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Abstract
In this paper, we consider the stability of intensity measurement mappings
corresponding to generalized phase retrieval and generalized affine phase retrieval in
the real case. First, we show the bi-Lipschitz property on measurements of noiseless
signals. After that, the stability property as regards a noisy signal is given by the
Cramer–Rao lower bound.
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1 Introduction
Given a signal x ∈ Fd (F = C or R), phase retrieval aims to recover x from its intensity mea-
surements |〈x,ϕi〉|, i = 1, . . . , N , where {ϕi}N

i=1 is a frame of Fd . The phase retrieval problem
has a long history, which can be traced back as far as 1952 [13]. It has important applica-
tions in optics, communication, X-ray crystallography, quantum tomography, signal pro-
cessing and more (see e.g. [11, 14, 16] and the references therein). The task of classical
phase retrieval is recovering a signal from its Fourier transform magnitude [5, 8]. Using
frame theory, Balan et al. constructed a new class of Parseval frames for a Hilbert space in
2006 [2], which allows signal reconstruction from the absolute value of the frame coeffi-
cients. Since then lots of theoretical results and practical algorithms emerged in different
fields. Generalized phase retrieval was introduced by Yang Wang and Zhiqiang Xu [17],
including as special cases the standard phase retrieval as well as the phase retrieval by or-
thogonal projection. Explicitly, let Hd(F) denote the set of d×d Hermitian matrices over F
(if F = R then Hermitian matrices are symmetric matrices). As a standard phase retrieval
problem, we consider the equivalence relation ∼ on Fd : x1 ∼ x2 if there is a constant b ∈ F
with |b| = 1 such that x1 = bx2. Let Fd := Fd/ ∼. For any given A = {Aj}N

j=1 ⊂ Hd(F), define
the map MA : Fd → R

N by

MA(x) =
(
x∗A1x, . . . , x∗AN x

)
,

where x∗ denotes the conjugate transpose of x. We say that A is generalized phase retriev-
able if MA is injective on Fd . Similarly, if Aj is positive semidefinite for j = 1, . . . , N , we can
define the map

√
MA : Fd →R

N by

√
MA(x) =

(√
x∗A1x, . . . ,

√
x∗AN x

)
.
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Affine phase retrieval, introduced by Bing Gao et al., aims to recover signal from
the magnitudes of affine measurements. More precisely, instead of recovering x from
{|〈x,ϕj〉|}N

j=1, they consider recovering x from the absolute values of the affine intensity
measurements

∣∣〈x,ϕj〉 + bj
∣∣, j = 1, . . . , N ,

where ϕj ∈ Fd and bj ∈ C. In Sect. 3, we consider generalized affine phase retrieval and
discuss its basic properties.

Given two vectors x, y ∈ Fd , we define metrics d(x, y) = ‖x – y‖, d1(x, y) = min{‖x – y‖,
‖x + y‖} and matrix metric d2(x, y) = ‖x + y‖‖x – y‖ corresponding to the nuclear norm.
Several robustness bounds to the probabilistic phase retrieval problem in a real case are
given in [7]. Stability bounds of a reconstruction for a deterministic frame are studied in
[3, 4] with appropriate metrics.

Our study mainly focuses on the stability of generalized phase retrieval and generalized
affine phase retrieval in real case in two aspects. The first one addresses the bi-Lipschitz
property of generalized phase retrieval. Section 2 shows that the mappings MA and

√
MA

all have the bi-Lipschitz property with respect to an appropriate metric. However, the
generalized affine phase retrieval mappings MB,b and

√
MB,b only can be controlled by

two metrics. The second aspect deals with the Cramer–Rao lower bound of generalized
phase retrieval and generalized affine phase retrieval in an additive white Gaussian noise
model. The Cramer–Rao lower bound of any unbiased estimator is given by calculating
the Fisher information matrix.

2 Stability of generalized phase retrieval
In this section, we discuss the bi-Lipschitz property and Cramer–Rao lower bound of gen-
eralized phase retrieval. Given a collection of matrices {Aj}N

j=1 ⊂ Hd(F), define

a0 := inf‖x‖=‖y‖=1

N∑

j=1

∣
∣x∗Ajy

∣
∣2 and b0 := sup

‖x‖=‖y‖=1

N∑

j=1

∣
∣x∗Ajy

∣
∣2.

