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1 Introduction
In this paper, we are concerned with the nonlinear fractional boundary value problem

⎧
⎨

⎩

(ρ∗Dα
a+ u)(t) + ϕ(t, u) = 0, a < t < b,

u(a) = u(b) = 0,
(1.1)

where a, b ∈ R, 0 < a < b, ρ > 0, 1 < α < 2, ρ∗Dα
a+ is the (left-sided) Caputo-type fractional

derivative of order α and ϕ : [a, b] × C([a, b]) → R is a given function. We establish a
Lyapunov-type inequality for the considered problem. Such inequality provides a neces-
sary condition for the existence of nontrivial solutions to (1.1). Next, we study the system

⎧
⎪⎪⎨

⎪⎪⎩

(ρ∗Dα
a+ u)(t) + ϕ(t, u, v) = 0, a < t < b,

(ρ∗Dα
a+ v)(t) + ψ(t, u, v) = 0, a < t < b,

u(a) = u(b) = v(a) = v(b) = 0,

(1.2)

where a, b ∈ R, 0 < a < b, ρ > 0, 1 < α < 2 and ϕ,ψ : [a, b] × C([a, b]) × C([a, b]) → R are
given functions. Let us mention some motivations for studying problems as in (1.1) and
(1.2).

The classical Lyapunov inequality [23] is related to the second order linear differential
equation

u′′(t) + q(t)u(t) = 0, a < t < b, (1.3)
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under the boundary conditions

u(a) = u(b) = 0, (1.4)

where a, b ∈ R, a < b and q ∈ C([a, b]). It shows that if (1.3)–(1.4) admits a nontrivial so-
lution u ∈ C2([a, b]), then

∫ b

a

∣
∣q(t)

∣
∣dt >

4
b – a

. (1.5)

Inequality (1.5) has found many practical applications in the theory of differential equa-
tions (see, for example, [2, 5, 22, 32, 34] and the references therein). For more improve-
ments and generalizations of (1.5), we refer to [1, 4, 6, 10, 13, 24, 28–30, 33] and the ref-
erences therein. On the other hand, due to the great attention which has been given in
these last years to fractional calculus, several results related to the study of Lyapunov-
type inequalities for fractional differential equations were obtained. The first work in this
direction is due to Ferreira [11], where the standard derivative u′′ in (1.3) is replaced by
Dα

a+ u, the Riemann–Liouville fractional derivative of order 1 < α < 2 of u. Next, in [12],
the same author studied the fractional boundary value problem

⎧
⎨

⎩

(CDα
a+ u)(t) + q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,
(1.6)

where 1 < α < 2, CDα
a+ is the Caputo fractional derivative of order α and q ∈ C([a, b]). The

main result in [12] is the following: Let u ∈ C2([a, b]) be a nontrivial solution to (1.6), then
∫ b

a

∣
∣q(t)

∣
∣dt >

ααΓ (α)
[(α – 1)(b – a)]α–1 . (1.7)

Note that in the limit case α → 2–, (1.6) reduces to (1.3). Moreover, observe that in the
limit case α → 2–, (1.7) reduces to (1.5). For other contributions related to Lyapunov-
type inequalities for fractional differential equations, we refer to [3, 7, 8, 14–18, 26, 27]
and the references therein. Motivated by the above cited works, a study of Lyapunov-type
inequalities for problems (1.1) and (1.2) is performed in this paper.

The paper is organized as follows. In Sect. 2, we provide some preliminary results re-
lated to fractional calculus and operator theory. In Sect. 3, a Lyapunov-type inequality is
established for problem (1.1) and some particular cases are discussed. In Sect. 4, we derive
a Lyapunov-type inequality for system (1.2) and discuss some special cases.

2 Preliminaries
Let a, b ∈ R be such that 0 < a < b. We refer the reader to Samko et al. [31] for the following
concepts.

