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Abstract
In this paper, we consider a class of quasilinear third-order differential equations with
a delayed argument. We establish new sufficient conditions for all solutions of such
equations to be oscillatory or almost oscillatory. Those criteria improve, simplify and
complement a number of existing results. The strength of the criteria obtained is
tested on Euler type equations.
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1 Introduction
In this paper, we are concerned with the asymptotic and oscillatory behavior of solutions
of quasilinear third-order delay differential equations of the form

(
r(t)

(
y′′(t)

)α)′ + q(t)yα
(
τ (t)

)
= 0, t ≥ t0 > 0. (1.1)

Throughout the paper, without further mentioning, we will assume the following hypothe-
ses:

(H0) α is a quotient of odd positive integers;
(H1) r ∈ C([t0,∞),R) is positive and satisfies

∫ ∞

t0

dt
r1/α(t)

< ∞;

(H2) q ∈ C([t0,∞),R) is non-negative and does not vanish eventually;
(H3) the delay function τ ∈ C1([t0,∞),R) is strictly increasing, τ (t) ≤ t, and

limt→∞ τ (t) = ∞.
By a solution of Eq. (1.1), we mean a nontrivial function y ∈ C1([Ty,∞),R) with Ty ≥ t0,
which has the property y′, r(y′′)α ∈ C1([Ty,∞),R), and satisfies (1.1) on [Ty,∞). We only
consider those solutions of (1.1) which exist on some half-line [Ty,∞) and satisfy the con-
dition sup{|y(t)| : T ≤ t < ∞} > 0 for any T ≥ Ty.
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A solution y of (1.1) is said to be oscillatory if it is neither eventually positive nor even-
tually negative. Otherwise, it is nonoscillatory. The equation itself is termed oscillatory if
all its solutions oscillate.

From the early years of the 18th century, differential equations of third-order have been
used for modeling various phenomena in several areas of the applied sciences. The first
step in this direction was taken by J. Bernoulli in 1696 who formulated the famous isoperi-
metric problem and, five years later, gave the solution that depends upon a third-order
differential equation [8]. Since then, these equations have shown to be particularly impor-
tant in the modeling of several physical phenomena, including the interactions between
charged particles, in an external electromagnetic field [21], the entry-flow phenomenon
[11], the propagation of action potentials in squid neurons [16] and others.

Although the importance of third-order equations in applications had been realized very
early, the majority of the work on the qualitative behavior of those equations has been
carried out only relatively recently, in the last three decades. For a review of key results up
to 2014, we refer the reader to the recent monographs [17, 18].

The study of qualitative properties of differential equations of the form (1.1) and their
particular cases or generalizations has become the subject of extensive research; see, for
example, [1–6, 9, 10, 15, 19, 20] and the references cited therein. Mostly, Eq. (1.1) has been
investigated under the assumption

∫ ∞

t0

dt
r1/α(t)

= ∞. (1.2)

In this case, by generalizing a familiar Kiguradze lemma, see [12, Lemma 1.1] or [13,
Lemma 2], it follows that there are only two possibilities for a nonoscillatory, say positive,
solution y of (1.1), namely cases (I) and (III) of Lemma 1 below. If, however, the integral
in (1.2) is convergent, an additional case for nonoscillatory solutions must be considered.

For closely related results having in common that the function r(t) satisfies condition
(1.2), we refer the reader to [1, 3–6, 10, 19, 20].

The main objective of this work is to establish results for the solutions of (1.1) to be
oscillatory or almost oscillatory under the crucial condition (H1). We postulate new suf-
ficient conditions for oscillations and/or property A (see Definition 1), which improve,
simplify and complement some existing results reported in the literature. Finally, we test
the strength of our criteria on Euler type equations.

2 Preliminaries, definitions and existing results
At first, we constrain the structure of possible nonoscillatory, let us say positive solutions
of (1.1).

Lemma 1 Let y be an eventually positive solution of (1.1). Then there exists t1 ∈ [t0,∞)
such that y satisfies one of the following cases:

(I) y > 0, y′ > 0, y′′ > 0,
(II) y > 0, y′ > 0, y′′ < 0,

(III) y > 0, y′ < 0, y′′ > 0,
for t ≥ t1.

Proof The proof is straightforward and hence we omit it. �
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2.1 Notation and definitions
Throughout the paper, we will use the following notation:

π (t0) =
∫ ∞

t0

dt
r1/α(t)

, π̃ (t0) =
∫ ∞

t0

π (t) dt,

and

R(v, u) =
∫ v

u

∫ v

x

ds
r1/α(s)

dx for v ≥ u.