Assuming the collection of vectors {Ajx}N
j=1 form a frame of Fd for any x �= 0, then there

exist constants 0 < αx < βx < +∞ such that

αx‖y‖2 ≤
N∑

j=1

∣∣x∗Ajy
∣∣2 ≤ βx‖y‖2, y ∈ Fd.

We choose αx and βx to be the optimal frame bounds corresponding to {Ajx}N
j=1. Obviously,

we have

N∑

j=1

∣
∣x∗Ajy

∣
∣2 ≥ αx‖y‖2 > 0,
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for any y �= 0 and x �= 0. Furthermore, the unit sphere S1(Fd) = {x : ‖x‖ = 1, x ∈ Fd} is com-
pact in Fd . So is S1(Fd) × S1(Fd) in Fd × Fd . Since the mapping

(x, y) �−→
N∑

j=1

∣
∣x∗Ajy

∣
∣2

is continuous, it follows that

a0 = inf‖x‖=1
αx = inf‖x‖=‖y‖=1

N∑

j=1

∣
∣x∗Ajy

∣
∣2 > 0

and

b0 = sup
‖x‖=1

βx = sup
‖x‖=‖y‖=1

N∑

j=1

∣∣x∗Ajy
∣∣2 < +∞.

Conversely, suppose a0 > 0 and b0 < +∞, then, for any x �= 0 and y �= 0, we have

a0 ≤
∑N

j=1 |x∗Ajy|2
‖x‖2‖y‖2 =

N∑

j=1

∣
∣∣
∣

〈
Aj

x
‖x‖ ,

y
‖y‖

〉∣∣∣
∣

2

≤ b0.

This is equivalent to

a0‖x‖2‖y‖2 ≤
N∑

j=1

∣∣〈Ajx, y〉∣∣2 ≤ b0‖x‖2‖y‖2, (2.1)

which means for any vector x �= 0, Ajx is a frame for Fd with frame bounds a0‖x‖2 and
b0‖x‖2. Hence, we have proved the following lemma.

Lemma 2.1 Suppose A = {Aj}N
j=1 is a collection of Hermitian matrices in Hd(F). Then for

any x �= 0, the collection {Ajx}N
j=1 forms a frame for Fd if and only if a0 > 0 and b0 < +∞. In

this case, (2.1) holds for every x, y ∈ Fd .

For A = {Aj}N
j=1 ⊂ Hd(R), Yang Wang and Zhiqiang Xu [17] proved that A is phase re-

trievable if and only if {Ajx}N
j=1 is a frame of Rd for any nonzero x ∈ R

d . This incorporating
Lemma 2.1 leads to the following theorem.

Theorem 2.1 Let A = {Aj}N
j=1 ⊂ Hd(R). Then A is phase retrievable if and only if a0 > 0 and

b0 < +∞.

Since |〈Ajx, y〉|2 = yT AjxxT Ajy in real case, the above theorem can be rewritten in the
quadratic forms as follows.

Corollary 2.1 Let A = {Aj}N
j=1 ⊂ Hd(R). Then A is phase retrieval if and only if there are

two positive real constants a0, b0 such that

a0‖x‖2I ≤ Rx ≤ b0‖x‖2I, x ∈R
d, (2.2)

where the inequality is in the sense of quadratic forms and Rx :=
∑N

j=1 AjxxT Aj.
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For any positive semidefinite matrix Aj ∈ Hd(R), there is a matrix Bj ∈ R
rj×d such that

Aj = BT
j Bj where rj ≥ 1. While the matrix Bj can be taken as the square root of Aj, most of

the time, it is not unique. Let BT
j = (bj,1, . . . , bj,rj ), where bj,i is the ith column of the matrix

BT
j , then Ajx can be expanded as

Ajx = BT
j Bjx =

rj∑

i=1

bj,ibT
j,ix =

rj∑

i=1

〈x, bj,i〉bj,i.

Hence, we have

xT Ajx = 〈Ajx, x〉 =
rj∑

i=1

∣∣〈x, bj,i〉
∣∣2.

Using the above formula, we obtain a relation between generalized phase retrieval and the
classical phase retrieval.

