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1 Introduction and preliminaries
We start this section by giving some brief introduction about convex function and related
results.

Definition 1.1 Let I ⊆R
n be a convex set. Then the function φ : I �→ R is said to be convex

if the inequality

φ
(
ζx + (1 – ζ )y

) ≤ ζφ(x) + (1 – ζ )φ(y)

holds for all x, y ∈ I and ζ ∈ [0, 1].

It is well-known that a convex function may not be differentiable. If the function φ is
convex, then the support line inequality

φ(x) – φ(y) ≥ ∇+φ(y)(x – y)

holds for all x, y ∈ I, where

∇+φ(y)(x – y) =
〈
∂φ+(y)

∂y
, (x – y)

〉
,

∂φ+(y)
∂y

=
(

∂φ+(y)
∂y1

,
∂φ+(y)
∂y2

, . . . ,
∂φ+(y)
∂yn

)

for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ I and 〈·, ·〉 is the ordinary inner product in R
n.

Convex functions have many important applications in mathematics, physics, statistics
and engineering [1–20]. Currently, many refinements, variants, generalizations and ex-
tensions for the convexity can be found in the literature [21–50].

In [51], Dragomir introduced the definition of the coordinate convex functions as fol-
lows:
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Definition 1.2 (See [51]) Let [a1, a2] and [b1, b2] be two intervals in R and S = [a1, a2] ×
[b1, b2]. A function φ : S �→ R is said to be coordinate convex on S if the partial functions
φy : [a1, a2] �→R and φx : [b1, b2] �→ R defined by

φy(u) = φ(u, y), φx(v) = φ(x, v)

are convex.

Lemma 1.3 (See [51]) Every convex function defined on a rectangle is coordinate convex,
but the converse is not true, in general.

In the remaining part of this section, we give a comprehensive introduction about ma-
jorization theory.

Let n ≥ 2, a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two n-tuples of real numbers, and

a[1] ≥ a[2] ≥ · · · ≥ a[n], b[1] ≥ b[2] ≥ · · · ≥ b[n]

be their ordered arrangement.

Definition 1.4 The n-tuple b is said to be majorized by the n-tuple a, or a majorizes b, in
symbols a � b, if

k∑

i=1

a[i] ≥
k∑

i=1

b[i] (k = 1, 2, . . . , n – 1),

n∑

i=1

bi =
n∑

i=1

ai.

Let a, b ∈ R
n be two vectors such that a majorizes b. Then from the basic knowledge

of linear algebra we clearly see that there exist a set of probabilities (q1, q2, . . . , qn) with
∑n

i=1 qi = 1 and a set of permutations (P1, P2, . . . , Pn) such that a =
∑n

i=1 Piqib. Alternatively,
it can be shown that there exists a doubly stochastic matrix D such that a = Db. In fact,
the latter characterization of majorization relation implies that the set of vectors a that
satisfy a � b is the convex hull spanned by the n! points formed from the permutations of
the elements of b.

Let S and T be two Hermitian operators. Then we say that the Hermitian operator S ma-
jorizes the Hermitian operator T if the set of eigenvalues of S majorizes the set of eigen-
values values of T .

Majorization is a partial order relation between the vectors, which precisely defines the
vague notion that the components of one vector are “less spread out” or “more nearly
equal” than the components of another vector. And the functions that preserve the ma-
jorization order are called Schur convex functions. Many problems arising in signal pro-
cessing and communications involve comparing vector-valued strategies or solving opti-
mization problems with vector- or matrix-valued variables. Majorization theory is a key
tool that allows us to solve or simplify these problems.

The following Theorem 1.5 is well-known in the literature as the majorization theorem
and for its proof we refer to Marshall and Olkin [52]. This result is due to Hardy, Littlewood
and Pólya [53] and it can also be found in [54].
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Theorem 1.5 Let I be an interval in R, and a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be
two n-tuples such that ai, bi ∈ I (i = 1, 2, . . . , n). Then the inequality

n∑

i=1

φ(ai) ≥
n∑

i=1

φ(bi)

holds for every continuous convex function φ : I �→R if and only if a � b.

The following Theorem 1.6 is a weighted version of Theorem 1.5 and is given by Fuchs
[55].

Theorem 1.6 Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two decreasing n-tuples such
that ai, bi ∈ I (i = 1, 2, . . . , n), and p = (p1, p2, . . . , pn) be a real n-tuple with

k∑

i=1

piai ≥
k∑

i=1

pibi (k = 1, 2, . . . , n – 1),

n∑

i=1

piai =
n∑

i=1

pibi.