Remark 1 All functional inequalities considered in the paper are supposed to hold even-
tually, that is, they are satisfied for all t large enough.

Remark 2 Note that if y is a solution of (1.1), then x = –y is also a solution of (1.1). Thus,
regarding nonoscillatory solutions of (1.1), we only need to consider the eventually posi-
tive ones.

Definition 1 We say that (1.1) has property A if any solution y of (1.1) is oscillatory or
satisfies limt→∞ y(t) = 0. In such case, some authors say that Eq. (1.1) is almost oscillatory.

Definition 2 We say that (1.1) has property P, if any nonoscillatory, say positive, solution
y of (1.1) satisfies case (III) of Lemma 1.

2.2 Motivation
In the sequel, we state and discuss in detail a triplet of related results for (1.1) under the
assumptions (H0)–(H3), which are considered to be the primary motivation of the paper.

Grace et al. [9] studying the oscillatory behavior of (1.1) using comparison principles
and established the following result, which we present below for the reader’s convenience.

Theorem A (See [9, Theorem 3]) Assume that there exist two functions ξ (t) and η(t) ∈
C1([t0,∞),R) such that

ξ ′(t) ≥ 0, η′(t) ≥ 0 and τ (t) < ξ (t) < η(t) < t for t ≥ t0.

If

lim inf
t→∞

∫ t

τ (t)
q(s)τα(s)

(∫ τ (s)

T

u
r1/α(u)

du
)α

ds >
1
e

(2.1)

for any T ≥ t0,

∫ ∞

t0

(
1

r(u)

∫ u

t0

q(s)τ (s)π
(
τ (s)

)
ds

)1/α

du = ∞ (2.2)

and

lim inf
t→∞

∫ t

η(t)
q(s)

(
ξ (s) – τ (s)

)α

(∫ η(s)

ξ (s)

du
r1/α(u)

)α

ds >
1
e

, (2.3)

then (1.1) is oscillatory.
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It is useful to note that conditions (2.1), (2.2) and (2.3) eliminate solutions satisfying
cases (I)–(III) of Lemma 1, respectively.

Making further use of comparison principles with first-order delay equations, Agarwal
et al. [2] established the following oscillation result for (1.1) with α = 1.

Theorem B (See [2, Corollary 1]) Assume that α = 1 and there exist two functions ξ ,σ ∈
C1([t0,∞),R) such that ξ (t) > t, ξ (t) is nondecreasing, τ (ξ (ξ (t))) < t, σ (t) is nondecreasing,
and σ (t) > t. If for all t2 > t1 ≥ t0

lim inf
t→∞

∫ t

τ (t)
q(s)

∫ τ (s)

t2

∫ v

t1

du
r(u)

dv ds >
1
e

, (2.4)

lim inf
t→∞

∫ σ (t)

t
q(s)

(
τ (s) – t1

)
π

(
σ (s)

)
ds >

1
e

, (2.5)

and

lim inf
t→∞

∫ t

τ (ξ (ξ (t)))

∫ ξ (s)

s

1
r(v)

∫ ξ (v)

v
q(u) du dv ds >

1
e

, (2.6)

then (1.1) is oscillatory.

In fact, both Theorems A and B strongly depend on the right choice of the auxiliary
functions in lim inf-type conditions. Since there is no general rule for this choice, the ap-
plication of such criteria may become difficult.

Using a different technique based on reducing the studied equation into a first-order
Riccati-type inequality, which is generally considered as one of the most valuable tools in
the oscillation theory, Li et al. [15] provided the following criterion for property A of (1.1).

Theorem C (See [15, Theorem 1]) Assume that

∫ ∞

t0

∫ ∞

v

(
1

r(u)

∫ ∞

u
q(s) ds

)1/α

du dv = ∞ (2.7)

and

lim sup
t→∞

∫ t

t2

(
�αsq(s)

(
τ (s) – T�

2
τ (s)

s

)α

–
1

(α + 1)α+1
r(s)
sα

)
ds = ∞ (2.8)

for some � ∈ (0, 1) and for sufficiently large T� ≥ t0, t2 ≥ T�. If, moreover,

lim sup
t→∞

∫ t

t3

(
kαq(s)τα(s)πα(s) –

(
α

α + 1

)α+1 1
π (s)r1/α(s)

)
ds = ∞ (2.9)

holds for some k ∈ (0, 1) and for sufficiently large t3 ≥ t0, then (1.1) has property A.