Theorem 2.2 Suppose Aj = BT
j Bj ∈ Hd(R) is a positive semidefinite matrix and BT

j =
(bj,1, . . . , bj,rj ) for j = 1, . . . , N . If {Aj}N

j=1 is generalized phase retrievable, then the column vec-

tors {bj,i}rj ,N
i=1,j=1 satisfy the complementary property and therefore become a phase retrievable

frame.

Proof We prove it by contradiction. Let Λ := {(j, i) : 1 ≤ i ≤ rj, 1 ≤ j ≤ N}. Assuming S
is an arbitrary subset of Λ, it can be divided into two parts: Sj = {i|(j, i) ∈ S} and SC

j =
{1, 2, . . . , rj} \ Sj. If neither {bj,i}(j,i)∈S nor {bj,i}(j,i)∈SC is a spanning set of RN , then there exist
two nonzero elements x, y ∈ R

d such that 〈x, bj,i〉 = 0 for he(j, i) ∈ S and 〈y, aj,i〉 = 0 for
(j, i) ∈ SC . Consequently, for j = 1, . . . , N , we have

∥∥Bj(x + y)
∥∥2 =

rj∑

i=1

∣∣〈x + y, bj,i〉
∣∣2

=
∑

i∈Sj

∣
∣〈x + y, bj,i〉

∣
∣2 +

∑

i∈SC
j

∣
∣〈x + y, bj,i〉

∣
∣2

=
∑

i∈Sj

∣∣〈x – y, bj,i〉
∣∣2 +

∑

i∈SC
j

∣∣〈x – y, bj,i〉
∣∣2

=
∥
∥Bj(x – y)

∥
∥2.

Incorporating xT Ajx = ‖Bjx‖2 for any x ∈ R
d , the above equation indicates that (x +

y)T Aj(x + y) = (x – y)T Aj(x – y) for all j. Since {Aj}N
j=1 is phase retrievable, we have x + y =

±(x – y). This contradicts the nonzeroness of x and y. �

If {Aj}N
j=1 is generalized phase retrievable, then {Aj,i}N ,rj

j=1,i=1 = {bj,ibT
j,i}

N ,rj
j=1,i=1 is generalized

phase retrievable by Theorem 2.2. Again, by Theorem 2.1, there exist positive constants
a1, b1 such that

a1‖x‖2‖y‖2 ≤
N∑

j=1

rj∑

i=1

∣
∣〈Aj,ix, y〉∣∣2 ≤ b1‖x‖2‖y‖2.
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On the other hand,

N∑

j=1

∣∣xT Ajy
∣∣2 =

N∑

j=1

∣∣∣
∣∣

rj∑

i=1

〈Aj,ix, y〉
∣∣∣
∣∣

2

≤ r
N∑

j=1

rj∑

i=1

∣∣〈Aj,ix, y〉∣∣2 ≤ rb1‖x‖2‖y‖2,

with r = maxj{rj}. Therefore, we have the upper bound relation b0 ≤ rb1.

2.1 Bi-Lipschitz property
In this subsection, we consider the bi-Lipschitz property of tmappings MA and

√
MA. At

first, we show the stability of the mapping MA with respect to the metric d2.

Theorem 2.3 Let {Aj}N
j=1 ⊂ Hd(R) be generalized phase retrievable. Then MA is bi-

Lipschitz with respect to matrix metric d2(x, y) = ‖x + y‖‖x – y‖.

Proof For any x, y ∈R
d , we have

∥
∥MA(x) – MA(y)

∥
∥2 =

N∑

j=1

∣
∣〈Aj(x + y), x – y

〉∣∣2.

By Lemma 2.1, we have

a0‖x + y‖2‖x – y‖2 ≤
N∑

j=1

∣∣〈Aj(x + y), x – y
〉∣∣2 ≤ b0‖x + y‖2‖x – y‖2.

This is equivalent to

a0d2
2(x, y) ≤ ∥

∥MA(x) – MA(y)
∥
∥2 ≤ b0d2

2(x, y). (2.3)
�

Now, we consider the stability of the mapping
√

MA with respect to the metric d1.

Lemma 2.2 Let {Aj}N
j=1 ⊂ Hd(R) be a collection of positive semidefinite matrices and gener-

alized phase retrievable. Then
√

MA is upper bounded with respect to the metric d1(x, y) =
min{‖x + y‖,‖x – y‖}.