Then the inequality

n∑

i=1

piφ(ai) ≥
n∑

i=1

piφ(bi) (1.1)

holds for each continuous convex function φ : I �→R.

Another result similar to that above with some relaxed conditions on a, b and stricter
condition on function φ was obtained by Bullen, Vasić and Stanković [56].

Theorem 1.7 Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two decreasing n-tuples, and
p = (p1, p2, . . . , pn) be a real n-tuple. If the inequality

k∑

i=1

piai ≥
k∑

i=1

pibi (1.2)

holds for k = 1, 2, . . . , n, then inequality (1.1) holds for each continuous increasing convex
function φ : I �→ R. If a and b are increasing n-tuples and the reverse inequality in (1.2)
holds for k = 1, 2, . . . , n, then inequality (1.1) holds for each continuous decreasing convex
function φ : I �→R.

Dragomir [57] presented another majorization result, which has been obtained by using
support line and Chebyshev’s inequalities.

Theorem 1.8 Let I be an interval in R, φ : I �→R be a convex function, a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn) be two real n-tuples such that ai, bi ∈ I (i = 1, 2, . . . , n), and p =
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(p1, p2, . . . , pn) be a non-negative real n-tuple with Pn =
∑n

i=1 pi > 0. If b and a – b are mono-
tonic in the same sense with

∑n
i=1 piai =

∑n
i=1 piabi, then one has

n∑

i=1

piφ(ai) ≥
n∑

i=1

piφ(bi). (1.3)

If φ is strictly convex on I and pi > 0 (i = 1, 2, . . . , n), then equality holds in (1.3) if and only
if ai = bi for all i = 1, 2, . . . , n.

In this paper, our focus is on the majorization type results for the convex functions de-
fined on rectangles. We shall extend classical majorization inequality for majorized tuples
and establish weighted versions of majorization inequalities for certain tuples, for exam-
ple, monotonic tuples in the same sense, monotonic tuples in mean, etc. For obtaining
these results, we use Chebyshev’s inequality, Abel transformation, support line inequality
of convex function and the fact that every convex function defined on rectangles is coor-
dinate convex. At the end of the paper, we provide Favard’s type inequalities by using the
generalized majorization results.

2 Main results
We start by giving a majorization inequality for the convex functions defined on rectangles
by using majorized tuples.

Theorem 2.1 Let I1 and I2 be any two intervals in R, a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) be two n-tuples such that ai, bi ∈ I1 (i = 1, 2, . . . , n), and c = (c1, c2, . . . , cm)
and d = (d1, d2, . . . , dm) be two m-tuples such that cj, dj ∈ I2 (j = 1, 2, . . . , m). If a � b and
c � d, then the inequality

n∑

i=1

m∑

j=1

φ(ai, cj) ≥
n∑

i=1

m∑

j=1

φ(bi, dj) (2.1)

holds for each convex function φ : I1 × I2 �→R.

Proof Without loss of generality, we assume that the tuples a, b, c and d are in decreasing
order and ai �= bi, cj �= dj for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}. Let

Ak =
k∑

i=1

ai, Bk =
k∑

i=1

bi (k = 1, 2, . . . , n),

Cl =
l∑

j=1

cj, Dl =
l∑

j=1

dj (l = 1, 2, . . . , m),

A0 = B0 = C0 = D0 = 0.

Then it follows from the definition of majorization that

An = Bn, Cm = Dm.
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Let ti,j and si,j be defined by

ti,j := ∇φ(ai, bi; cj) =
φ(ai, cj) – φ(bi, cj)

ai – bi
,

si,j := ∇φ(bi; cj, dj) =
φ(bi, cj) – φ(bi, dj)

cj – dj
.

Then we clearly see that

φ(ai, cj) – φ(bi, dj) = φ(ai, cj) – φ(bi, cj) + φ(bi, cj) – φ(bi, dj)

=
φ(ai, cj) – φ(bi, cj)

ai – bi
(ai – bi) +

φ(bi, cj) – φ(bi, dj)
cj – dj

(cj – dj)

= ti,j(Ai – Ai–1 – Bi + Bi–1) + si,j(Cj – Cj–1 – Dj + Dj–1).