Definition 2.1 Let θ > 0. The (left-sided) Riemann–Liouville fractional integral of order
θ of a function f ∈ C([a, b]) is given by

(
Iθ

a+ f
)
(t) =

1
Γ (θ )

∫ t

a
(t – s)θ–1f (s) ds, a ≤ t ≤ b,

where Γ is the Gamma function.
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Definition 2.2 Let n – 1 < α < n, where n ≥ 1 is a natural number. The (left-sided) Caputo
fractional derivative of order α of a function f ∈ Cn([a, b]) is given by

(CDα
a+ f

)
(t) =

(
In–α

a+ f (n))(t), a ≤ t ≤ b,

i.e.,

(CDα
a+ f

)
(t) =

1
Γ (n – α)

∫ t

a
(t – s)n–α–1f (n)(s) ds, a ≤ t ≤ b.

In [20] (see also [21]), Katugampola introduced the following fractional integral opera-
tor, which depends on a certain parameter ρ > 0.

Definition 2.3 Let ρ > 0 and θ > 0. The (left-sided) Katugampola fractional integral of
order θ of a function f ∈ C([a, b]) is given by

(
ρIθ

a+ f
)
(t) =

ρ1–θ

Γ (θ )

∫ t

a
sρ–1(tρ – sρ

)θ–1f (s) ds, a ≤ t ≤ b.

Using the above definition, D.S. Oliveira and E.C. de Oliveira [25] introduced a Caputo-
type fractional derivative operator as follows.

Definition 2.4 Let ρ > 0 and n – 1 < α < n, where n ≥ 1 is a natural number. The (left-
sided) Caputo-type fractional derivative of order α of a function f ∈ Cn([a, b]) is given
by

(
ρ
∗Dα

a+ f
)
(t) =

(
ρIn–α

a+

(

t1–ρ d
dt

)n

f
)

(t), a ≤ t ≤ b,

i.e.,

(
ρ
∗Dα

a+ f
)
(t) =

ρ1–n+α

Γ (n – α)

∫ t

a
sρ–1(tρ – sρ

)n–α–1
(

s1–ρ d
ds

)n

f (s) ds, a ≤ t ≤ b.

Observe that for ρ = 1 we have

ρ
∗Dα

a+ f = CDα
a+ f .

Moreover, we have (see [25])

lim
ρ→0+

(
ρ
∗Dα

a+ f
)
(t) =

(CHDα
a+ f

)
(t), a ≤ t ≤ b, (2.1)

where CHDα
a+ is the Caputo–Hadamard fractional derivative of order α given by

(CHDα
a+ f

)
(t) =

1
Γ (n – α)

∫ t

a

(

ln
t
s

)n–α–1(

s
d
ds

)n

f (s) ds, a ≤ t ≤ b. (2.2)

Further, let us fix ρ > 0. We introduce the mapping

T : C
(
[a, b]

) → C
([

aρ , bρ
])
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defined by

(Tf )(z) = f
(
z

1
ρ
)
, aρ ≤ z ≤ bρ , (2.3)

for all f ∈ C([a, b]). Observe that the mapping T is invertible and its inverse is the mapping

T–1 : C
([

aρ , bρ
]) → C

(
[a, b]

)

defined by

(
T–1g

)
(t) = g

(
tρ

)
, a ≤ t ≤ b, (2.4)

for all g ∈ C([aρ , bρ]).
The following lemma will play an essential role in the proofs of our main results.

Lemma 2.1 Let n – 1 < α < n, where n ≥ 1 is a natural number. For any function f ∈
Cn([a, b]), we have

(
ρ
∗Dα

a+ f
)
(t) = ρα

(CDα
aρ + Tf

)(
tρ

)
, a ≤ t ≤ b.

Proof For a ≤ s ≤ b, let us consider the change of variable

s̃ = sρ .

Using the chain rule, we get

d
ds

=
d
d̃s

d̃s
ds

= ρsρ–1 d
d̃s

.

