RESEARCH

CrossMark

A note on modified degenerate q-Daehee polynomials and numbers

Open Access

Jeong Gon Lee¹, Won Joo Kim², Lee-Chae Jang^{3*} and Byung Moon Kim⁴

*Correspondence: Lcjang@konkuk.ac.ki ³Graduate School of Education, Konkuk University, Seoul, Republic of Korea Full list of author information is available at the end of the article

Abstract

We consider the modified degenerate *q*-Daehee polynomials and numbers of the second kind which can be represented as the *p*-adic *q*-integral. Furthermore, we investigate some properties of those polynomials and numbers.

Keywords: Modified q-Daehee polynomials and numbers; Modified degenerate *q*-Daehee polynomials and numbers

1 Introduction

Throughout this paper, \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_p , \mathbb{Q}_p and \mathbb{C}_p will, respectively, denote the ring of integers, the field of rational numbers, the ring of *p*-adic integers, the field of *p*-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p . The *p*-adic norm $|\cdot|_p$ is normalized by $|p|_p = \frac{1}{p}$. If $q \in \mathbb{C}_p$, we normally assume $|q-1|_p < p^{-\frac{1}{p-1}}$, so that $q^x = \exp(x \log q)$ for $|x|_p \le 1$. The *q*-extension of *x* is defined as $[x]_q = \frac{1-q^x}{1-q}$ for $q \ne 1$ and *x* for q = 1 (see [3–6, 12, 17, 18, 20, 21, 25, 27, 29–31, 33–35, 41, 45, 46]). Let $UD(\mathbb{Z}_{\nu})$ be the space of uniformly differentiable functions on \mathbb{Z}_p . For $f \in UD(\mathbb{Z}_p)$, Volkenborn integral (or *p*-adic bosonic integral) on \mathbb{Z}_p is given by

$$I_1(f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_1(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N - 1} f(x), \tag{1.1}$$

where $\mu_1(x) = \mu_1(x + p^N \mathbb{Z}_p)$ denotes the Haar distribution defined by $\mu_1(x + p^N \mathbb{Z}_p) = \frac{1}{n^N}$ (see [1, 2, 8–14, 16, 19, 24, 32, 35, 37–44, 46, 47]). Then, by (1.1), we get $I(f_1) - I_1(f) = f'(0)$, where $f_1(x) = f(x+1)$ and $\frac{d}{dx}f(x)|_{x=0} = f'(0)$.

For $f \in UD(\mathbb{Z}_p)$, the *p*-adic *q*-integral on \mathbb{Z}_p is defined by Kim to be

$$I_q(f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x) q^x \tag{1.2}$$

(see [12, 17-20, 25, 29, 31, 33, 34, 47]). Note that

$$\lim_{q \to 1} I_q(f) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^{N-1}} f(x) = I_1(f)$$

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

(see [6, 9, 18, 19, 21, 25, 28, 29, 32–34, 36, 38, 42, 43, 47]). Let $f_1(x) = f(x + 1)$. Then, by (1.2), we get

$$qI_q(f_1) - I_q(f) = q(q-1)f(0) + \frac{q(q-1)}{\log q}f'(0),$$
(1.3)

where $f'(0) = \frac{d}{dx}f(x)|_{x=0}$ (see [6, 9, 18, 19, 21, 25, 28, 29, 32–34, 36, 38, 42, 43, 47]).

Carlitz considered *q*-Bernoulli numbers which are recursively given by

$$\beta_{0,q} = 1, \qquad q(q\beta_q + 1)^n - \beta_{n,q} = \begin{cases} 1, & \text{if } n = 1, \\ 0, & \text{if } n > 1, \end{cases}$$

with the usual convention about replacing β_q^n by $\beta_{n,q}$ (see [3–5]). He also defined *q*-Bernoulli polynomials as

$$\beta_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} [x]_{q}^{n-l} q^{lx} \beta_{l,q}, \quad (n \ge 0) \quad (\text{see } [3])$$