Summing over all i and j gives

n∑

i=1

m∑

j=1

φ(ai, cj) –
n∑

i=1

m∑

j=1

φ(bi, dj)

=
n∑

i=1

m∑

j=1

ti,j(Ai – Ai–1 – Bi + Bi–1)

+
n∑

i=1

m∑

j=1

si,j(Cj – Cj–1 – Dj + Dj–1)

=
m∑

j=1

[ n∑

i=1

ti,j(Ai – Bi) –
n∑

i=1

ti,j(Ai–1 – Bi–1)

]

+
n∑

i=1

[ m∑

j=1

si,j(Cj – Dj) –
m∑

j=1

si,j(Cj–1 – Dj–1)

]

=
m∑

j=1

[ n–1∑

i=1

ti,j(Ai – Bi) –
n∑

i=2

ti,j(Ai–1 – Bi–1)

]

+
n∑

i=1

[m–1∑

j=1

si,j(Cj – Dj) –
m∑

j=2

si,j(Cj–1 – Dj–1)

]

=
m∑

j=1

[ n–1∑

i=1

ti,j(Ai – Bi) –
n–1∑

i=1

ti+1,j(Ai – Bi)

]

+
n∑

i=1

[m–1∑

j=1

si,j(Cj – Dj) –
m–1∑

j=1

si,j+1(Cj – Dj)

]

=
m∑

j=1

[ n–1∑

i=1

(ti,j – ti+1,j)(Ai – Bi)

]

+
n∑

i=1

[m–1∑

j=1

(si,j – si,j+1)(Cj – Dj)

]

. (2.2)
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Since φ is a convex function on I1 × I2, φ is a coordinate convex function on I1 × I2.
Thus, ti,j is decreasing with respect to i for each fixed j and si,j is decreasing with respect
to j for each fixed i. Hence ti,j – ti+1,j ≥ 0 for all i ∈ {1, 2, . . . , n – 1} and si,j – si,j+1 ≥ 0 for
all j ∈ {1, 2, . . . , m – 1}. From the definition of majorization we get Ai – Bi ≥ 0 for all i ∈
{1, 2, . . . , n – 1} and Cj – Dj ≥ 0 for all j ∈ {1, 2, . . . , m – 1}. Therefore, the right-hand side of
(2.2) is non-negative, and hence we have

n∑

i=1

m∑

j=1

φ(ai, cj) –
n∑

i=1

m∑

j=1

φ(bi, dj) ≥ 0,

which is equivalent to (2.1). �

In the following Theorem 2.2, we prove a general inequality for the convex functions
defined on rectangles, which implies majorization inequality for certain tuples.

Theorem 2.2 Let I1 and I2 be any two intervals in R, a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) be two n-tuples such that ai, bi ∈ I1 (i = 1, 2, . . . , n), c = (c1, c2, . . . , cm) and d =
(d1, d2, . . . , dm) be two m-tuples such that cj, dj ∈ I2 (j = 1, 2, . . . , m) and p = (p1, p2, . . . , pn)
and w = (w1, w2, . . . , wm) be any positive real n- and m-tuples, respectively. If φ : I1 ×I2 �→R

is a convex function, then one has

n∑

i=1

m∑

j=1

piwjφ(ai, cj) –
n∑

i=1

m∑

j=1

piwjφ(bi, dj)

≥
n∑

i=1

m∑

j=1

piwjti(ai – bi) +
n∑

i=1

m∑

j=1

piwjsj(cj – dj), (2.3)

where ti is the positive partial derivative of φ with respect to the first variable at bi (i =
1, 2, . . . , n) and sj is the positive partial derivative of φ with respect to the second variable
at dj (j = 1, 2, . . . , m).

Proof It follows from the convexity of the function φ : I1 × I2 �→R that

φ(x, y) – φ(w, z) ≥ 〈∇φ(w, z), (x – w, y – z)
〉

for all (x, y), (w, z) ∈ I1 × I2. That is,

φ(x, y) – φ(w, z) ≥ ∂φ

∂w
(w, z)(x – w) +

∂φ

∂z
(w, z)(y – z). (2.4)

Now, applying (2.4) and by choosing x → ai, y → ci, w → bi and z → dj, we get

φ(ai, cj) – φ(bi, dj) ≥ ti(ai – bi) + sj(cj – dj). (2.5)
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Multiplying both sides of (2.5) by piwj and summing over the indices, we obtain

n∑

i=1

m∑

j=1

piwjφ(ai, cj) –
n∑

i=1

m∑

j=1

piwjφ(bi, dj)

≥
n∑

i=1

m∑

j=1

piwjti(ai – bi) +
n∑

i=1

m∑

j=1

piwjsj(cj – dj). �

If p = (p1, p2, . . . , pn) and w = (w1, w2, . . . , wm) are two tuples, then throughout this paper
Pk and Wj are defined by Pk =

∑k
i=1 pi and Wj =

∑j
i=1 wi, k = 1, 2, . . . , n and j = 1, 2, . . . , m.