Proof First, by the definition of
√

MA, we have

∥∥
√

MA(x) –
√

MA(y)
∥∥2 =

N∑

j=1

(√
xT Ajx –

√
yT Ajy

)2 =
N∑

j=1

(‖Bjx‖ – ‖Bjy‖
)2,

where Bj is the square root of Aj. Then, by the reverse triangle inequality,

N∑

j=1

(‖Bjx‖ – ‖Bjy‖
)2 ≤

N∑

j=1

(
min

{∥∥Bj(x – y)
∥∥,

∥∥Bj(x + y)
∥∥})2

≤ min

{ N∑

j=1

∥
∥Bj(x – y)

∥
∥2,

N∑

j=1

∥
∥Bj(x + y)

∥
∥2

}
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= min

{ N∑

j=1

(x – y)T Aj(x – y),
N∑

j=1

(x + y)T Aj(x + y)

}

= min

{

(x – y)T

( N∑

j=1

Aj

)

(x – y), (x + y)T

( N∑

j=1

Aj

)

(x + y)

}

.

Since Aj is positive semidefinite, so is
∑N

j=1 Aj. Let λ1 be the maximum eigenvalue of
∑N

j=1 Aj, Then we have

min

{

(x – y)T

( N∑

j=1

Aj

)

(x – y), (x + y)T

( N∑

j=1

Aj

)

(x + y)

}

≤ λ1d2
1(x, y).

Combining all the above inequalities, we have

∥∥
√

MA(x) –
√

MA(y)
∥∥2 ≤ λ1d2

1(x, y).

This demonstrates the mapping
√

MA is upper bounded by λ1. Furthermore, picking an
eigenvector x of

∑N
j=1 Aj corresponding to λ1, then we have

∥∥
√

MA(x) –
√

MA(0)
∥∥2 =

N∑

j=1

‖Bjx‖2 = xT

( N∑

j=1

Aj

)

x = λ1‖x‖2,

which means λ1 is the optimal upper bound. �

For the lower bound, we consider the parallelogram law

‖x + y‖2 + ‖x – y‖2 = 2
(‖x‖2 + ‖y‖2)

in two cases. At first, if ‖x + y‖ ≤ ‖x – y‖, we have

‖x + y‖2‖x – y‖2

‖x‖2 + ‖y‖2 ≥ ‖x + y‖2.

Secondly, if ‖x + y‖ ≥ ‖x – y‖, we have

‖x + y‖2‖x – y‖2

‖x‖2 + ‖y‖2 ≥ ‖x – y‖2.

Combining the above two cases,

d2
1(x, y) = min

{‖x + y‖2,‖x – y‖2} ≤ ‖x + y‖2‖x – y‖2

‖x‖2 + ‖y‖2 =
d2

2(x, y)
‖x‖2 + ‖y‖2 , (2.4)

which indicates the relation between two metrics. This allows us to estimate the lower
bound of

√
MA.

Lemma 2.3 Let {Aj}N
j=1 ⊂ HN

d (R) be generalized phase retrievable and positive semidefi-
nite. Then

√
MA is lower bounded with respect to the metric d1(x, y) = min{‖x + y‖,‖x – y‖}.
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Proof By the formula for the difference of a square, we have

∥
∥
√

MA(x) –
√

MA(y)
∥
∥2 =

N∑

j=1

(‖Bjx‖ – ‖Bjy‖
)2 =

N∑

j=1

(‖Bjx‖2 – ‖Bjy‖2

‖Bjx‖ + ‖Bjy‖
)2

,

where Bj is the square root of Aj. Let C is the uniform upper operator bound for {Aj}N
j=1,

that is, ‖Ajx‖ ≤ C‖x‖ for x ∈ Rd and j = 1, . . . , N . Therefore ‖Bjx‖ ≤ √
C‖x‖ and we have

N∑

j=1

(‖Bjx‖2 – ‖Bjy‖2

‖Bjx‖ + ‖Bjy‖
)2

≥
∑N

j=1(‖Bjx‖2 – ‖Bjy‖2)2

C(‖x‖ + ‖y‖)2

≥ a0d2
2(x, y)

2C(‖x‖2 + ‖y‖2)

≥ a0

2C
d2

1(x, y),

where the last inequality is due to (2.4). Thus we have proved that a0
2C is a lower bound of

the mapping
√

MA. �

Our discussion of the bi-Lipschitz property of
√

MA is summarized in the following
theorem by combining Lemma 2.2 and Lemma 2.3.