(see [3–5]). In [19], Kim proved that the Carlitz *q*-Bernoulli polynomials are represented by *p*-adic *q*-integral on \mathbb{Z}_p as follows:

$$\int_{\mathbb{Z}_p} [x+y]_q^n \, dm u_q(y) = \beta_{n,q}(x) \quad (n \ge 0).$$
(1.4)

In [17], Kim considered the modified *q*-Bernoulli polynomials which are different from Carlitz to be

$$B_{n,q}(x) = \int_{\mathbb{Z}_p} [x+y]_q^n dm u_1(y) \quad (n \ge 0).$$

When x = 0, $B_{n,q} = B_{n,q}(0)$ are called the modified *q*-Bernoulli numbers (see [17, 18]). Thus, we note that

$$B_{0,q} = 1, \qquad (qB_q + 1)^n - B_{n,q} = \begin{cases} \frac{\log q}{q-1}, & \text{if } n = 1, \\ 0, & \text{if } n > 1, \end{cases}$$

with the usual convention about replacing B_q^n by $B_{n,q}$ (see [17, 18, 21, 25, 34]).

In [33, 35, 46], the authors studied the *q*-Daehee polynomials which are defined by the generating function to be

$$\int_{\mathbb{Z}_p} (1+t)^{x+y} d\mu_q(y) = \frac{q-1 + \frac{q-1}{\log q} \log(1+t)}{qt+q-1} (1+t)^x = \sum_{n=0}^{\infty} D_{n,q}(x) \frac{t^n}{n!}.$$
(1.5)

In [12], the authors studied the degenerate λ -*q*-Daehee polynomials as follows:

$$\frac{q-1+\frac{q-1}{\log q}\lambda\log(1+\frac{1}{u}\log(1+ut))}{q(1+\frac{1}{u}\log(1+ut))^{\lambda}-1}\left(1+\frac{1}{u}\log(1+ut)\right)^{x}$$

$$= \int_{\mathbb{Z}_p} \left(1 + \frac{1}{u} \log(1 + ut) \right)^{\lambda y + x} d\mu_q(y)$$
$$= \sum_{n=0}^{\infty} D_{n,\lambda,q}(x|u) \frac{t^n}{n!}.$$
(1.6)

Like this idea of the Carlitz *q*-Bernoulli polynomials (1.4), we will define the modified *q*-Daehee polynomials of the second kind which are different from the modified *q*-Daehee numbers and polynomials in [31].

As is well known, the Stirling number of the first kind is defined by

$$(x)_n = x(x-1)\cdots(x-n+1) = \sum_{l=0}^n S_1(n,l)x^l,$$
(1.7)

and the Stirling number of the second kind is given by the generating function,

$$(e^{t}-1)^{m} = m! \sum_{l=m}^{\infty} S_{2}(l,m) \frac{t^{l}}{l!}.$$
(1.8)

We also have

$$\left(\log(1+t)\right)^{m} = m! \sum_{n=m}^{\infty} S_{1}(n,m) \frac{t^{n}}{n!}$$
(1.9)

and

$$x^{n} = \sum_{k=0}^{n} S_{2}(n,k)(x)_{k}$$
(1.10)

(see [7, 14, 15, 22, 23, 26, 28, 48]).

In this paper, we consider the modified q-Daehee polynomials of the second kind and investigate their properties. Furthermore, we consider the modified degenerate q-Daehee polynomials of the second kind and investigate their properties.

2 The modified q-Daehee polynomials and numbers of the second kind

Let *p* be a fixed prime number. We assume that $t \in \mathbb{C}_p$ with $|t|_p < p^{-\frac{1}{p-1}}$ and $q \in \mathbb{C}_p$ with $|1-q|_p < p^{-\frac{1}{p-1}}$.