Here, condition (2.7) works to ensure that any solution of type (III) converges to zero as
t approaches infinity, while conditions (2.8) and (2.9) eliminate solutions of type (I) and
(II), respectively.
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It is well known that the Euler equation

(
t2y′′(t)

)′ +
q0

t
y(t) = 0 (2.10)

has property A if q0 > 2/(3
√

3). However, Theorem C obviously fails to apply to (2.10) due
to (2.7).

Even though the above-mentioned oscillation results were shown using different tech-
niques, they all have in common that the desired property is ensured by means of three
conditions independent from each other, eliminating solutions of particular cases. The
aim in this paper is to provide new oscillation criteria for (1.1) that would significantly im-
prove, complement, and simplify Theorems A–C. An advantage of our approach is that it
reduces the number of conditions ensuring that all solutions of the studied equation os-
cillate. A similar issue has been considered recently in [7] for linear third-order equations
of the form

(
r2(t)

(
r1(t)y′(t)

)′)′ + q(t)y
(
τ (t)

)
= 0

under the conditions
∫ ∞

t0

dt
r1(t)

< ∞ and
∫ ∞

t0

dt
r2(t)

< ∞.

3 Main results
3.1 Nonexistence of solutions of type (I) and (II)
We start with a simple condition ensuring the nonexistence of solutions of type (I). As will
be shown later, this condition is already included in those eliminating solutions of type (II).

Lemma 2 Let y be an eventually positive solution of (1.1). If

∫ ∞

t0

q(t)τα(t) dt = ∞, (3.1)

then case (I) in Lemma 1 cannot hold.

Proof Assume for the sake of contradiction that y satisfies case (I) of Lemma 1 and pick
t1 ∈ [t0,∞) such that y(τ (t)) > 0 for t ≥ t1. Since y′ is increasing, we have

y′(t) ≥ y′(t1) =: c on [t1,∞).

Thus,

y
(
τ (t)

) ≥ c
(
τ (t) – t1

)
.

Clearly, there is t2 ≥ t1 such that, for any k ∈ (0, 1) and t ≥ t2,

y
(
τ (t)

) ≥ c̃τ (t), c̃ := ck. (3.2)
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Integrating (1.1) from t2 to t and using (3.1) in the resulting inequality, we get

r(t)
(
y′′(t)

)α = r(t2)
(
y′′(t2)

)α –
∫ t

t2

q(s)yα
(
τ (s)

)
ds

≤ r(t2)
(
y′′(t2)

)α – c̃α

∫ t

t2

q(s)τα(s) ds → –∞ as t → ∞, (3.3)

which leads to a contradiction. The proof is complete. �

Next, we state some useful properties of the type (II) solutions, which are useful when
proving the main results.

Lemma 3 Let y be an eventually positive increasing solution of (1.1). If

∫ ∞

t0

1
r1/α(t)

(∫ t

t0

q(s)τα(s) ds
)1/α

dt = ∞, (3.4)

then y satisfies case (II) in Lemma 1 for t ≥ t1 and, moreover,
(a) y(t) ≥ ty′(t) and y(t)/t is decreasing for t ≥ t2, and limt→∞ y(t)/t = y′ = 0,
(b) y′(t) ≥ –π (t)r1/α(t)y′′(t) and y′(t)/π (t) is increasing for t ≥ t2,

where t2 ≥ t1 is large enough.

Proof Since y is increasing, by Lemma 1, y satisfies either case (I) or case (II) for t ≥ t1,
where t1 ∈ [t0,∞) is such that y(τ (t)) > 0 for t ≥ t1.

At first, note that because of the assumption (H1), condition (3.4) implies that (3.1) holds.
Thus, by Lemma 2, y satisfies case (II) for t ≥ t1.

Since y′(t) is decreasing, there exists a finite limit limt→∞ y′(t) = λ ≥ 0. We claim that
λ = 0. If not, then y′(t) ≥ λ > 0 for t ≥ t1. Proceeding similarly as in the proof of Lemma 2,
we obtain (3.3). From the fact that r(t)(y′′(t))α is negative, we get

y′′(t) ≤ –
c̃

r1/α(t)

(∫ t

t2

q(s)τα(s) ds
)1/α

.

Integrating the above inequality from t2 to t, we have

y′(t) ≤ y′(t2) – c̃
∫ t

t2

1
r1/α(u)

(∫ u

t2

q(s)τα(s) ds
)1/α

du → –∞ as t → ∞,

which is a contradiction. Hence λ = 0. By l’Hospital’s rule, we find

lim
t→∞

y(t)
t

= y′(t) = 0. (3.5)

On the other hand, it follows from the monotonicity of y′ that

y(t) = y(t1) +
∫ t

t1

y′(s) ds ≥ y(t1) + y′(t)(t – t1).