Hence, for a ≤ t ≤ b, we have

(
ρ
∗Dα

a+ f
)
(t) =

ρ1–n+α

Γ (n – α)

∫ t

a
sρ–1(tρ – sρ

)n–α–1
(

s1–ρ d
ds

)n

f (s) ds

=
ρα

Γ (n – α)

∫ tρ

aρ

(
tρ – s̃

)n–α–1
(

d
d̃s

)n

f
(
s̃

1
ρ
)

d̃s

=
ρα

Γ (n – α)

∫ tρ

aρ

(
tρ – s̃

)n–α–1
(

d
d̃s

)n

(Tf )(̃s) d̃s

= ρα
(CDα

aρ + Tf
)(

tρ
)
. �

The proof of the following lemma can be found in [12].

Lemma 2.2 Let h ∈ C([A, B]), where A, B ∈R, A < B. Let v ∈ C2([A, B]) be a solution to the
fractional boundary value problem

⎧
⎨

⎩

(CDα
A+ v)(t) + h(t) = 0, a < t < b,

v(A) = v(B) = 0,
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where 1 < α < 2. Then

v(t) =
∫ B

A
G(t, s)h(s) ds, A ≤ t ≤ b,

where

G(t, s) =
1

Γ (α)

⎧
⎨

⎩

(t–A)(B–s)α–1

B–A – (t – s)α–1, A ≤ s ≤ t ≤ B,
(t–A)(B–s)α–1

B–A , A ≤ t ≤ s ≤ B.

Moreover, we have

∣
∣G(t, s)

∣
∣ ≤ [(α – 1)(B – A)]α–1

ααΓ (α)
, (t, s) ∈ [A, B] × [A, B]. (2.5)

Further, let us recall some notions of operator theory that will be used later (see, for
example, [9, 19]).

Let N ≥ 1 be a given natural number. We introduce in R
N the partial order �N defined

by

	x =

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2
...

xN

⎞

⎟
⎟
⎟
⎟
⎠

�N 	y =

⎛

⎜
⎜
⎜
⎜
⎝

y1

y2
...

yN

⎞

⎟
⎟
⎟
⎟
⎠

⇐⇒ xi ≤ yi, i = 1, 2, . . . , N .

The zero vector of RN is denoted by 0RN . We denote by ‖ · ‖N the Euclidean norm in R
N ,

i.e.,

‖	x‖N =
(
x2

1 + x2
2 + · · · + x2

N
) 1

2 , 	x =

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2
...

xN

⎞

⎟
⎟
⎟
⎟
⎠

∈R
N .

Lemma 2.3 Let

	x =

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2
...

xN

⎞

⎟
⎟
⎟
⎟
⎠

, 	y =

⎛

⎜
⎜
⎜
⎜
⎝

y1

y2
...

yN

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
N

be such that

0RN �N 	x �N 	y.

Then

‖	x‖N ≤ ‖	y‖N .
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Let MN (R) be the set of square matrices of size N with entries in R. We denote by
MN (R+) the subset of MN (R) with positive entries. We endow MN (R) with the subor-
dinate matrix norm

‖A‖MN = sup
	x∈RN ,	x=0

RN

‖A	x‖N

‖	x‖N
, A ∈MN (R).

Given A ∈MN (R), we denote by r(A) its spectral radius, i.e.,

r(A) = max
{∣
∣λi(A)

∣
∣ : i = 1, 2, . . . , N

}
,

where λi(A), i = 1, 2, . . . , N , are the (real or complex) eigenvalues of matrix A.

Lemma 2.4 Let A ∈MN (R). Then

r(A) < 1 ⇐⇒ lim
n→∞

∥
∥An∥∥

MN
= 0.

Further, we shall prove the following property, which will be used later.

Lemma 2.5 Let A ∈MN (R+) and 	x ∈R
N , 	x = 0RN . If

0RN �N 	x �N A	x, (2.6)

then

r(A) ≥ 1. (2.7)

Proof Using (2.6) and the fact that A ∈MN (R+), for all natural numbers n ≥ 1, we obtain

0RN �N 	x �N An	x.