The modified *q*-Daehee polynomials of the second kind are defined by

$$\int_{\mathbb{Z}_p} (1+t)^{[x+y]_q} d\mu_0(y) = \sum_{n=0}^{\infty} D_{n,q}^*(x) \frac{t^n}{n!}.$$
(2.1)

When x = 0, $D_{n,q}^* = D_{n,q}^*(0)$ are called the *n*th modified *q*-Daehee numbers of the second kind. By using the binomial theorem in (2.1), we observe that

$$\int_{\mathbb{Z}_p} (1+t)^{[x+y]_q} d\mu_0(y) = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left([x+y]_q \right)_n d\mu_0(y) \frac{t^n}{n!}.$$
(2.2)

Note that the modified q-Daehee polynomials were defined by Lim in [31] as follows:

$$D_n(x|q) = \int_{\mathbb{Z}_p} q^{-y} (x+y)_n \, d\mu_q(y). \tag{2.3}$$

From (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1 *For* $n \ge 0$ *, we have*

$$D_{n,q}^{*}(x) = \int_{\mathbb{Z}_p} \left([x+y]_q \right)_n d\mu_0(y).$$
(2.4)

From (2.1), we derive that

$$\begin{split} \int_{\mathbb{Z}_p} (1+t)^{[x+y]_q} d\mu_0(y) &= \int_{\mathbb{Z}_p} e^{[x+y]_q \log(1+t)} d\mu_0(y) \\ &= \sum_{m=0}^{\infty} \int_{\mathbb{Z}_p} [x+y]_q^m d\mu_0(y) \frac{1}{m!} (\log(1+t))^m. \end{split}$$
(2.5)

By using (1.9) and (1.10) in Eq. (2.4), we have

$$\sum_{m=0}^{\infty} \int_{\mathbb{Z}_p} [x+y]_q^m d\mu_0(y) \frac{1}{m!} (\log(1+t))^m$$

$$= \sum_{m=0}^{\infty} \int_{\mathbb{Z}_p} \sum_{k=0}^m S_2(m,k) ([x+y]_q)_k d\mu_0(y) \sum_{n=m}^{\infty} S_1(n,m) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{m=0}^n \sum_{k=0}^m S_2(m,k) S_1(n,m) \int_{\mathbb{Z}_p} ([x+y]_q)_k d\mu_0(y) \right) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{m=0}^n \sum_{k=0}^m S_2(m,k) S_1(n,m) D_{k,q}^*(x) \right) \frac{t^n}{n!}.$$
(2.6)

Thus, by (2.1), (2.5), and (2.6), we obtain the following theorem.

Theorem 2.2 *For* $n \ge 0$ *, we have*

$$D_{n,q}^{*}(x) = \sum_{m=0}^{n} \sum_{k=0}^{m} S_{2}(m,k) S_{1}(n,m) D_{k,q}^{*}(x).$$
(2.7)

From (2.1), by replacing t by $e^t - 1$ and using (1.8), we get

$$\begin{split} \int_{\mathbb{Z}_p} e^{[x+y]_q t} d\mu_0(y) &= \sum_{m=0}^{\infty} D_{m,q}^*(x) \frac{(e^t - 1)^m}{m!} \\ &= \sum_{m=0}^{\infty} D_{m,q}^*(x) \sum_{n=m}^{\infty} S_2(n,m) \frac{t^n}{n!} \\ &= \sum_{n=0}^{\infty} \left(\sum_{m=0}^n D_{m,q}^*(x) S_2(n,m) \right) \frac{t^n}{n!}, \end{split}$$
(2.8)

and by using (1.10) and (2.3), we have

$$\begin{split} \int_{\mathbb{Z}_{p}} e^{[x+y]_{q}t} d\mu_{0}(y) &= \int_{\mathbb{Z}_{p}} \sum_{n=0}^{\infty} [x+y]_{q}^{n} \frac{t^{n}}{n!} d\mu_{0}(y) \\ &= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} [x+y]_{q}^{n} d\mu_{0}(y) \frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} ([x]_{q} + q^{x}[y]_{q})^{n} d\mu_{0}(y) \frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} [x]_{q}^{n-k} q^{kx} \int_{\mathbb{Z}_{p}} [y]_{q}^{k} d\mu_{0}(y) \right) \frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} [x]_{q}^{n-k} q^{kx} \int_{\mathbb{Z}_{p}} \sum_{l=0}^{k} S_{2}(k,l) ([y]_{q})_{l} d\mu_{0}(y) \right) \frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{k} [x]_{q}^{n-k} q^{kx} S_{2}(k,l) D_{l,q}^{*} \right) \frac{t^{n}}{n!}. \end{split}$$
(2.9)

From (2.8) and (2.9), we obtain the following theorem.