Theorem 2.4 Let {Aj}N
j=1 ⊂ HN

d (R) be generalized phase retrievable and positive semidefi-
nite. Then

√
MA is bi-Lipschitz with respect to the metric d1(x, y) = min{‖x + y‖,‖x – y‖} as

follows:

a0

2C
d2

1(x, y) ≤ ∥∥
√

MA(x) –
√

MA(y)
∥∥2 ≤ λ1d2

1(x, y).

Phase retrieval by projections introduced by Cahill et al. in [6] aims at recovering a signal
from measurements consisting of norms of its orthogonal projections onto a family of
subspaces. Since xT Pjx = ‖Pjx‖2 when Pj is a projection to an appropriate subspace of Rd ,
phase retrieval by projections is a special case of generalized phase retrieval with Aj = Pj.
Therefore, Theorem 2.3 and Theorem 2.4 also hold for phase retrieval by projections. In
this special case, λ1 can be upper bounded by N and C equals one.

2.2 Cramer–Rao lower bound
Given signal x ∈ R

d , we take measurements of the form Y = ϕ(x) + Z, where the entries
of Z are independent Gaussian random variables with mean value 0 and variance σ 2. The
generalized phase retrieval problem with noise is to estimate x from measurements Y . In
this case, we apply the theory of Fisher information to evaluate the stability of ϕ(x). The
Fisher information matrix is defined entry-wise by

(
I(x)

)
m,� = –E

[
∂2 log L(x)
∂xm ∂x�

]
,

where L(x) is the likelihood function. By assumption, Y is a random vector with

L(x) =
1

(2πσ 2)N/2 e– 1
2σ2 ‖y–ϕ(x)‖2

.
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By some simple computations, the Fisher information matrix entry (I(x))m,� equals

1
σ 2

N∑

j=1

E

[
∂(ϕ(x))j

∂xm

∂(ϕ(x))j

∂x�

]
–

1
σ 2

N∑

j=1

E

[
(
yj –

(
ϕ(x)

)
j

)∂2(ϕ(x))j

∂xm ∂x�

]
,

where (ϕ(x))j is the jth component of ϕ(x). Since E[yj] = (ϕ(x))j, the second expectation
equals zero and

(
I(x)

)
m,� =

1
σ 2

N∑

j=1

∂

∂xm

(
ϕ(x)

)
j

∂

∂x�

(
ϕ(x)

)
j. (2.5)

In terms of generalized phase retrieval problem in real case, we have ϕ(x) = (xT Ajx)N
j=1 and

in order to obtain a unique solution, we make an assumption of the signal x introduced in
[1]: the signal x is in a half super plane with respect to a vector e ∈ R

d , i.e. 〈x, e〉 > 0. See
Ref. [4] for another assumption to guarantee uniqueness. Substituting ϕ(x) = (xT Ajx)N

j=1
into (2.5), we have

(
I(x)

)
m,� =

4
σ 2

N∑

j=1

(Ajx)m(Ajx)�,

where (Ajx)m is the mth element of vector Ajx. This indicates the Fisher information matrix
can be expressed as

I(x) =
4
σ 2

N∑

j=1

(Ajx)(Ajx)T =
4
σ 2

N∑

j=1

AjxxT Aj =
4
σ 2 Rx. (2.6)

Since Corollary 2.1 implies the matrix Rx is positive definite, we obtain the Cramer–Rao
lower bound by Theorem 3.2 in [12], as incorporated in the following theorem.

Theorem 2.5 The Fisher information matrix for the noisy generalized phase retrieval
model in real case is given by (2.6). Consequently, for any unbiased estimator Φ(y) for x,
the covariance matrix is bounded below by the Cramer–Rao lower bound as follows:

Cov
[
Φ(y)

] ≥ (
I(x)

)–1 =
σ 2

4
(Rx)–1.

Therefore, the mean square error of any unbiased estimator Φ(y) is given by

E
[∥∥Φ(y) – x

∥∥2|x] ≥ σ 2

4
Tr

(
R–1

x
)
.

Taking inverse operator to matrices in (2.2) leads to

I
b0‖x‖2 ≤ R–1

x ≤ I
a0‖x‖2 .