Therefore, by Lemma 2.3, we have

‖	x‖N ≤ ∥
∥An	x∥

∥
N ≤ ∥

∥An∥∥
MN

‖	x‖N , n ≥ 1.

Since 	x = 0RN , dividing by ‖	x‖N , we get

∥
∥An∥∥

MN
≥ 1, n ≥ 1.

Finally, using Lemma 2.4, (2.7) follows. �

In the sequel, the functional space C([a, b]) is equipped with the norm

‖u‖∞ = max
a≤t≤b

∣
∣u(t)

∣
∣, u ∈ C

(
[a, b]

)
.
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3 A Lyapunov-type inequality for problem (1.1)
Problem (1.1) is investigated under the following assumption: The function

ϕ : [a, b] × C
(
[a, b]

) →R

is continuous and satisfies

∣
∣ϕ(t, h)

∣
∣ ≤ w(t)‖h‖∞, (t, h) ∈ [a, b] × C

(
[a, b]

)
, (3.1)

where w ∈ C([a, b]).
Observe that by (3.1), the zero function is a solution to (1.1).
Our main result in this section is the following.

Theorem 3.1 Let u ∈ C2([a, b]) be a nontrivial solution to (1.1). Then

∫ b

a
w(t)tρ–1 dt ≥ ρα–1ααΓ (α)

[(α – 1)(bρ – aρ)]α–1 . (3.2)

Proof Let u ∈ C2([a, b]) be a nontrivial solution to (1.1). Let us introduce the function
v ∈ C2([aρ , bρ]) given by

v = Tu,

where T is the mapping defined by (2.3). Using Lemma 2.1, we deduce that v is a solution
to

⎧
⎨

⎩

ρα(CDα
aρ + v)(tρ) + ϕ(t, T–1v) = 0, a < t < b,

v(aρ) = v(bρ) = 0,

where T–1 is given by (2.4). Using the change of variable z = tρ , a ≤ t ≤ b, we deduce that
v is a solution to

⎧
⎨

⎩

(CDα
aρ + v)(z) + ρ–αϕ(z

1
ρ , T–1v) = 0, aρ < z < bρ ,

v(aρ) = v(bρ) = 0.

Using Lemma 2.2 with A = aρ , B = bρ , we obtain

v(z) = ρ–α

∫ bρ

aρ

G(z, s)ϕ
(
s

1
ρ , T–1v

)
ds, aρ ≤ z ≤ bρ .

Further, (2.5) and (3.1) yield

∣
∣v(z)

∣
∣ ≤ ρ–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

(∫ bρ

aρ

w
(
s

1
ρ
)

ds
)

∥
∥T–1v

∥
∥∞, aρ ≤ z ≤ bρ ,

i.e.,

∣
∣u

(
z

1
ρ
)∣
∣ ≤ ρ–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

(∫ bρ

aρ

w
(
s

1
ρ
)

ds
)

‖u‖∞, aρ ≤ z ≤ bρ ,
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i.e.,

∣
∣u(t)

∣
∣ ≤ ρ–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

(∫ bρ

aρ

w
(
s

1
ρ
)

ds
)

‖u‖∞, a ≤ t ≤ b.

Hence, we get

‖u‖∞ ≤ ρ–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

(∫ bρ

aρ

w
(
s

1
ρ
)

ds
)

‖u‖∞.

Since u is nontrivial, dividing by ‖u‖∞, we obtain

∫ bρ

aρ

w
(
s

1
ρ
)

ds ≥ ραααΓ (α)
[(α – 1)(bρ – aρ)]α–1 .

Finally, using the change of variable t = s
1
ρ , aρ ≤ s ≤ bρ , (3.2) follows. �

Further, we list some consequences following from Theorem 3.1.