In view of (3.5), there is a t2 ≥ t1 such that

y(t1) – y′(t)t1 > 0
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for t ≥ t2. So,

y(t) > ty′(t),

which implies that

(
y(t)

t

)′
=

ty′ – y
t2 < 0.

To show case (b), it suffices to note that

y′(t) ≥ –
∫ ∞

t

1
r1/α(s)

r1/α(s)y′′(s) ds ≥ –r1/α(t)y′′(t)π (t),

in view of which

(
y′(t)
π (t)

)′
=

r1/α(t)y′′(t)π (t) + y′(t)
r1/α(t)π2(t)

≥ 0.

The proof is complete. �

Now, we can proceed to present various simple criteria for property P for (1.1).

Theorem 1 If

∫ ∞

t0

1
r1/α(t)

(∫ t

t0

q(s) ds
)1/α

dt = ∞, (3.6)

then (1.1) has property P.

Proof Assume for the sake of contradiction that y satisfies case (I) or (II) of Lemma 1
for t ≥ t1. Since y is increasing, there exists a t2 ≥ t1 such that y(t) ≥ y(t1) =: � for t ≥ t2.
Integrating (1.1) from t2 to t, we get

r(t)
(
y′′(t)

)α = r(t2)
(
y′′(t2)

)α –
∫ t

t2

q(s)yα
(
τ (s)

)

≤ r(t2)
(
y′′(t2)

)α – �α

∫ t

t2

q(s) ds. (3.7)

From (H1) and (3.6), however, we see that

∫ ∞

t0

q(s) ds = ∞. (3.8)

If we assume that y is of (I)-type, then (3.8) contradicts the positivity of r(t)(y′′(t))α .
Assume now that y satisfies case (II). Using the fact that r(t)(y′′(t))α < 0 in (3.7), we are

led to

y′′(t) ≤ –
�

r1/α(t)

(∫ t

t2

q(s) ds
)1/α

. (3.9)
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Integrating (3.9) from t2 to t, we obtain

y′(t) ≤ y′(t2) – �

∫ t

t2

1
r1/α(u)

(∫ u

t2

q(s) ds
)1/α

du,

which, in view of (3.6), contradicts the positivity of y′(t). The proof is complete. �

The next result is based on a comparison with a first-order delay inequality. This result,
in connection with the results from Sect. 3.2, can be viewed as an improved and simplified
alternative of Theorem B. In contrast to that theorem, we stress that the next theorem does
not require the existence of auxiliary functions (as in condition (2.5)) and, moreover, the
nonexistence of solutions of type (I) and (II) is ensured by means of only one condition.

Theorem 2 If

lim inf
t→∞

∫ t

τ (t)

1
r1/α(s)

(∫ s

t0

q(u)τα(u) du
)1/α

ds >
1
e

, (3.10)

then (1.1) has property P.

Proof Assume for the sake of contradiction that y satisfies case (I) or (II) of Lemma 1 for
t ≥ t1. Obviously, it is necessary for the validity of (3.10) that (3.4) holds. By Lemma 3, we
conclude that y satisfies case (II) and the asymptotic properties (a) and (b) of the Lemma
for t ≥ t2 ≥ t1. Therefore,

y
(
τ (t)

) ≥ τ (t)y′(τ (t)
)

for t ≥ t2. From (1.1), we get

–
(
r(t)

(
y′′(t)

)α)′ = q(t)yα
(
τ (t)

) ≥ q(t)τα(t)
(
y′(τ (t)

))α .

Integrating the above inequality from t2 to t and using the fact that y′ is decreasing, we
have

–r(t)
(
y′′(t)

)α ≥
∫ t

t2

q(s)τα(s)
(
y′(τ (s)

))α ds ≥ (
y′(τ (t)

))α

∫ t

t2

q(s)τα(s) ds, (3.11)

that is,

x′(t) +
1

r1/α(t)

(∫ t

t2

q(s)τα(s) ds
)1/α

x
(
τ (t)

) ≤ 0, (3.12)

where we set x(t) := y′(t) > 0. However, by [14, Theorem 2.1.1], the inequality (3.12) does
not possess a positive solution, which is a contradiction to our initial assumption. The
proof is complete. �

A principle like the one we used in the proof of Theorem 2 always requires τ (t) < t. The
results presented in the sequel, however, apply also in the case when τ (t) = t.
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Theorem 3 Assume that (3.4) holds. If

lim sup
t→∞

πα(t)
∫ t

t0

q(s)τα(s) ds > 1, (3.13)

then (1.1) has property P.

