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Abstract
We consider the modified degenerate q-Daehee polynomials and numbers of the
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1 Introduction
Throughout this paper, Z, Q, Zp, Qp and Cp will, respectively, denote the ring of integers,
the field of rational numbers, the ring of p-adic integers, the field of p-adic rational num-
bers and the completion of algebraic closure of Qp. The p-adic norm | · |p is normalized
by |p|p = 1

p . If q ∈ Cp, we normally assume |q – 1|p < p– 1
p–1 , so that qx = exp(x log q) for

|x|p ≤ 1. The q-extension of x is defined as [x]q = 1–qx

1–q for q �= 1 and x for q = 1 (see [3–6,
12, 17, 18, 20, 21, 25, 27, 29–31, 33–35, 41, 45, 46]). Let UD(Zp) be the space of uniformly
differentiable functions on Zp. For f ∈ UD(Zp), Volkenborn integral (or p-adic bosonic
integral) on Zp is given by

I1(f ) =
∫
Zp

f (x) dμ1(x) = lim
N→∞

1
pN

pN –1∑
x=0

f (x), (1.1)

where μ1(x) = μ1(x + pN
Zp) denotes the Haar distribution defined by μ1(x + pN

Zp) = 1
pN

(see [1, 2, 8–14, 16, 19, 24, 32, 35, 37–44, 46, 47]). Then, by (1.1), we get I(f1) – I1(f ) = f ′(0),
where f1(x) = f (x + 1) and d

dx f (x)|x=0 = f ′(0).
For f ∈ UD(Zp), the p-adic q-integral on Zp is defined by Kim to be

Iq(f ) =
∫
Zp

f (x) dμq(x) = lim
N→∞

1
[pN ]q

pN –1∑
x=0

f (x)qx (1.2)

(see [12, 17–20, 25, 29, 31, 33, 34, 47]). Note that

lim
q→1

Iq(f ) = lim
N→∞

1
pN

pN –1∑
x=0

f (x) = I1(f )
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(see [6, 9, 18, 19, 21, 25, 28, 29, 32–34, 36, 38, 42, 43, 47]). Let f1(x) = f (x + 1). Then, by
(1.2), we get

qIq(f1) – Iq(f ) = q(q – 1)f (0) +
q(q – 1)

log q
f ′(0), (1.3)

where f ′(0) = d
dx f (x)|x=0 (see [6, 9, 18, 19, 21, 25, 28, 29, 32–34, 36, 38, 42, 43, 47]).

Carlitz considered q-Bernoulli numbers which are recursively given by

β0,q = 1, q(qβq + 1)n – βn,q =

⎧⎨
⎩

1, if n = 1,

0, if n > 1,

with the usual convention about replacing βn
q by βn,q (see [3–5]). He also defined q-

Bernoulli polynomials as

βn,q(x) =
n∑

l=0

(
n
l

)
[x]n–l

q qlxβl,q, (n ≥ 0) (see [3])

(see [3–5]). In [19], Kim proved that the Carlitz q-Bernoulli polynomials are represented
by p-adic q-integral on Zp as follows:

∫
Zp

[x + y]n
q dmuq(y) = βn,q(x) (n ≥ 0). (1.4)

In [17], Kim considered the modified q-Bernoulli polynomials which are different from
Carlitz to be

Bn,q(x) =
∫
Zp

[x + y]n
q dmu1(y) (n ≥ 0).

When x = 0, Bn,q = Bn,q(0) are called the modified q-Bernoulli numbers (see [17, 18]). Thus,
we note that

B0,q = 1, (qBq + 1)n – Bn,q =

⎧⎨
⎩

log q
q–1 , if n = 1,

0, if n > 1,

with the usual convention about replacing Bn
q by Bn,q (see [17, 18, 21, 25, 34]).

In [33, 35, 46], the authors studied the q-Daehee polynomials which are defined by the
generating function to be

∫
Zp

(1 + t)x+y dμq(y) =
q – 1 + q–1

log q log(1 + t)
qt + q – 1

(1 + t)x =
∞∑

n=0

Dn,q(x)
tn

n!
. (1.5)

In [12], the authors studied the degenerate λ-q-Daehee polynomials as follows:

q – 1 + q–1
log q λ log(1 + 1

u log(1 + ut))

q(1 + 1
u log(1 + ut))λ – 1

(
1 +

1
u

log(1 + ut)
)x
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=
∫
Zp

(
1 +

1
u

log(1 + ut)
)λy+x

dμq(y)

=
∞∑

n=0

Dn,λ,q(x|u)
tn

n!
. (1.6)

Like this idea of the Carlitz q-Bernoulli polynomials (1.4), we will define the modified q-
Daehee polynomials of the second kind which are different from the modified q-Daehee
numbers and polynomials in [31].