Corollary 3.1 Let u ∈ C2([a, b]), a, b ∈R, 0 < a < b, be a nontrivial solution to
⎧
⎨

⎩

(ρ∗Dα
a+ u)(t) + q(t)|u(t)|λ ln(1 + |u(t)|1–λ) = 0, a < t < b,

u(a) = u(b) = 0,
(3.3)

where ρ > 0, 1 < α < 2, 0 < λ < 1 and q ∈ C([a, b]). Then

∫ b

a
tρ–1∣∣q(t)

∣
∣dt ≥ ρα–1ααΓ (α)

[(α – 1)(bρ – aρ)]α–1 . (3.4)

Proof Observe that (3.3) is a special case of (1.1) with

ϕ(t, h) = q(t)
∣
∣h(t)

∣
∣λ ln

(
1 +

∣
∣h(t)

∣
∣1–λ), (t, h) ∈ [a, b] × C

(
[a, b]

)
.

Moreover, using the inequality

ln(1 + x) ≤ x, x ≥ 0,

for all (t, h) ∈ [a, b] × C([a, b]), we have

∣
∣ϕ(t, h)

∣
∣ ≤ ∣

∣q(t)
∣
∣
∣
∣h(t)

∣
∣λ ln

(
1 +

∣
∣h(t)

∣
∣1–λ)

≤ ∣
∣q(t)

∣
∣
∣
∣h(t)

∣
∣λ

∣
∣h(t)

∣
∣1–λ

=
∣
∣q(t)

∣
∣
∣
∣h(t)

∣
∣

≤ ∣
∣q(t)

∣
∣‖h‖∞.

Hence, function ϕ satisfies (3.1) with

w(t) =
∣
∣q(t)

∣
∣, a ≤ t ≤ b. (3.5)

Therefore, using Theorem 3.1 with w given by (3.5), (3.4) follows. �
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Corollary 3.2 (The case of a nonlocal source term) Let u ∈ C2([a, b]), a, b ∈ R, 0 < a < b,
be a nontrivial solution to

⎧
⎨

⎩

(ρ∗Dα
a+ u)(t) + q(t)

Γ (θ )
∫ t

a (t – s)θ–1u(s) ds = 0, a < t < b,

u(a) = u(b) = 0,
(3.6)

where ρ > 0, 1 < α < 2, θ > 0 and q ∈ C([a, b]). Then

∫ b

a
tρ–1(t – a)θ

∣
∣q(t)

∣
∣dt ≥ ρα–1ααΓ (θ + 1)Γ (α)

[(α – 1)(bρ – aρ)]α–1 . (3.7)

Proof Observe that (3.6) is a special case of (1.1) with

ϕ(t, h) =
q(t)
Γ (θ )

∫ t

a
(t – s)θ–1h(s) ds, (t, h) ∈ [a, b] × C

(
[a, b]

)
.

Moreover, for all (t, h) ∈ [a, b] × C([a, b]), we have

∣
∣ϕ(t, h)

∣
∣ ≤ ‖h‖∞

|q(t)|
Γ (θ )

∫ t

a
(t – s)θ–1 ds

=
(t – a)θ |q(t)|

Γ (θ + 1)
‖h‖∞.

Hence, function ϕ satisfies (3.1) with

w(t) =
(t – a)θ |q(t)|

Γ (θ + 1)
, a ≤ t ≤ b. (3.8)

Therefore, using Theorem 3.1 with w given by (3.8), (3.7) follows. �

Note that in the limit case θ → 0+, (3.6) reduces to

⎧
⎨

⎩

(ρ∗Dα
a+ u)(t) + q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0.
(3.9)

Therefore, passing to the limit as θ → 0+ in (3.7), we obtain the following result.