Some majorization type results, which are obtained from the above Theorem 2.2, are
given in the form of the following Propositions 2.3 and 2.5.

Proposition 2.3 Assume that all the hypotheses of Theorem 2.2 hold. Additionally, b and
a – b are monotonic in the same sense, and c and c – d are monotonic in the same sense. If

n∑

i=1

aipi =
n∑

i=1

bipi (2.6)

and

m∑

j=1

cjwj =
m∑

j=1

djwj, (2.7)

then

n∑

i=1

m∑

j=1

piwjφ(ai, cj) ≥
n∑

i=1

m∑

j=1

piwjφ(bi, dj). (2.8)

Proof Since φ is a convex function on I1 × I2, φ is a coordinate convex function on I1 × I2.
If b is an increasing n-tuple, then (t1, t2, . . . , tn) is an increasing n-tuple, where ti is the
positive partial derivative of φ with respect to the first variable at bi (i = 1, 2, . . . , n). If b
and a – b are increasing n-tuples, then, applying Chebyshev’s inequality to the first term
on right-hand side of (2.3) and using (2.6), we have

n∑

i=1

m∑

j=1

piwjti(ai – bi) =
m∑

j=1

wj

[ n∑

i=1

piti(ai – bi)

]

≥
m∑

j=1

wj

[
1

Pn

n∑

i=1

piti

n∑

i=1

pi(ai – bi)

]

= 0. (2.9)

Similarly, since φ is a coordinate convex function on I1 × I2, if d is an increasing m-tuple,
then (s1, s2, . . . , sm) is an increasing m-tuple, where sj is the positive partial derivative of φ

with respect to the second variable at dj (j = 1, 2, . . . , m). If d and c – d are increasing m-
tuples, then, applying Chebyshev’s inequality to the second term on right-hand side of
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(2.3) and using (2.7), we have

n∑

i=1

m∑

j=1

piwjsj(cj – dj)

=
n∑

i=1

pi

[ m∑

j=1

wjsj(cj – dj)

]

≥
n∑

i=1

pi

[
1

Wm

m∑

j=1

wjsj

m∑

j=1

wj(cj – dj)

]

= 0. (2.10)

Using (2.9) and (2.10) in (2.3), we get

n∑

i=1

m∑

j=1

piwjsj(ai – bi) –
n∑

i=1

m∑

j=1

piwjsj(cj – dj) ≥ 0,

which is equivalent to (2.8).
Similarly, we can prove inequality (2.8) in the remaining cases. �

Remark 2.4 In what follows, a convex function is said to be monotonic increasing if it is
monotonic increasing with respect to each of its variables.

Proposition 2.5 Let all the assumptions of Theorem 2.2 hold. If φ : I1 × I2 �→ R is an
increasing convex function, b and a – b are monotonic in the same sense, d and c – d are
monotonic in the same sense, and

n∑

i=1

aipi ≥
n∑

i=1

bipi (2.11)

and

m∑

j=1

cjwj ≥
m∑

j=1

djwj,

then inequality (2.8) holds.

Proof Since φ is an increasing function on I1 × I2, we have ti ≥ 0 (i = 1, 2, . . . , n), where ti

is the positive partial derivative of φ with respect to the first variable at bi (i = 1, 2, . . . , n),
thus

n∑

i=1

piti ≥ 0. (2.12)

Using (2.11) and (2.12) in the right-hand side of (2.9), we have

n∑

i=1

m∑

j=1

piwjti(ai – bi) ≥ 0. (2.13)
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Similarly, we have

n∑

i=1

m∑

j=1

piwjsj(cj – dj) ≥ 0. (2.14)

Using (2.13) and (2.14) in (2.3), we get (2.8).
Similarly, we can prove inequality (2.8) in the remaining cases. �

The following Theorem 2.6 is another weighted discrete version of majorization theo-
rem.