Proof Assume for the sake of contradiction that y satisfies case (I) or (II) of Lemma 1 for
t ≥ t1. At first, note that limt→∞ π (t) = 0 holds due to (H1), which together with (3.13) im-
plies (3.1). By Lemma 3, we conclude that y satisfies case (II) and the asymptotic properties
(a) and (b) of the lemma for t ≥ t2 ≥ t1.

Proceeding as in the proof of Theorem 2, we arrive at (3.11). Using the monotonicity of
r(t)(y′′(t))α and Lemma 3 (b) in (3.11), we find that

–r(t)
(
y′′(t)

)α ≥ (
y′(t)

)α
∫ t

t2

q(s)τα(s) ds ≥ –r(t)
(
y′′(t)

)α
πα(t)

∫ t

t2

q(s)τα(s) ds,

or

1 ≥ πα(t)
∫ t

t2

q(s)τα(s) ds.

However, the above inequality contradicts (3.13). The proof is complete. �

Theorem 4 Assume that (3.4) holds. If there exists a nondecreasing function ρ ∈
C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

T

(
ρ(u)

τ (u)r1/α(u)

(∫ u

t0

q(s)τα(s) ds
)1/α

–
(ρ ′(u))2

4τ ′(u)ρ(u)

)
du = ∞ (3.14)

for any T ∈ [t0,∞), then (1.1) has property P.

Proof Assume for the sake of contradiction that y satisfies case (I) or (II) of Lemma 1 for
t ≥ t1. By Lemma 3, we conclude that y satisfies case (II) and the asymptotic properties (a)
and (b) of the lemma for t ≥ t2 ≥ t1.

Let us define the Riccati-type function

w(t) := ρ(t)
y′(t)

y(τ (t))
> 0 on [t2,∞).

By differentiating w(t) and using the monotonicity of y′, we see that

w′(t) =
ρ ′(t)
ρ(t)

w(t) +
ρ(t)y′′(t)
y(τ (t))

–
ρ(t)y′(t)y′(τ (t))τ ′(t)

y2(τ (t))

≤ ρ ′(t)
ρ(t)

w(t) +
ρ(t)y′′(t)
y(τ (t))

–
τ ′(t)
ρ(t)

w2(t). (3.15)
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Integrating (1.1) from t2 to t and using the fact that y(τ (t))/τ (t) is decreasing, we get

–r(t)
(
y′′(t)

)α ≥ –r(t2)
(
y′′(t2)

)α +
∫ t

t2

q(s)yα
(
τ (s)

)
ds

≥ –r(t2)
(
y′′(t2)

)α +
(

y(τ (t))
τ (t)

)α ∫ t

t2

q(s)τα(s) ds. (3.16)

Since limt→∞ y(t)/t = 0, there is t3 > t2 such that

–r(t2)
(
y′′(t2)

)α –
(

y(τ (t))
τ (t)

)α ∫ t2

t0

q(s)τα(s) ds > 0 (3.17)

for t ≥ t3. Combining (3.16) and (3.17), we arrive at

–r(t)
(
y′′(t)

)α ≥ – r(t2)
(
y′′(t2)

)α +
(

y(τ (t))
τ (t)

)α ∫ t

t0

q(s)τα(s) ds

–
(

y(τ (t))
τ (t)

)α ∫ t2

t0

q(s)τα(s) ds

≥
(

y(τ (t))
τ (t)

)α ∫ t

t0

q(s)τα(s) ds,

or

y′′(t)
y(τ (t))

≤ –
1

r1/α(t)τ (t)

(∫ t

t0

q(s)τα(s) ds
)1/α

(3.18)

for t ≥ t3. Combining (3.18) and (3.15), we obtain

w′(t) ≤ ρ ′(t)
ρ(t)

w(t) –
ρ(t)(

∫ t
t0

q(s)τα(s) ds)1/α

r1/α(t)τ (t)
–

τ ′(t)
ρ(t)

w2(t)

= –
ρ(t)(

∫ t
t0

q(s)τα(s) ds)1/α

r1/α(t)τ (t)
–

τ ′(t)
ρ(t)

(
w(t) –

ρ ′(t)
2τ ′(t)

)2

+
(ρ ′(t))2

4ρ(t)τ ′(t)

≤ –
ρ(t)(

∫ t
t0

q(s)τα(s) ds)1/α

r1/α(t)τ (t)
+

(ρ ′(t))2

4ρ(t)τ ′(t)
.