Theorem 2.3 *For* $n \ge 0$ *, we have*

$$\sum_{m=0}^{n} D_{m,q}^{*}(x) S_{2}(n,m) = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{k} [x]_{q}^{n-k} q^{kx} S_{2}(k,l) D_{l,q}^{*}.$$
(2.10)

3 The modified degenerate q-Daehee polynomials of the second kind

Let *p* be a fixed prime number. We assume that $t \in \mathbb{C}_p$ with $|t|_p < p^{-\frac{1}{p-1}}$.

The modified degenerate q-Daehee polynomials of the second kind are defined by

$$\int_{\mathbb{Z}_p} \left(1 + \frac{1}{\lambda} \log(1 + \lambda t) \right)^{[x+y]_q} d\mu_0(y) = \sum_{n=0}^{\infty} D^*_{n,\lambda,q}(x) \frac{t^n}{n!}.$$
(3.1)

When x = 0, $D_{n,\lambda,q}^* = D_{n,\lambda,q}^*(0)$ are called the modified degenerate *q*-Daehee numbers of the second kind.

We note that the reason for calling $D^*_{n,\lambda,q}$ the modified degenerate *q*-Daehee polynomials of the second kind is to distinguish it from the modified *q*-Daehee numbers and polynomials in [31]. From (3.1), we observe that

$$\int_{\mathbb{Z}_{p}} \left(1 + \frac{1}{\lambda} \log(1 + \lambda t)\right)^{[x+y]_{q}} d\mu_{0}(y) = \sum_{m=0}^{\infty} \int_{\mathbb{Z}_{p}} \left([x+y]_{q}\right) d\mu_{0}(y) \left(\frac{1}{\lambda} \log(1 + \lambda t)\right)^{m}$$
$$= \sum_{m=0}^{\infty} \int_{\mathbb{Z}_{p}} \left([x+y]_{q}\right)_{m} d\mu_{0}(y) \lambda^{-m} \frac{1}{m!} \left(\log(1 + \lambda t)\right)^{m}$$
$$= \sum_{m=0}^{\infty} \left(D_{m,q}^{*}(x) \lambda^{-m}\right) \left(\sum_{n=m}^{\infty} \lambda^{n} S_{1}(n,m) \frac{t^{n}}{n!}\right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} D_{m,q}^{*}(x) \lambda^{n-m} S_{1}(n,m)\right) \frac{t^{n}}{n!}.$$
(3.2)

From (3.1) and (3.2), we obtain the following theorem.

Theorem 3.1 *For* $n \ge 0$ *, we have*

$$D_{n,\lambda,q}^{*}(x) = \sum_{m=0}^{n} D_{m,q}^{*}(x)\lambda^{n-m}S_{1}(n,m).$$
(3.3)

From (3.1), by replacing *t* by $\frac{1}{\lambda}(e^{\lambda t} - 1)$, we derive

$$\int_{\mathbb{Z}_p} (1+t)^{[x+y]_q} d\mu_0(y) = \sum_{m=0}^{\infty} D^*_{m,\lambda,q}(x) \frac{(\frac{1}{\lambda}(e^{\lambda t}-1))^m}{m!}$$
$$= \sum_{m=0}^{\infty} D^*_{m,\lambda,q}(x) \lambda^{-m} \sum_{n=m}^{\infty} S_2(n,m) \frac{\lambda^n t^n}{n!}$$
$$= \sum_{n=0}^{\infty} \sum_{m=0}^n D^*_{m,\lambda,q}(x) \lambda^{n-m} S_2(n,m) \frac{t^n}{n!}.$$
(3.4)

From (3.4) and (2.1), we obtain the following theorem.