Theorem 2.6 Let I1, I2 be two intervals in R, φ : I1 × I2 �→ R be a convex function, a =
(a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two n-tuples such that ai, bi ∈ I1 (i = 1, 2, . . . , n), c =
(c1, c2, . . . , cm) and d = (d1, d2, . . . , dm) be two m-tuples such that cj, dj ∈ I2 (j = 1, 2, . . . , m),
p = (p1, p2, . . . , pn) and w = (w1, w2, . . . , wn) be two any positive real n- and m-tuples, respec-
tively, and

k∑

i=1

bipi ≤
k∑

i=1

aipi (k = 1, 2, . . . , n – 1), (2.15)

k∑

i=1

djwj ≤
k∑

i=1

cjwj (k = 1, 2, . . . , m – 1), (2.16)

n∑

i=1

bipi =
n∑

i=1

aipi, (2.17)

m∑

i=1

djwj =
m∑

i=1

cjwj. (2.18)

Then the following statements are true:
(i) If b and d are decreasing n- and m-tuples, respectively, then

n∑

i=1

m∑

j=1

piwjφ(bi, dj) ≤
n∑

i=1

m∑

j=1

piwjφ(ai, cj). (2.19)

(ii) If a and c are increasing n- and m-tuples, respectively, then

n∑

i=1

m∑

j=1

piwjφ(ai, cj) ≤
n∑

i=1

m∑

j=1

piwjφ(bi, dj). (2.20)

Proof For part (i), we use Abel’s transformation to prove part (i). Let

A0 = B0 = 0, Ak =
k∑

i=1

piai, Bk =
k∑

i=1

pibi (k = 1, 2, . . . , n)

and

C0 = D0 = 0, Ck =
k∑

j=1

wjcj, Dk =
k∑

j=1

wjdj (k = 1, 2, . . . , m).
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Then from (2.17) and (2.18) we have

An = Bn, Cm = Dm.

Since φ is a convex function on I1 × I2, φ is a coordinate convex function on I1 × I2. If
b and d are decreasing n- and m-tuples, respectively, then (t1, t2, . . . , tn) and (s1, s2, . . . , sm)
are decreasing n- and m-tuples, respectively, where ti is the positive partial derivative of φ

with respect to the first variable at bi (i = 1, 2, . . . , n) and sj is the positive partial derivative
of φ with respect to the second variable at dj (j = 1, 2, . . . , m). It follows from (2.3) that

n∑

i=1

m∑

j=1

piwjφ(ai, cj) –
n∑

i=1

m∑

j=1

piwjφ(bi, dj)

≥
n∑

i=1

m∑

j=1

piwjti(ai – bi) +
n∑

i=1

m∑

j=1

piwjsj(cj – dj)

=
m∑

j=1

wj

[ n∑

i=1

ti(piai – pibi)

]

+
n∑

i=1

pi

[ m∑

j=1

sj(wjcj – wjdj)

]

=
m∑

j=1

wj

[ n∑

i=1

ti(Ai – Ai–1 – Bi + Bi–1)

]

+
n∑

i=1

pi

[ m∑

j=1

sj(Ci – Ci–1 – Di + Di–1)

]

=
m∑

j=1

wj

[ n∑

i=1

ti(Ai – Bi) –
n∑

i=1

ti(Ai–1 – Bi–1)

]

+
n∑

i=1

pi

[ m∑

j=1

sj(Ci – Di) –
m∑

j=1

sj(Ci–1 – Di–1)

]

=
m∑

j=1

wj

[ n–1∑

i=1

(ti – ti+1)(Ai – Bi)

]

+
n∑

i=1

pi

[m–1∑

j=1

(sj – sj+1)(Ci – Di)

]

. (2.21)

Since (t1, t2, . . . , tn) and (s1, s2, . . . , sm) are decreasing n- and m-tuples, respectively, ti –
ti+1 ≥ 0 (i = 1, 2, . . . , n – 1) and sj – sj+1 ≥ 0 (j = 1, 2, . . . , m – 1). Also from the assumptions
(2.15) and (2.16) we know that Ai – Bi ≥ 0 (i = 1, 2, . . . , n – 1) and Cj – Dj ≥ 0 (j = 1, 2, . . . ,
m – 1). Thus

m∑

j=1

wj

[ n–1∑

i=1

(ti – ti+1)(Ai – Bi)

]

+
n∑

i=1

pi

[m–1∑

j=1

(sj – sj+1)(Ci – Di)

]

≥ 0. (2.22)

Using (2.22) in (2.21), we get

n∑

i=1

m∑

j=1

piwjφ(ai, cj) –
n∑

i=1

m∑

j=1

piwjφ(bi, dj) ≥ 0,

which is equivalent to (2.19).
Similarly, we can prove inequality (2.20) for the remaining cases. �
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Definition 2.7 Let p = (p1, p2, . . . , pn) be a positive real n-tuple. Then the real n-tuple a =
(a1, a2, . . . , an) is said to be monotonic increasing in mean relative to p = (p1, p2, . . . , pn) if

1
Pk

k∑

i=1

piai ≤ 1
Pk+1

k+1∑

i=1

aipi (k = 1, 2, . . . , n – 1),

and decreasing in mean relative to p = (p1, p2, . . . , pn) if

1
Pk

k∑

i=1

piai ≥ 1
Pk+1

k+1∑

i=1

aipi (k = 1, 2, . . . , n – 1).