Integrating the above inequality from t3 to t, we get

w(t) ≤ w(t3) –
∫ t

t3

(
ρ(u)(

∫ u
t0

q(s)τα(s) ds)1/α

r1/α(u)τ (u)
–

(ρ ′(u))2

4ρ(u)τ ′(u)

)
du,

a contradiction. The proof is complete. �

Letting ρ(t) = 1/π (t), the following consequence is immediate.

Corollary 1 Assume that (3.4) holds. If

lim sup
t→∞

∫ t

T

(
1

π (u)τ (u)r1/α(u)

(∫ u

t0

q(s)τα(s) ds
)1/α

–
1

4π3(u)r2/α(u)τ ′(u)

)
du = ∞

for any T ∈ [t0,∞), then (1.1) has property P.
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Theorem 5 Assume that (3.4) holds. If there exists a function δ ∈ C1([t0,∞), (0,∞)) such
that

lim sup
t→∞

{
πα(t)τα(t)

δ(t)

∫ t

T

(
δ(s)q(s) –

(δ′(s))α+1

(α + 1)α+1δα(s)πα(s)(τ ′(s))α

)
ds

}
> 1, (3.19)

for any T ∈ [t0,∞), then (1.1) has property P.

Proof Assume for the sake of contradiction that y satisfies case (I) or (II) of Lemma 1 for
t ≥ t1. By Lemma 3, we conclude that y satisfies case (II) and the asymptotic properties (a)
and (b) of the lemma for t ≥ t2 ≥ t1.

Define the Riccati-type function as

w(t) := δ(t)
(

r(t)(y′′(t))α

yα(τ (t))
+

1
πατα(t)

)
on [t2,∞). (3.20)

From Lemma 3, we have

y
(
τ (t)

) ≥ τ (t)y′(τ (t)
) ≥ τ (t)y′(t) ≥ –τ (t)π (t)r1/α(t)y′′(t), (3.21)

which implies that w ≥ 0 on [t1,∞). Differentiating (3.20) and using (1.1) and the definition
of w, we obtain

w′(t) =
δ′(t)
δ(t)

w(t) +
δ(t)(r(t)(y′′(t))α)′

yα(τ (t))
–

αr(t)(y′′(t))αy′(t)τ ′(t)
yα+1(τ (t))

+
αρ(t)

(π (t)τ (t))α+1

(
τ (t)

r1/α(t)
– τ ′(t)π (t)

)

=
δ′(t)
δ(t)

w(t) – δ(t)q(t)

–
αy′(t)τ ′(t)

δ1/α(t)(–r1/α(t)y′′(t))

(
w(t) –

δ(t)
πα(t)τα(t)

)1+1/α

+
αρ(t)

(π (t)τ (t))α+1

(
τ (t)

r1/α(t)
– τ ′(t)π (t)

)
.

Using that y′(t) ≥ –π (t)r1/α(t)y′′(t) in the above inequality, we arrive at

w′(t) ≤ δ′(t)
δ(t)

w(t) – δ(t)q(t) –
απ (t)τ ′(t)

δ1/α(t)

(
w(t) –

δ(t)
πα(t)τα(t)

)1+1/α

+
αρ(t)

(π (t)τ (t))α+1

(
τ (t)

r1/α(t)
– τ ′(t)π (t)

)
.

Then using the inequality stated in [22, Lemma 2.3], namely,

Au – B(u – C)(α+1)/α ≤ AC +
αα

(α + 1)α+1
Aα+1

Bα
, B > 0, A, C ∈R, (3.22)

with

A :=
δ′(t)
δ(t)

, B :=
απ (t)τ ′(t)

δ1/α(t)
, C :=

δ(t)
πα(t)τα(t)

, and u = w(t),
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we find that

w′(t) ≤ –δ(t)q(t) +
δ′(t)

πα(t)τα(t)
+

(δ′(t))α+1

(α + 1)α+1δα(t)πα(t)(τ ′(t))α

+
αρ(t)

(π (t)τ (t))α+1

(
τ (t)

r1/α(t)
– τ ′(t)π (t)

)

= –δ(t)q(t) +
(

δ(t)
πα(t)τα(t)

)′
+

(δ′(t))α+1

(α + 1)α+1δα(t)πα(t)(τ ′(t))α
. (3.23)

Integrating (3.23) from t2 to t, we are led to

∫ t

t2

(
δ(s)q(s) –

(δ′(s))α+1

(α + 1)α+1δα(s)πα(s)(τ ′(s))α

)
ds –

δ(t)
πα(t)τα(t)

+
δ(t2)

πα(t2)τα(t2)

≤ w(t2) – w(t).