Theorem 3.2 For $n \ge 0$, we have

$$D_{n,q}^{*}(x) = \sum_{m=0}^{n} D_{m,\lambda,q}^{*}(x)\lambda^{n-m}S_{2}(n,m).$$
(3.5)

From (3.1), we observe that

$$\left(1+\frac{1}{\lambda}\log(1+\lambda t)\right)^{[x+y]_{q}} = e^{[x+y]_{q}\log(1+\frac{1}{\lambda}\log(1+\lambda t))}$$

$$= \sum_{m=0}^{\infty} [x+y]_{q}^{m} \left(\log\left(1+\frac{1}{\lambda}\log(1+\lambda t)\right)\right)^{m} \frac{1}{m!}$$

$$= \sum_{m=0}^{\infty} [x+y]_{q}^{m} \sum_{l=m}^{\infty} S_{1}(l,m) \frac{(\frac{1}{\lambda}\log(1+\lambda t))^{l}}{l!}$$

$$= \sum_{l=0}^{\infty} \sum_{m=0}^{l} [x+y]_{q}^{m} S_{1}(l,m) \lambda^{-l} \sum_{n=l}^{\infty} S_{1}(n,l) \lambda^{n} \frac{t^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \sum_{m=0}^{l} [x+y]_{q}^{m} S_{1}(l,m) \lambda^{n-l} S_{1}(n,l)\right) \frac{t^{n}}{n!}.$$
(3.6)

From (3.7), we get

$$\int_{\mathbb{Z}_p} \left(1 + \frac{1}{\lambda} \log(1 + \lambda t) \right)^{[x+y]_q} d\mu_0(y)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{l=0}^n \sum_{m=0}^l \sum_{k=0}^m S_2(m,k) S_1(l,m) \lambda^{n-l} S_1(n,l) \int_{\mathbb{Z}_p} \left([x+y]_q \right)_k d\mu_0(y) \right) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{l=0}^n \sum_{m=0}^l \sum_{k=0}^m \lambda^{n-l} S_1(l,m) S_1(n,l) S_2(m,k) D_{k,q}^*(x) \right) \frac{t^n}{n!}.$$
(3.7)

From (3.7) and (3.1), we obtain the following theorem.

Theorem 3.3 *For* $n \ge 0$ *, we have*

$$D_{n,\lambda,q}^{*}(x) = \sum_{l=0}^{n} \sum_{m=0}^{l} \sum_{k=0}^{m} \lambda^{n-l} S_{1}(l,m) S_{1}(n,l) S_{2}(m,k) D_{k,q}^{*}(x).$$
(3.8)

4 Conclusion

Many authors studied the *q*-Daehee polynomials (1.5), the degenerate λ -*q*-Daehee polynomials of the second kind in [12, 33, 46]. In this paper, we defined the modified *q*-Daehee polynomials of the second kind (2.1), which are different from the *q*-Daehee polynomials (1.5), and the modified degenerate *q*-Daehee polynomials of the second kind (3.1), which are different from the modified *q*-Daehee numbers and polynomials in [31]. We obtained the interesting results of Theorems 2.1, 2.2, and 2.3, which are some identity properties related with the modified degenerate *q*-Daehee polynomials of the second kind (3.1) and also we obtained the results of Theorems 3.1, 3.2, and 3.3, which are some identities related with the modified *q*-Daehee polynomials of the second kind (3.1) and also we obtained the results of Theorems 3.1, 3.2, and 3.3, which are some identities related with the modified *q*-Daehee polynomials of the second kind (3.1) and also we obtained the results of Theorems 3.1, 3.2, and 3.3, which are some identities related with the modified *q*-Daehee polynomials of the second kind.