The following Lemma 2.8 is due to Biernacki [58] (for a generalization, see Burkill and
Mirsky [59]).

Lemma 2.8 Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be any two real n-tuples, which
are monotonic in mean relative to positive real n-tuple p = (p1, p2, . . . , pn) in the same sense,
that is,

1
Pk

k∑

i=1

piai �
1

Pk+1

k+1∑

i=1

aipi (k = 1, 2, . . . , n – 1)

and

1
Pk

k∑

i=1

pibi �
1

Pk+1

k+1∑

i=1

bipi (k = 1, 2, . . . , n – 1).

Then

1
Pn

n∑

i=1

piaibi ≥ 1
Pn

n∑

i=1

aipi
1

Pn

n∑

i=1

bipi. (2.23)

If one tuple is decreasing in mean and the other one is increasing in mean, then the reverse
inequality holds in (2.23).

Now, we state another result for convex functions and for arbitrary monotonic tuples in
mean.

Theorem 2.9 Let all the assumptions of Theorem 2.2 hold. Additionally, if b and a – b are
monotonic n-tuples in mean relative to p = (p1, p2, . . . , pn) in the same sense, and c and c – d
are monotonic m-tuples in mean relative to w = (w1, w2, . . . , wm) in the same sense, then

n∑

i=1

m∑

j=1

piwjφ(ai, cj) –
n∑

i=1

m∑

j=1

piwjφ(bi, dj)

≥ 1
Pn

m∑

j=1

n∑

i=1

wjpiti

n∑

i=1

pi(ai – bi)

+
1

Wm

n∑

i=1

m∑

j=1

piwjsj

m∑

j=1

wj(cj – dj), (2.24)
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where ti is the positive partial derivative of φ with respect to the first variable at bi (i =
1, 2, . . . , n) and sj is the partial positive derivative of φ with respect to the second variable
at dj (j = 1, 2, . . . , m).

Proof It follows from the proof of Proposition 2.3 that (t1, t2, . . . , tn) is an increasing n-
tuple. Now if b and a – b are monotonic increasing in mean relative to p, then, applying
Chebyshev’s inequality to first term on the right-hand side of (2.3), we have

n∑

i=1

m∑

j=1

piwjti(ai – bi) =
m∑

j=1

wj

[ n∑

i=1

piti(ai – bi)

]

≥
m∑

j=1

wj

[
1

Pn

n∑

i=1

piti

n∑

i=1

pi(ai – bi)

]

=
1

Pn

m∑

j=1

n∑

i=1

wjpiti

n∑

i=1

pi(ai – bi). (2.25)

Similarly, we have

n∑

i=1

m∑

j=1

piwjsj(cj – dj) ≥ 1
Wm

n∑

i=1

m∑

j=1

piwjsj

m∑

j=1

wj(cj – dj). (2.26)

Using (2.25) and (2.26) in (2.3), we get (2.24).
Similarly, we can prove inequality (2.24) in the remaining cases. �

Corollary 2.10 Assume that all the hypotheses of Theorem 2.9 hold. Additionally, if

n∑

i=1

aipi =
n∑

i=1

bipi (2.27)

and

m∑

j=1

cjwj =
m∑

j=1

djwj, (2.28)

then

n∑

i=1

m∑

j=1

piwjφ(ai, cj) ≥
n∑

i=1

m∑

j=1

piwjφ(bi, dj). (2.29)

Proof Using (2.27) and (2.28) on the right-hand side of (2.24), we get (2.29). �

In the following Corollary 2.11, we obtain a majorization inequality by using an increas-
ing convex function.
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Corollary 2.11 Let all the assumptions of Theorem 2.9 hold. If φ : I1 × I2 �→ R is an in-
creasing convex function, and

n∑

i=1

aipi ≥
n∑

i=1

bipi (2.30)

and

m∑

j=1

cjwj ≥
m∑

j=1

djwj, (2.31)

then inequality (2.29) holds.