Using (3.20) in the last inequality, we have

∫ t

t2

(
δ(s)q(s) –

(δ′(s))α+1

(α + 1)α+1δα(s)πα(s)(τ ′(s))α

)
ds

≤ δ(t2)
r(t2)(y′′(t2))α

yα(τ (t2))
– δ(t)

r(t)(y′′(t))α

yα(τ (t))
. (3.24)

On the other hand, from (3.21), it follows that

–
δ(t)

πα(t)τα(t)
≤ δ(t)

r(t)(y′′(t))α

yα(τ (t))
≤ 0.

Substituting the above estimate into (3.24), we obtain

∫ t

t2

(
δ(s)q(s) –

(δ′(s))α+1

(α + 1)α+1δα(s)πα(s)(τ ′(s))α

)
ds ≤ δ(t)

πα(t)τα(t)
. (3.25)

Multiplying (3.25) by πα(t)τα(t)/δ(t) and taking the limsup on both sides of the resulting
inequality, we arrive at contradiction to (3.19). The proof is complete. �

Finally, we turn our attention to the existing result presented in the introductory sec-
tion, namely Theorem C. By careful observation, it is easy to show that condition (2.8) is
redundant.

Theorem 6 If (2.9) holds for some k ∈ (0, 1) and for sufficiently large t3 ≥ t0, then (1.1) has
property P.

Proof Following the proof of [15, Theorem 1], we remark that (2.8) eliminates solutions of
type (I) and (2.9) those of type (II). It is enough to note that it is necessary for the validity
of (2.9) that

∫ ∞

t0

q(s)τα(s)πα(s) ds = ∞, (3.26)
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which in view of (H1) implies (3.1). By Lemma 2, solutions of type (I) do not exist.
The proof is complete. �

Remark 3 We note that in the proof of Theorem C, a weaker version of (a) of Lemma 3
was used for solutions of type (II), namely, y(t) ≥ ky′(t) for k ∈ (0, 1) and t large enough.
Assuming that condition (3.4) holds, one can easily provide a stronger version of the above
theorem with k = 1.

3.2 Convergence to zero and/or nonexistence of solutions of type (III)
Lemma 4 Let y be a solution of (1.1) satisfying case (III) of Lemma 1. If

∫ ∞

t0

q(s) ds = ∞ (3.27)

or

∫ ∞

t0

∫ ∞

t

1
r1/α(s)

(∫ ∞

s
q(u) du

)1/α

ds dt = ∞, (3.28)

then limt→∞ y(t) = 0.

Proof Pick t1 ∈ [t0,∞) such that y(τ (t)) > 0 for t ≥ t1. Since y is a positive decreasing so-
lution, there exists a finite limit limt→∞ y(t) = λ ≥ 0. Assume for the sake of contradiction
that λ > 0. Integrating (1.1) from t1 to t and taking into account that (3.27) holds, we have

r(t)
(
y′′(t)

)α = r(t1)
(
y′′(t1)

)α –
∫ t

t1

q(s)yα
(
τ (s)

)
ds,

≤ r(t1)
(
y′′(t1)

)α – λα

∫ t

t1

q(s) ds → –∞ as t → ∞,

which is a contradiction. Thus limt→∞ y(t) = 0. To show that the same conclusion holds in
the case where

∫ ∞

t0

q(s) ds < ∞,

we refer the reader to [15, Theorem 1]. The proof is complete. �

Theorem 7 Let y be an eventually positive solution of (1.1). If

lim sup
t→∞

∫ t

τ (t)
q(s)Rα

(
τ (t), τ (s)

)
ds > 1, (3.29)

then case (III) in Lemma 1 is impossible.

Proof Pick t1 ∈ [t0,∞) such that τ (t) ≥ t1 for t ≥ t1. It follows from the monotonicity of
r(t)(y′′(t))α that, for v ≥ u,

–y′(u) ≥
∫ v

u

1
r1/α(s)

r1/α(s)y′′(s) ds ≥ r1/α(v)y′′(v)
∫ v

u

ds
r1/α(s)

.
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Integrating the last inequality again from u to v ≥ u in u, we get

y(u) ≥ r1/α(v)y′′(v)
∫ v

u

∫ v

x

ds
r1/α(s)

dx =: r1/α(v)y′′(v)R(v, u). (3.30)

Integrating (1.1) from τ (t) to t and using (3.30) with u = τ (s) and v = τ (t), we get

r
(
τ (t)

)(
y′′(τ (t)

))α ≥
∫ t

τ (t)
q(s)yα

(
τ (s)

)
ds

≥ r
(
τ (t)

)(
y′′(τ (t)

))α
∫ t

τ (t)
q(s)Rα

(
τ (t), τ (s)

)
ds.