Corollary 3.3 Let u ∈ C2([a, b]) be a nontrivial solution to (3.9). Then

∫ b

a
tρ–1∣∣q(t)

∣
∣dt ≥ ρα–1ααΓ (α)

[(α – 1)(bρ – aρ)]α–1 . (3.10)

Remark 3.1 For ρ = 1, (3.9) reduces to (1.6). Therefore, taking ρ = 1 in (3.10), we obtain
(1.7) (with a large inequality).

In the limit case ρ → 0+, by (2.1), (3.9) reduces to

⎧
⎨

⎩

(CHDα
a+ u)(t) + q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,
(3.11)
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where CHDα
a+ is the Caputo–Hadamard fractional derivative of order α given by (2.2) with

n = 2. Therefore, passing to the limit as ρ → 0+ in (3.10), we obtain the following result.

Corollary 3.4 Let u ∈ C2([a, b]) be a nontrivial solution to (3.11). Then

∫ b

a

|q(t)|
t

dt ≥ ααΓ (α)
[(α – 1)(ln b – ln a)]α–1 .

4 A Lyapunov-type inequality for system (1.2)
System (1.2) is investigated under the following assumptions:

(A1) The function

ϕ : [a, b] × C
(
[a, b]

) × C
(
[a, b]

) →R

is continuous and satisfies

∣
∣ϕ(t, g, h)

∣
∣ ≤ w11(t)‖g‖∞ + w12(t)‖h‖∞, (t, g, h) ∈ [a, b] × C

(
[a, b]

)× C
(
[a, b]

)
,

where w11, w12 ∈ C([a, b]) are positive functions.
(A2) The function

ψ : [a, b] × C
(
[a, b]

) × C
(
[a, b]

) →R

is continuous and satisfies

∣
∣ψ(t, g, h)

∣
∣ ≤ w21(t)‖g‖∞ + w22(t)‖h‖∞, (t, g, h) ∈ [a, b] × C

(
[a, b]

)× C
(
[a, b]

)
,

where w21, w22 ∈ C([a, b]) are positive functions.
We say that (u, v) ∈ C2([a, b]) × C2([a, b]) is a nontrivial solution to (1.2) if (u, v) satisfies

(1.2) and (u, v) ≡ (0, 0), where 0 is the zero function. Observe that by (A1) and (A2), (0, 0)
is a solution to (1.2).

Our main result in this section is the following.

Theorem 4.1 Let (u, v) ∈ C2([a, b]) × C2([a, b]) be a nontrivial solution to (1.2). Then

√
(∫ b

a

(
w11(t) – w22(t)

)
tρ–1 dt

)2

+ 4
(∫ b

a
w21(t)tρ–1 dt

)(∫ b

a
w12(t)tρ–1 dt

)

+
∫ b

a

(
w11(t) + w22(t)

)
tρ–1 dt ≥ 2ρα–1ααΓ (α)

[(α – 1)(bρ – aρ)]α–1 . (4.1)

Proof Let (u, v) ∈ C2([a, b]) × C2([a, b]) be a nontrivial solution to (1.2). We introduce the
functions (ū, v̄) ∈ C2([aρ , bρ]) × C2([aρ , bρ]) given by

ū = Tu and v̄ = Tv.
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Using Lemma 2.1, we deduce that (ū, v̄) is a solution to the system

⎧
⎪⎪⎨

⎪⎪⎩

ρα(CDα
aρ + ū)(tρ) + ϕ(t, T–1ū, T–1v̄) = 0, a < t < b,

ρα(CDα
aρ + v̄)(tρ) + ψ(t, T–1ū, T–1v̄) = 0, a < t < b,

ū(aρ) = ū(bρ) = v̄(aρ) = v̄(bρ) = 0.

Using the change of variable z = tρ , a ≤ t ≤ b, we deduce that (ū, v̄) is a solution to

⎧
⎪⎪⎨

⎪⎪⎩

(CDα
aρ + ū)(z) + ρ–αϕ(z

1
ρ , T–1ū, T–1v̄) = 0, aρ < z < bρ ,

(CDα
aρ + v̄)(z) + ρ–αψ(z

1
ρ , T–1ū, T–1v̄) = 0, aρ < z < bρ ,

ū(aρ) = ū(bρ) = v̄(aρ) = v̄(bρ) = 0.