Funding

This paper was supported by Wonkwang University in 2017.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details

¹ Division of Applied Mathematics, Nanoscale Science and Technology Institute, Wonkwang University, Iksan, Republic of Korea. ²Department of Applied Mathematics, Kyunghee University, Seoul, Republic of Korea. ³Graduate School of Education, Konkuk University, Seoul, Republic of Korea. ⁴Department of Mechanical System Engineering, Dongguk University, Gyeongju, Republic of Korea.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 September 2018 Accepted: 15 January 2019 Published online: 25 January 2019

References

- 1. Araci, S., Acikgoz, M.: A note on the Frobenius–Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(3), 399–406 (2012)
- Bayad, A., Chikhi, J.: Apostol–Euler polynomials and asymptotics for negative binomial reciprocals. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 33–37 (2014)
- 3. Carlitz, L.: *q*-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. **76**, 332–350 (1954)
- 4. Carlitz, L.: *q*-Bernoulli numbers and polynomials. Duke Math. J. 25, 987–1000 (1958)
- 5. Carlitz, L.: Expansions of *q*-Bernoulli numbers. Duke Math. J. 25, 355–364 (1958)
- Dolgy, D.V., Jang, G.-W., Kwon, H.-I., Kim, T.: A note on Carlitz's type q-Changhee numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 451–459 (2017)
- Dolgy, D.V., Kim, T.: Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials. Proc. Jangjeon Math. Soc. 21(2), 309–317 (2018)
- 8. El-Desouky, B.S., Mustafa, A.: New results on higher-order Daehee and Bernoulli numbers and polynomials. Adv. Differ. Equ. 2016, 32 (2016)
- Jang, G.-W., Kim, T.: Revisit of identities for Daehee numbers arising from nonlinear differential equations. Proc. Jangjeon Math. Soc. 20(2), 163–177 (2017)
- Jang, G.W., Kim, D.S., Kim, T.: Degenerate Changhee numbers and polynomials of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 609–624 (2017)
- 11. Khan, W.A., Nisar, K.S., Duran, U., Acikgoz, M., Araci, S.: Multifarious implicit summation formulae of Hermite-based poly-Daehee polynomials. Proc. Jangjeon Math. Soc. **21**(3), 305–310 (2018)
- 12. Kim, B.M., Yun, S.J., Park, J.-W.: On a degenerate λ -q-Daehee polynomials. J. Nonlinear Sci. Appl. 9, 4607–4616 (2016)
- Kim, D.S., Kim, T.: A note on degenerate Eulerian numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 431–440 (2017)
- 14. Kim, D.S., Kim, T.: A new approach to Catalan numbers using differential equations. Russ. J. Math. Phys. 24(4), 465–475 (2018)