Proof Since φ is an increasing function on I1 ×I2, we get that ti ≥ 0, sj ≥ 0 (i = 1, 2, . . . , n, j =
1, 2, . . . , m), where ti is the positive partial derivative of φ with respect to the first variable
at bi (i = 1, 2, . . . , n) and sj is the partial positive derivative of φ with respect to the second
variable at dj (j = 1, 2, . . . , m), thus

n∑

i=1

piti ≥ 0, (2.32)

m∑

j=1

wjsj ≥ 0. (2.33)

Hence using (2.30), (2.31), (2.32) and (2.33) on the right-hand side of (2.24), we obtain
inequality (2.29). �

The following Lemma 2.12 can be found in the literature [60].

Lemma 2.12 Let v = (v1, v2, . . . , vn) be a positive real n-tuple and x = (x1, x2, . . . , xn) be an
increasing real n-tuple. Then the inequality

k∑

i=1

xivi

n∑

i=1

vi ≤
n∑

i=1

xivi

k∑

i=1

vi (2.34)

holds for k = 1, 2, . . . , n. If x is a decreasing real n-tuple, then the reverse inequality holds in
(2.32).

If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) with bi �= 0 for i = 1, 2, . . . , n, then a
b =

( a1
b1

, a2
b2

, . . . , an
bn

).

Theorem 2.13 Let I1 and I2 be any two intervals in R, φ : I1 × I2 �→ R be a convex func-
tion, a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two positive n-tuples such that ai, bi ∈ I1

(i = 1, 2, . . . , n), c = (c1, c2, . . . , cm) and d = (d1, d2, . . . , dm) be two positive m-tuples such that
cj, dj ∈ I2 (j = 1, 2, . . . , m), p = (p1, p2, . . . , pn) and w = (w1, w2, . . . , wm) be any positive real n-
and m-tuples, respectively, and a/b and c/d are decreasing n- and m-tuples, respectively.
Then the following statements are true:
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(i) If a is an increasing n-tuple and c is an increasing m-tuple, then

n∑

i=1

m∑

j=1

piwjφ

(
ai∑n

i=1 piai
,

cj∑m
j=1 wjcj

)

≤
n∑

i=1

m∑

j=1

piwjφ

(
bi∑n

i=1 bipi
,

dj∑m
j=1 wjdj

)
. (2.35)

(ii) If b is a decreasing n-tuple and d is a decreasing m-tuple, then the reverse inequality
holds in (2.33).

If a/b and c/d are increasing n and m-tuples, respectively, then we have the
following statements:

(iii) If b is an increasing n-tuple and d is an increasing m-tuple, then

n∑

i=1

m∑

j=1

piwjφ

(
bi∑n

i=1 bipi
,

dj∑m
j=1 wjdj

)

≤
n∑

i=1

m∑

j=1

piwjφ

(
ai∑n

i=1 piai
,

cj∑m
j=1 wjcj

)
. (2.36)

(iv) If a is a decreasing n-tuple and c is a decreasing m-tuple, then the reverse inequality
holds in (2.34).

Proof (i) Let a/b and c/d are decreasing n- and m-tuples, respectively. Then using
Lemma 2.12 with x = a/b and v = pb, we obtain

n∑

i=1

piai

k∑

i=1

pibi ≤
k∑

i=1

aipi

n∑

i=1

pibi (k = 1, 2, . . . , n).

That is,

k∑

i=1

pi

(
bi∑n

i=1 pibi

)
≤

k∑

i=1

pi

(
ai∑n

i=1 piai

)
(k = 1, 2, . . . , n). (2.37)

Similarly, using Lemma 2.12 with x = c/d and v = dw, we get

n∑

i=1

wjcj

k∑

i=1

wjdj ≤
k∑

i=1

cjwj

n∑

i=1

djwj (k = 1, 2, . . . , m).

That is,

k∑

j=1

wj

(
dj∑m

j=1 wjdj

)
≤

k∑

j=1

wj

(
cj∑m

j=1 wjcj

)
(k = 1, 2, . . . , m). (2.38)

Also, it is obvious that

n∑

i=1

pi

(
bi∑n

i=1 pibi

)
=

n∑

i=1

pi

(
ai∑n

i=1 piai

)
(2.39)
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and

n∑

j=1

wj

(
dj∑m

j=1 wjdj

)
=

n∑

j=1

wj

(
cj∑m

j=1 wjcj

)
. (2.40)

If a and c are increasing, then using Theorem 2.6(ii) and (2.35)–(2.38), we have

n∑

i=1

m∑

j=1

piwjφ

(
ai∑n

i=1 piai
,

cj∑m
j=1 wjcj

)

≤
n∑

i=1

m∑

j=1

piwjφ

(
bi∑n

i=1 bipi
,

dj∑m
j=1 wjdj

)
.