Then taking trace of every matrix yields

d
b0‖x‖2 ≤ Tr

(
R–1

x
) ≤ d

a0‖x‖2 .
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Therefore, using Theorem (2.5), we get the mean square error bounds of unbiased esti-
mator as in the following corollary.

Corollary 2.2 If A = {Aj}N
j=1 is generalized phase retrievable, then, for any unbiased esti-

mator Φ(y) for x, we have

E
[∥∥Φ(y) – x

∥∥2|x] ≥ σ 2d
4b0‖x‖2 .

Furthermore, any unbiased estimate that achieves the Cramer–Rao lower bound has a
mean square error that is bounded above by

E
[∥∥Φ(y) – x

∥
∥2|x] ≤ σ 2d

4a0‖x‖2 .

3 Stability of generalized affine phase retrieval
The standard affine phase retrieval introduced by Bing Gao et al. in [9] can be used for
recovering signals with prior knowledge. In this section, we consider generalized affine
phase retrieval theoretically and give some basic mathematical properties at first, then we
focus on its stability property.

Let Bj ∈ Frj×d , where rj is a positive integer. We consider recovering signal x from the
norm of the affine linear measurements ‖Bjx + bj‖, j = 1, . . . , N , where bj ∈ Frj and x ∈ Fd .
Let B = {Bj}N

j=1 and b = {bj}N
j=1, we define the mapping MB,b : Fd →R

N
+ by

MB,b(x) =
(‖B1x + b1‖2,‖B2x + b2‖2, . . . ,‖BN x + bN‖2).

The pair (B, b) is said to be generalized affine phase retrieval for Fd if MB,b is injective on
Fd . This definition is a little bit different from the one in [10] where all rj equals same
integer r ≥ 1. Similar to generalized phase retrieval, we define the mapping

√
MB,b by

√
MB,b(x) =

(‖B1x + b1‖,‖B2x + b2‖, . . . ,‖BN x + bN‖).

Theorem 3.1 Let Bj ∈R
rj×d and bj ∈ R

rj . Then the following are equivalent:
(A) The pair (B, b) is generalized affine phase retrievable for Rd .
(B) There exist no nonzero u ∈ R

d such that 〈Bju, Bjv + bj〉 = 0 for all 1 ≤ j ≤ N and
v ∈R

d .
(C) If v is the solution of equations Bjv + bj = 0 for j ∈ S ⊂ {1, 2, . . . , N}, then

{BT
j Bjv + BT

j bj}j∈SC is a spanning set of Rd .
(D) The Jacobian of MB,b has rank d everywhere on R

d .

Proof (A) ⇔ (B). Assume that MB,b(x) = MB,b(y) for some x �= y in R
d . For any j, we have

‖Bjx + bj‖2 – ‖Bjy + bj‖2 =
〈
Bj(x – y), Bj(x + y) + 2bj

〉
.

Set 2u = x – y and 2v = x + y. Then u �= 0 and for all j,

〈Bju, Bjv + bj〉 = 0. (3.1)
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Conversely, assume that (3.1) hold for all j. Let x, y ∈R
d be given by x – y = 2u and x + y =

2v. Then x �= y. However, we have MB,b(x) = MB,b(y). Hence (B, b) cannot be affine phase
retrievable.

(B) ⇔ (C). Assume {BT
j Bjv + BT

j bj}j∈SC is not a spanning set of Rd , then there is a nonzero
vector u ∈ R

d such that 〈Bju, Bjv + bj〉 = 〈u, BT
j Bjv + BT

j bj〉 = 0 for j ∈ SC . For j ∈ S, since v
is the solution of equations Bjv + bj = 0, the inner product 〈Bju, Bjv + bj〉 also equals zero,
which contradicts (B). The converse can be proven similarly.

(C) ⇔ (D). The Jacobian of MB,b at x is exactly

JB,b(x) = 2
(
BT

1 B1x + BT
1 b1, BT

2 B2x + BT
2 b2, . . . , BT

N BN x + BT
N bN

)
,

which means the jth column of JB,b is precisely BT
j Bjx+BT

j bj. This indicates the equivalence
of (C) and (D). �

Minimality problems have attracted much attention from different areas recently. For
generalized affine phase retrieval, the answer is related to different constraints on Bj, bj

and prior knowledge of signal x. The following theorem is given in [10].

