= h

(
δ(α, 1),α, 1

)
.

This contradicts our assumption. So, the proof is completed. �

Remark 2.30 Taking α = 0 and β = 1 in Theorem 2.29, we obtain the same result of Corol-
lary 2.22.

Taking p(z) = f (z)/z and α = 0 in Theorem 2.29, we have the following result.

Corollary 2.31 Let f ∈A and 0 < β ≤ 1. If

Re

{
f ′(z)

(
f (z)

z

)β–1}
> h

(
δ(0,β), 0,β

)
(z ∈U),

where h and δ(0,β) are given in Theorem 2.29, respectively, then

Re

{
f (z)

z

}
> 0 (z ∈U).

Example 2.32 Taking β = 1/2 in Corollary 2.31, we have h(δ(0,β), 0,β) = 0. Then

Re

{
f ′(z)

(
z

f (z)

)1/2}
> 0 implies Re

{
f (z)

z

}
> 0.
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