As is well known, the Stirling number of the first kind is defined by

(x)n = x(x – 1) · · · (x – n + 1) =
n∑

l=0

S1(n, l)xl, (1.7)

and the Stirling number of the second kind is given by the generating function,

(
et – 1

)m = m!
∞∑

l=m

S2(l, m)
tl

l!
. (1.8)

We also have

(
log(1 + t)

)m = m!
∞∑

n=m
S1(n, m)

tn

n!
(1.9)

and

xn =
n∑

k=0

S2(n, k)(x)k (1.10)

(see [7, 14, 15, 22, 23, 26, 28, 48]).
In this paper, we consider the modified q-Daehee polynomials of the second kind and

investigate their properties. Furthermore, we consider the modified degenerate q-Daehee
polynomials of the second kind and investigate their properties.

2 The modified q-Daehee polynomials and numbers of the second kind
Let p be a fixed prime number. We assume that t ∈ Cp with |t|p < p– 1

p–1 and q ∈ Cp with
|1 – q|p < p– 1

p–1 .
The modified q-Daehee polynomials of the second kind are defined by

∫
Zp

(1 + t)[x+y]q dμ0(y) =
∞∑

n=0

D∗
n,q(x)

tn

n!
. (2.1)

When x = 0, D∗
n,q = D∗

n,q(0) are called the nth modified q-Daehee numbers of the second
kind. By using the binomial theorem in (2.1), we observe that

∫
Zp

(1 + t)[x+y]q dμ0(y) =
∞∑

n=0

∫
Zp

(
[x + y]q

)
n dμ0(y)

tn

n!
. (2.2)
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Note that the modified q-Daehee polynomials were defined by Lim in [31] as follows:

Dn(x|q) =
∫
Zp

q–y(x + y)n dμq(y). (2.3)

From (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1 For n ≥ 0, we have

D∗
n,q(x) =

∫
Zp

(
[x + y]q

)
n dμ0(y). (2.4)

From (2.1), we derive that

∫
Zp

(1 + t)[x+y]q dμ0(y) =
∫
Zp

e[x+y]q log(1+t) dμ0(y)

=
∞∑

m=0

∫
Zp

[x + y]m
q dμ0(y)

1
m!

(
log(1 + t)

)m. (2.5)

By using (1.9) and (1.10) in Eq. (2.4), we have

∞∑
m=0

∫
Zp

[x + y]m
q dμ0(y)

1
m!

(
log(1 + t)

)m

=
∞∑

m=0

∫
Zp

m∑
k=0

S2(m, k)
(
[x + y]q

)
k dμ0(y)

∞∑
n=m

S1(n, m)
tn

n!

=
∞∑

n=0

( n∑
m=0

m∑
k=0

S2(m, k)S1(n, m)
∫
Zp

(
[x + y]q

)
k dμ0(y)

)
tn

n!

=
∞∑

n=0

( n∑
m=0

m∑
k=0

S2(m, k)S1(n, m)D∗
k,q(x)

)
tn

n!
. (2.6)

Thus, by (2.1), (2.5), and (2.6), we obtain the following theorem.

Theorem 2.2 For n ≥ 0, we have

D∗
n,q(x) =

n∑
m=0

m∑
k=0

S2(m, k)S1(n, m)D∗
k,q(x). (2.7)

From (2.1), by replacing t by et – 1 and using (1.8), we get

∫
Zp

e[x+y]qt dμ0(y) =
∞∑

m=0

D∗
m,q(x)

(et – 1)m

m!

=
∞∑

m=0

D∗
m,q(x)

∞∑
n=m

S2(n, m)
tn

n!

=
∞∑

n=0

( n∑
m=0

D∗
m,q(x)S2(n, m)

)
tn

n!
, (2.8)
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and by using (1.10) and (2.3), we have
∫
Zp

e[x+y]qt dμ0(y) =
∫
Zp

∞∑
n=0

[x + y]n
q

tn

n!
dμ0(y)

=
∞∑

n=0

∫
Zp

[x + y]n
q dμ0(y)

tn

n!

=
∞∑

n=0

∫
Zp

(
[x]q + qx[y]q

)n dμ0(y)
tn

n!

=
∞∑

n=0

( n∑
k=0

(
n
k

)
[x]n–k

q qkx
∫
Zp

[y]k
q dμ0(y)

)
tn

n!

=
∞∑

n=0

( n∑
k=0

(
n
k

)
[x]n–k

q qkx
∫
Zp

k∑
l=0

S2(k, l)
(
[y]q

)
l dμ0(y)

)
tn

n!

=
∞∑

n=0

( n∑
k=0

k∑
l=0

(
n
k

)
[x]n–k

q qkxS2(k, l)D∗
l,q

)
tn

n!
. (2.9)

From (2.8) and (2.9), we obtain the following theorem.