Theorem 3.2 ([10]) Let N ≥ 2d and r > 1. Then a generic {(Bj, bj)}N
j=1 ⊂ R

r×(d+1) has the
generalized affine phase retrieval property in R

d .

Let r = maxj rj. The rj ×(d+1) matrix (Bj, bj) in Theorem 3.1 can be extended to r×(d+1)
matrix by filling with zero rows. The extended matrix can be viewed as an affine phase
retrieval matrix where all rj = r and hence leads to the following corollary by Theorem 3.2.

Corollary 3.1 Let Ãj = (BT
j , bT

j )T (Bj, bj), where bj ∈ R
rj and Bj ∈R

rj×d is a nonzero matrix.
If N ≥ 2d and Ã = (Ãj)N

j=1 is a generic set in HN
d (R), Then the pair (B, b) is generalized affine

phase retrievable.

Example 3.1 Let B1 = B2 be the 2 × 2 identity matrix, B3 = (1, 0), b1 = (0, 0)T , b2 = (0, 1)T ,
b3 = 1. Then the pair (B, b) is generalized affine phase retrievable in R

2. In fact, assuming
u = (x, y)T ∈R

2, then

‖B1u + b1‖2 = x2 + y2,

‖B2u + b2‖2 = x2 + (y + 1)2,

‖B3u + b3‖2 = (x + 1)2.

By simple computation, one can easily solve the equations with respect to x, y. The number
of measurements equals 3 with r1 = r2 = 2, r3 = 1.

Now, we consider the stability of generalized affine phase retrieval. Let B̃j = (Bj, bj), Ãj =
B̃T

j B̃j, and x̃ = (xT , 1)T . We have the following theorem.

Theorem 3.3 Suppose Ã = {Ãj}N
j=1 is a generic set with N ≥ 2d, then (B, b) is generalized

affine phase retrievable. Furthermore, there exist positive constants c0, c1, C0, C1 depending
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on (B, b) such that, for any x, y ∈R
d ,

c0
(
d2

2(x, y) + d2(x, y)
) ≤ ∥∥MB,b(x) – MB,b(y)

∥∥2 ≤ c1
(
d2

2(x, y) + d2(x, y)
)
, (3.2)

C0d2
1(x, y) ≤ ∥

∥
√

MB,b(x) –
√

MB,b(y)
∥
∥2 ≤ C1d2(x, y). (3.3)

Proof The generalized affine phase retrievable property of pair (B, b) is due to Corol-
lary 3.1. Noticed that ‖Bjx + bj‖2 = ‖B̃jx̃‖2 = x̃T Ãx̃ implies MB,b(x) = MÃ(x̃), we have
‖MB,b(x) – MB,b(y)‖2 = ‖MÃ(x̃) – MÃ(ỹ)‖2. By Theorem 2.3, we have

∥
∥MB,b(x) – MB,b(y)

∥
∥2 � d2

2(x̃, ỹ),

where the symbol “�” denotes the bi-Lipschitz relation. Since d2
2(x̃, ỹ) = ‖x̃ + ỹ‖2‖x̃ – ỹ‖2 =

(‖x + y‖2 + 4)‖x – y‖2, there exist constants c0, c1 such that (3.2) holds. Similarly, by The-
orem 2.4, we have

∥∥
√

MB,b(x) –
√

Mb,b(y)
∥∥2 � d2

1(x̃, ỹ).

Since d2
1(x̃, ỹ) = min{‖x̃ + ỹ‖2,‖x̃ – ỹ‖2} = min{‖x + y‖2 + 4,‖x – y‖2}, there exist constants

C0, C1 such that (3.3) holds. �

In contrast to Theorem 4.1 in [9], Theorem 3.4 leads to a slack constraint of the signal
from a compact set to R

d . Although affine phase retrieval is not bi-Lipschitz with respect
to one metric, the mappings MB,b and

√
MB,b is bounded by two metrics.

We now consider the additive white Gaussian noise model

Y = ϕ(x) + Z,

with ϕ(x) = (‖Bjx + bj‖2)N
j=1. Then, by Eq. (2.5), the Fisher information of this model is 4

σ 2 Ra
x

where Ra
x =

∑N
j=1 BT

j (Bjx + bj)(Bjx + bj)T Bj.

Lemma 3.1 If the pair (B, b) is generalized affine phase retrievable, then the Fisher infor-
mation Ra

x is positive definite for any x ∈R
d .