Dividing the above inequality by r(τ (t))(y′′(τ (t)))α and taking the lim sup on both
sides of the resulting inequality as t → ∞, we are led to a contradiction. The proof is
complete. �

3.3 Applications
3.3.1 Property A
Combining Theorems 1–5 with Lemma 4, one can easily provide fundamentally new cri-
teria for property A of (1.1).

Theorem 8 If (3.6) holds, then (1.1) has property A.

Proof It is enough to note that (H1) along with (3.6) implies (3.27). �

Theorem 9 If (3.10) and either (3.27) or (3.28) hold, then (1.1) has property A.

Theorem 10 If (3.4), (3.13) and either (3.27) or (3.28) hold, then (1.1) has property A.

Theorem 11 If (3.4) holds and there exists a nondecreasing function ρ ∈ C1([t0,∞), (0,∞))
such that (3.14) and either (3.27) or (3.28) hold, then (1.1) has property A.

Theorem 12 If (3.4) holds and there exists a function δ ∈ C1([t0,∞), (0,∞)) such that
(3.19) and either (3.27) or (3.28) hold, then (1.1) has property A.

3.3.2 Oscillation
We are now interested in the situation in which all solutions of Eq. (1.1) are oscillatory. To
attain this goal, we combine Theorems 1–6 with Theorem 7.

Theorem 13 Assume that all assumptions of Theorem 1 (2, 3, 4, 5, 6) and (3.29) hold.
Then (1.1) is oscillatory.

4 Examples
Example 1 Let us consider the Euler type equation

(
t2y′′(t)

)′ +
q0

t
y(λt) = 0, t ≥ 1, (Ex)

where λ ∈ (0, 1) and q0 > 0.
First, we present criteria for Property P of (Ex) following from Theorems 1–6.
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– Since (3.6) fails, Theorem 1 does not apply.
– Theorem 2 requires

q0λ ln

(
1
λ

)
>

1
e

. (4.1)

– Theorem 3 or Theorem 5 with ρ(t) = π (t)τ (t) requires

q0λ > 1. (4.2)

– Theorem 4 (Corollary 1) or Theorem 6 (Remark 3) requires

q0λ >
1
4

. (4.3)

Among conditions (4.1)–(4.3), we remark that (4.1) is more efficient for small values of λ,
while (4.3) for larger ones. Since Lemma 4 is satisfied, we conclude that (Ex) has property
A if any of conditions (4.1)–(4.3) hold. Note that Theorem C does not apply due to (2.7).

Second, we apply Theorem 7 for the nonexistence of positive decreasing solutions of
(Ex), which requires

q0 >
1

1 – λ + lnλ + 1
2 ln2 λ

. (4.4)

Finally, by Theorem 13, we conclude that (Ex) is oscillatory if any of conditions (4.1)–
(4.3) and (4.4) hold.

5 Conclusions
In the present paper, several new oscillation results for Eq. (1.1) have been presented,
which further improve, complement and simplify existing criteria introduced in the paper
as Theorems A–C.

In Sect. 3.1, we provided various criteria for the nonexistence of solutions of type (I) and
(II). In particular, Theorem 1 serves as a single condition alternative to Theorem A, while
Theorem 2 offers a single condition criterion, which is based on similar principles (com-
pared with first-order delay equations) as Theorem B, but does not require the existence
of auxiliary functions. By a simple refinement in the proof of Theorem C, we have shown
that (2.8) is unnecessary and can be removed. We have also pointed out how a stronger
version with k = 1 can be attained. Using different substitutions as in the proof of Theo-
rem C, we have presented more general results for the nonexistence of solutions of type
(I) and (II).

In Sect. 3.2, we were dealing with the asymptotic properties and nonexistence of solu-
tions of type (III) of Lemma 1. In that section, we extended (2.7) from Theorem C to be
applied on (2.10). Furthermore, we provided a new criterion for the nonexistence of such
solutions.

Finally, we have combined the results from Sects. 3.1 and 3.2 to obtain new results for
oscillation and/or property A of (1.1).
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