Using Lemma 2.2 with A = aρ , B = bρ , we obtain

ū(z) = ρ–α

∫ bρ

aρ

G(z, s)ϕ
(
s

1
ρ , T–1ū, T–1v̄

)
ds, aρ ≤ z ≤ bρ

and

v̄(z) = ρ–α

∫ bρ

aρ

G(z, s)ψ
(
s

1
ρ , T–1ū, T–1v̄

)
ds, aρ ≤ z ≤ bρ .

Further, (2.5) and (A1) yield

∣
∣ū(z)

∣
∣ ≤ ρ–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

×
[(∫ bρ

aρ

w11
(
s

1
ρ
)

ds
)

∥
∥T–1ū

∥
∥∞ +

(∫ bρ

aρ

w12
(
s

1
ρ
)

ds
)

∥
∥T–1v̄

∥
∥∞

]

,

for aρ ≤ z ≤ bρ , i.e.,

∣
∣u

(
z

1
ρ
)∣
∣ ≤ ρ–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

×
[(∫ bρ

aρ

w11
(
s

1
ρ
)

ds
)

∥
∥T–1ū

∥
∥∞ +

(∫ bρ

aρ

w12
(
s

1
ρ
)

ds
)

∥
∥T–1v̄

∥
∥∞

]

,

for aρ ≤ z ≤ bρ , which implies that

‖u‖∞ ≤ A11‖u‖∞ + A12‖v‖∞, (4.2)

where

A1j = ρ1–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

∫ b

a
w1j(t)tρ–1 dt, j = 1, 2.

Using (A2) and a similar argument as above, we get

‖v‖∞ ≤ A21‖u‖∞ + A22‖v‖∞, (4.3)
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where

A2j = ρ1–α [(α – 1)(bρ – aρ)]α–1

ααΓ (α)

∫ b

a
w2j(t)tρ–1 dt, j = 1, 2.

Further, combining (4.2) with (4.3), we obtain

0R2 �2 	x �2 A	x,

where A = (Aij)1≤i,j≤2 ∈M2(R+) and 	x =
( ‖u‖∞

‖v‖∞
)
. Since (u, v) is a nontrivial solution to (1.2),

we have 	x = 0R2 . Therefore, by Lemma 2.5, we have

r(A) ≥ 1. (4.4)

Let PA be the characteristic polynomial of the matrix A, i.e.,

PA(λ) = λ2 – tr(A)λ + det(A), λ ∈ C,

where tr(A) is the trace of A and det(A) is its determinant. Then the discriminant of PA is
given by

	(PA) = (A11 – A22)2 + 4A21A12.

Note that since A ∈M2(R+), we have 	(PA) ≥ 0. Therefore, the eigenvalues of the matrix
A are given by

λ1(A) =
A11 + A22 +

√
(A11 – A22)2 + 4A21A12

2

and

λ2(A) =
A11 + A22 –

√
(A11 – A22)2 + 4A21A12

2
.

Observe that λ1(A) ≥ λ2(A). We discuss two cases.
Case 1. A11A22 ≥ A21A12.
In this case, we have λ2(A) ≥ 0, which yields

r(A) = λ1(A).