Theorem 2.3 For n ≥ 0, we have

n∑
m=0

D∗
m,q(x)S2(n, m) =

n∑
k=0

k∑
l=0

(
n
k

)
[x]n–k

q qkxS2(k, l)D∗
l,q. (2.10)

3 The modified degenerate q-Daehee polynomials of the second kind
Let p be a fixed prime number. We assume that t ∈Cp with |t|p < p– 1

p–1 .
The modified degenerate q-Daehee polynomials of the second kind are defined by

∫
Zp

(
1 +

1
λ

log(1 + λt)
)[x+y]q

dμ0(y) =
∞∑

n=0

D∗
n,λ,q(x)

tn

n!
. (3.1)

When x = 0, D∗
n,λ,q = D∗

n,λ,q(0) are called the modified degenerate q-Daehee numbers of the
second kind.

We note that the reason for calling D∗
n,λ,q the modified degenerate q-Daehee polyno-

mials of the second kind is to distinguish it from the modified q-Daehee numbers and
polynomials in [31]. From (3.1), we observe that

∫
Zp

(
1 +

1
λ

log(1 + λt)
)[x+y]q

dμ0(y) =
∞∑

m=0

∫
Zp

(
[x + y]q

m

)
dμ0(y)

(
1
λ

log(1 + λt)
)m

=
∞∑

m=0

∫
Zp

(
[x + y]q

)
m dμ0(y)λ–m 1

m!
(
log(1 + λt)

)m

=
∞∑

m=0

(
D∗

m,q(x)λ–m)( ∞∑
n=m

λnS1(n, m)
tn

n!

)

=
∞∑

n=0

( n∑
m=0

D∗
m,q(x)λn–mS1(n, m)

)
tn

n!
. (3.2)

From (3.1) and (3.2), we obtain the following theorem.
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Theorem 3.1 For n ≥ 0, we have

D∗
n,λ,q(x) =

n∑
m=0

D∗
m,q(x)λn–mS1(n, m). (3.3)

From (3.1), by replacing t by 1
λ

(eλt – 1), we derive

∫
Zp

(1 + t)[x+y]q dμ0(y) =
∞∑

m=0

D∗
m,λ,q(x)

( 1
λ

(eλt – 1))m

m!

=
∞∑

m=0

D∗
m,λ,q(x)λ–m

∞∑
n=m

S2(n, m)
λntn

n!

=
∞∑

n=0

n∑
m=0

D∗
m,λ,q(x)λn–mS2(n, m)

tn

n!
. (3.4)

From (3.4) and (2.1), we obtain the following theorem.

Theorem 3.2 For n ≥ 0, we have

D∗
n,q(x) =

n∑
m=0

D∗
m,λ,q(x)λn–mS2(n, m). (3.5)

From (3.1), we observe that

(
1 +

1
λ

log(1 + λt)
)[x+y]q

= e[x+y]q log(1+ 1
λ

log(1+λt))

=
∞∑

m=0

[x + y]m
q

(
log

(
1 +

1
λ

log(1 + λt)
))m 1

m!

=
∞∑

m=0

[x + y]m
q

∞∑
l=m

S1(l, m)
( 1
λ

log(1 + λt))l

l!

=
∞∑
l=0

l∑
m=0

[x + y]m
q S1(l, m)λ–l

∞∑
n=l

S1(n, l)λn tn

n!

=
∞∑

n=0

( n∑
l=0

l∑
m=0

[x + y]m
q S1(l, m)λn–lS1(n, l)

)
tn

n!
. (3.6)

From (3.7), we get

∫
Zp

(
1 +

1
λ

log(1 + λt)
)[x+y]q

dμ0(y)

=
∞∑

n=0

( n∑
l=0

l∑
m=0

m∑
k=0

S2(m, k)S1(l, m)λn–lS1(n, l)
∫
Zp

(
[x + y]q

)
k dμ0(y)

)
tn

n!

=
∞∑

n=0

( n∑
l=0

l∑
m=0

m∑
k=0

λn–lS1(l, m)S1(n, l)S2(m, k)D∗
k,q(x)

)
tn

n!
. (3.7)

From (3.7) and (3.1), we obtain the following theorem.
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Theorem 3.3 For n ≥ 0, we have

D∗
n,λ,q(x) =

n∑
l=0

l∑
m=0

m∑
k=0

λn–lS1(l, m)S1(n, l)S2(m, k)D∗
k,q(x). (3.8)

4 Conclusion
Many authors studied the q-Daehee polynomials (1.5), the degenerate λ-q-Daehee poly-
nomials of the second kind in [12, 33, 46]. In this paper, we defined the modified q-Daehee
polynomials of the second kind (2.1), which are different from the q-Daehee polynomials
(1.5), and the modified degenerate q-Daehee polynomials of the second kind (3.1), which
are different from the modified q-Daehee numbers and polynomials in [31]. We obtained
the interesting results of Theorems 2.1, 2.2, and 2.3, which are some identity properties
related with the modified degenerate q-Daehee polynomials of the second kind (3.1) and
also we obtained the results of Theorems 3.1, 3.2, and 3.3, which are some identities related
with the modified q-Daehee polynomials of the second kind.
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