Proof It is easy to see that Ra
x is positive semidefinite. Assume yT Ra

xy = 0 for some y ∈R
d ,

that is,

yT Ra
xy =

N∑

j=1

∥∥(Bjx + bj)T Bjy
∥∥2 = 0.

Therefore, for all j = 1, . . . , N ,

(Bjx + bj)T Bjy =
〈
BT

j (Bjx + bj), y
〉

= 0.

Since (B, b) is generalized affine phase retrievable, by Theorem 3.1, the collection {BT
j (Bjx+

bj)}N
j=1 is a spanning set of Rd and hence y = 0. �

Similar to generalized phase retrieval, we have the following theorem.
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Theorem 3.4 The Fisher information matrix for the noisy generalized affine phase re-
trieval model in real case is 4

σ 2 Ra
x . Consequently, for any unbiased estimator Φ(y) for x,

The covariance matrix is bounded below by the Cramer–Rao lower bound as follows:

Cov
[
Φ(y)

] ≥ (
I(x)

)–1 =
σ 2

4
(
Ra

x
)–1.

Therefore, the mean square error of any unbiased estimator Φ(y) is given by

E
[∥∥Φ(y) – x

∥
∥2|x] ≥ σ 2

4
Tr

((
Ra

x
)–1).

As a generalization of frame, g-frame is introduced by Wenchang Sun in [15]. The op-
erator sequence {Λj}N

j=1 is a g-frame if there are two positive constants c and C such that

c‖x‖2 ≤
N∑

j=1

‖Λjx‖2 ≤ C‖x‖2, ∀x ∈R
d.

Lemma 3.2 If the pair (B, b) is generalized affine phase retrievable, then the collection
{BT

j Bj}N
j=1 is a g-frame for Rd .

Proof Since ‖BT
j Bjx‖2 = xT (BT

j Bj)2x, the summation
∑N

j=1 ‖BT
j Bjx‖2 is upper bounded by

� := λmax(
∑N

j=1(BT
j Bj)2). For the lower bound, we prove by contradiction. If the summation

is not lower bounded, we can find a vector y ∈ R
d such that ‖y‖ = 1 and

∑N
j=1 ‖BT

j Bjy‖2 = 0,
which means BT

j Bjy = 0 for all j = 1, . . . , N . Therefore, we have

yT BT
j Bjy = ‖Bjy‖2 = 0,

which implies Bjy = 0 for all j = 1, . . . , N . Consequently, we have y �= 0 and

‖Bjy + bj‖2 = ‖Bj0 + bj‖2,

which contradicts the assumption that (B, b) is generalized affine phase retrievable. �

Corollary 3.2 If the pair (B, b) is generalized affine phase retrievable, then, for any unbi-
ased estimator Φ(y) for nonzero x, we have

E
[∥∥Φ(y) – x

∥
∥2|x] ≥ σ 2d2

8(�‖x‖2 + C)
.

Proof Since the matrix Ra
x is positive definite by Lemma 3.1, the inequality Tr(Ra

x) ·
Tr((Ra

x)–1) ≥ d2 holds and we can estimate the lower bound of mean square error by The-
orem 3.4 as follows:

E
[∥∥Φ(Y ) – x

∥∥2|x] ≥ σ 2d2

4 Tr(Ra
x)

. (3.4)

By Lemma 3.2, the trace can be estimated as

Tr
(
Ra

x
)

=
N∑

j=1

∥
∥BT

j Bjx + BT
j bj

∥
∥2 ≤ 2

N∑

j=1

∥
∥BT

j Bjx
∥
∥2 + 2

N∑

j=1

∥
∥BT

j bj
∥
∥2 ≤ 2�‖x‖2 + 2C,
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where C =
∑N

j=1 ‖BT
j bj‖2. Substituting it into (3.4), we have

E
[∥∥Φ(Y ) – x

∥
∥2|x] ≥ σ 2d2

8(�‖x‖2 + C)
. �

We discussed the stability of generalized phase retrieval and affine generalized phase
retrieval in this paper. The first one can be viewed as a generalization of stability of phase
retrieval in [3, 4], or as a continuation of the work in [17]. The second one is an extension
of the work in [9, 10]. As all the results in this paper are obtained in real Hilbert space, the
stability property in complex Hilbert space still needs to be addressed.
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