- Kim, D.S., Kim, T.: Some *p*-adic integrals on Z_p associated with trigonometric functions. Russ. J. Math. Phys. 25(3), 300–308 (2018)
- Kim, D.S., Kim, T., Kwon, H.-I., Jang, G.-W.: Degenerate Daehee polynomials of the second kind. Proc. Jangjeon Math. Soc. 21(1), 83–97 (2018)
- 17. Kim, T.: On explicit formulas of *p*-adic *q L*-functions. Kyushu J. Math. **48**(1), 73–86 (1994)
- 18. Kim, T.: On *p*-adic *q*-Bernoulli numbers. J. Korean Math. Soc. **37**(1), 21–30 (2000)
- 19. Kim, T.: q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288–299 (2002)
- 20. Kim, T.: An invariant *p*-adic *q*-integral on \mathbb{Z}_p . Appl. Math. Lett. **21**(2), 105–108 (2008)
- 21. Kim, T.: On degenerate q -Bernoulli polynomials. Bull. Korean Math. Soc. 53(4), 1149–1156 (2016)
- Kim, T.: λ-Analogue of Stirling numbers of the first kind. Adv. Stud. Contemp. Math. (Kyungshang) 27(3), 423–429 (2017)
- Kim, T.: A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 20(3), 319–331 (2017)
- Kim, T.: Degenerate Cauchy numbers and polynomials of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 441–449 (2018)
- 25. Kim, T., Jang, G.-W.: Higher-order degenerate *q*-Bernoulli polynomials. Proc. Jangjeon Math. Soc. **20**(1), 51–60 (2017)
- Kim, T., Jang, G.W.: A note on degenerate gamma function and degenerate Stirling number of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 28(2), 207–214 (2018)
- Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24(2), 241–248 (2017)
- Kim, T., Kim, D.S.: Identities for degenerate Bernoulli polynomials and Korobov polynomials. Sci. China Math. (2018). http://engine.scichina.com/publisher/scp/journal/SCM/doi/10.1007/s11425-018-9338-5?slug=abstract. https://doi.org/10.1007/s11425-018-9338-5
- Kim, T., Simsek, Y.: Analytic continuation of the multiple Daehee q I-functions associated with Daehee numbers. Russ. J. Math. Phys. 15(1), 58–65 (2008)
- Kim, T., Yao, Y., Kim, D.S., Jang, G.-W.: Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 25(1), 44–58 (2018)
- 31. Lim, D.: Modified *q*-Daehee numbers and polynomials. J. Comput. Anal. Appl. **21**(2), 324–330 (2016)
- Liu, C., Wuyungaowa: Application of probabilistic method on Daehee sequences. Eur. J. Pure Appl. Math. 11(1), 69–78 (2018)
- Moon, E.-J., Park, J.-W., Rim, S.-H.: A note on the generalized q-Daehee numbers of higher order. Proc. Jangjeon Math. Soc. 17(4), 557–565 (2014)
- Ozden, H., Cangul, I.N., Simsek, Y.: Remarks on q-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. (Kyungshang) 18(1), 41–48 (2009)
- 35. Park, J.-W.: On the q-analogue of Daehee numbers and polynomials. Proc. Jangjeon Math. Soc. 19(3), 537–544 (2016)
- Park, J.-W., Kim, B.M., Kwon, J.: On a modified degenerate Daehee polynomials and numbers. J. Nonlinear Sci. Appl. 10, 1108–1115 (2017)
- Pyo, S.-S.: Degenerate Cauchy numbers and polynomials of the fourth kind. Adv. Stud. Contemp. Math. (Kyungshang) 28(1), 127–138 (2018)
- Rim, S.-H., Kim, T., Pyo, S.-S.: Identities between harmonic, hyperharmonic and Daehee numbers. J. Inequal. Appl. 2018, 168 (2018)
- Schikhof, W.H.: Ultrametric Calculus: An Introduction to a *p*-Adic Analysis. Cambridge Studies in Advanced Mathematics, vol. 4, p. 167, Definition 55.1. Cambridge University Press, Cambridge (1985)
- Shiratani, K., Yokoyama, S.: An application of *p*-adic convolutions. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 36(1), 73–83 (1982)
- Simsek, Y.: Analysis of the *p*-adic *q*-Volkenborn integrals; an approach to generalized Apostrol-type special numbers and polynomials and their applications. Cogent Math. 3, 1269393 (2016)
- Simsek, Y.: Apostol type Daehee numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 26(3), 555–566 (2016)
- Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(2), 199–212 (2017)
- Simsek, Y.: Identities and relations related to combinatorial numbers and polynomials. Proc. Jangjeon Math. Soc. 20(1), 127–135 (2017)
- Simsek, Y.: Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals. Turk. J. Math. 42, 557–577 (2018)
- Simsek, Y., Rim, S.-H., Jang, L.-C., Kang, D.-J., Seo, J.-J.: A note on *q*-Daehee sums. In: Proceedings of the 16th. International Conference of the Jangjeon Mathematical Society, vol. 36, pp. 159–166. Jangjeon Math. Soc., Hapcheon (2005)
- 47. Simsek, Y., Yardimci, A.: Applications on the Apostol–Daehee numbers and polynomials associated with special numbers, polynomials, and *p*-adic integrals. Adv. Differ. Equ. **2016**, 308 (2016)
- Washington, L.C.: Introduction to Cyclotomic Fields, 2nd edn. Graduate Texts in Mathematics, vol. 83, xiv+487 pp. Springer, New York (1997). ISBN 0-387947620