Case 2. A11A22 < A21A12.
In this case, we have

λ1(A) ≥ ∣
∣λ2(A)

∣
∣ =

√
(A11 – A22)2 + 4A21A12 – A11 – A22

2
,

which implies that

r(A) = λ1(A).
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Therefore, we proved that in both cases, we have

r(A) =
A11 + A22 +

√
(A11 – A22)2 + 4A21A12

2
. (4.5)

Finally, combining (4.4) with (4.5), (4.1) follows. �

Further, we list some special cases following from Theorem 4.1.
Let us consider the system

⎧
⎪⎪⎨

⎪⎪⎩

(ρ∗Dα
a+ u)(t) + μ(t)u(t) + ν(t)v(t) = 0, a < t < b,

(ρ∗Dα
a+ v)(t) + χ (t)u(t) + μ(t)v(t), a < t < b,

u(a) = u(b) = v(a) = v(b) = 0,

(4.6)

where a, b ∈ R, 0 < a < b, ρ > 0, 1 < α < 2 and μ,ν,χ ∈ C([a, b]). Observe that (4.6) is a
special case of (1.2) with

ϕ(t, g, h) = μ(t)g(t) + ν(t)h(t), (t, g, h) ∈ [a, b] × C
(
[a, b]

) × C
(
[a, b]

)

and

ψ(t, g, h) = χ (t)g(t) + μ(t)h(t), (t, g, h) ∈ [a, b] × C
(
[a, b]

) × C
(
[a, b]

)
.

Note that the function ϕ satisfies (A1) with

w11 = |μ| and w12 = |ν|.

Moreover, the function ψ satisfies (A2) with

w21 = |χ | and w22 = w11.

Hence, using Theorem 4.1, we obtain the following result.

Corollary 4.1 Let (u, v) ∈ C2([a, b]) × C2([a, b]) be a nontrivial solution to (4.6). Then

√
(∫ b

a

∣
∣χ (t)

∣
∣tρ–1 dt

)(∫ b

a

∣
∣ν(t)

∣
∣(t)tρ–1 dt

)

+
∫ b

a

∣
∣μ(t)

∣
∣tρ–1 dt ≥ ρα–1ααΓ (α)

[(α – 1)(bρ – aρ)]α–1 .

Let us consider the system

⎧
⎪⎪⎨

⎪⎪⎩

(ρ∗Dα
a+ u)(t) + μ(t)u(t) + ν(t)v(t) = 0, a < t < b,

(ρ∗Dα
a+ v)(t) + χ (t)v(t), a < t < b,

u(a) = u(b) = v(a) = v(b) = 0,

(4.7)

where a, b ∈ R, 0 < a < b, ρ > 0, 1 < α < 2 and μ,ν,χ ∈ C([a, b]). Observe that (4.7) is a
special case of (1.2) with

ϕ(t, g, h) = μ(t)g(t) + ν(t)h(t), (t, g, h) ∈ [a, b] × C
(
[a, b]

) × C
(
[a, b]

)
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and

ψ(t, g, h) = χ (t)h(t), (t, g, h) ∈ [a, b] × C
(
[a, b]

) × C
(
[a, b]

)
.

Note that the function ϕ satisfies (A1) with

w11 = |μ| and w12 = |ν|.

Moreover, the function ψ satisfies (A2) with

w21 ≡ 0 and w22 = |χ |.

Hence, using Theorem 4.1, we obtain the following result.

Corollary 4.2 Let (u, v) ∈ C2([a, b]) × C2([a, b]) be a nontrivial solution to (4.7). Then

∣
∣
∣
∣

∫ b

a

(∣
∣μ(t)

∣
∣ –

∣
∣χ (t)

∣
∣
)
tρ–1 dt

∣
∣
∣
∣ +

∫ b

a

(∣
∣μ(t)

∣
∣ +

∣
∣χ (t)

∣
∣
)
tρ–1 dt ≥ 2ρα–1ααΓ (α)

[(α – 1)(bρ – aρ)]α–1 .

5 Conclusions
In this contribution, nonlinear fractional differential equations involving Caputo-type
fractional derivatives have been considered. Necessary conditions for the existence of
nontrivial solutions to the considered problems have been obtained. We have discussed
both cases: the case of an equation and the case of a coupled system. For each case, a
Lyapunov-type inequality has been established. We expect that the proposed approaches
and techniques used in this paper can be adapted to study other fractional boundary value
problems.
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