Similarly, we can prove the remaining cases. �

Definition 2.14 (See [61]) An n-tuple a = (a1, a2, . . . , an) is said to be concave if

2ak ≥ ak+1 + ak–1

for all k = 2, 3, . . . , n – 1.

Definition 2.15 (See [61]) An n-tuple a = (a1, a2, . . . , an) is said to be convex if

2ak ≤ ak+1 + ak–1

for all k = 2, 3, . . . , n – 1.

Corollary 2.16 Let φ : [0,∞) × [0,∞) −→ R be a convex function, a = (a1, a2, . . . , an)
be a positive n-tuple, c = (c1, c2, . . . , cm) be a positive m-tuple, and p = (p1, p2, . . . , pn) and
w = (w1, w2, . . . , wm) be any positive real n- and m-tuples, respectively. Then the following
statements are true:

(i) If a is an increasing concave n-tuple and c is an increasing concave m-tuple, then

n∑

i=1

m∑

j=1

piwjφ

(
i – 1

∑n
i=1 pi(i – 1)

,
j – 1

∑m
j=1 wj(j – 1)

)

≥
n∑

i=1

m∑

j=1

piwjφ

(
ai∑n

i=1 piai
,

cj∑m
j=1 wjcj

)
. (2.41)

(ii) If a is an increasing convex n-tuple with a1 = 0 and c is an increasing convex m-tuple
with c1 = 0, then the reverse inequality holds in (2.39).

(iii) If a is a decreasing concave n-tuple and c is a decreasing concave m-tuple, then

n∑

i=1

m∑

j=1

piwjφ

(
n – i

∑n
i=1 pi(n – i)

,
m – j

∑m
j=1 wj(m – j)

)

≥
n∑

i=1

m∑

j=1

piwjφ

(
ai∑n

i=1 piai
,

cj∑m
j=1 wjcj

)
. (2.42)
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(iv) If a is a decreasing convex n-tuple with an = 0 and c is a decreasing convex m-tuple
with cm = 0, then the reverse inequality holds in (2.40).

Proof (i) Let b = (b1, b2, . . . , bn) and d = (d1, d2, . . . , dm) be respectively the n- and m-tuples
such that b1 = ε < a1/a2, d1 = δ < c1/c2, bi = i – 1 for i = 2, 3, . . . , n, and dj = j – 1 for j =
2, 3, . . . , m. Then a/b and c/d are decreasing n- and m-tuples, respectively. It follows from
Theorem 2.13 that

n∑

i=1

m∑

j=1

piwjφ

(
ai∑n

i=1 piai
,

cj∑m
j=1 wjcj

)

≤ p1w1φ

(
ε

εp1 +
∑n

i=2(i – 1)pi
,

δ

w1δ +
∑m

j=2(j – 1)wj

)

+
n∑

i=2

m∑

j=2

piwjφ

(
i – 1

εp1 +
∑n

i=2(i – 1)pi
,

j – 1
w1δ +

∑m
j=2(j – 1)wj

)
.

Taking ε → 0 and δ → 0, we obtain

n∑

i=1

m∑

j=1

piwjφ

(
ai∑n

i=1 piai
,

cj∑m
j=1 wjcj

)

≤ p1w1φ(0, 0) +
n∑

i=2

m∑

j=2

piwjφ

(
i – 1

εp1 +
∑n

i=2(i – 1)pi
,

j – 1
w1δ +

∑m
j=2(j – 1)wj

)

=
n∑

i=1

m∑

j=1

piwjφ

(
i – 1

εp1 +
∑n

i=2(i – 1)pi
,

j – 1
w1δ +

∑m
j=2(j – 1)wj

)
.

This proves (2.39).
Similarly, we can use other parts of Theorem 2.13 to prove the required results for the

remaining cases. �

Remark 2.17 For some related integral majorization inequalities for the convex functions
defined on rectangles, see [62]; and for some other recent results related to majorization,
see [63–65].

3 Results and discussion
In the article, we have generalized the classical majorization inequality for majorized tu-
ples, established several weighted version of majorization inequalities for certain tuples
and provided Favard’s type inequalities by the use of Chebyshev’s inequality, Abel trans-
formation and support line inequality.

4 Conclusions
In this paper, we have extended some discrete majorization type inequalities of convex
functions from intervals to rectangles. The given results are generalizations of the pre-
viously known results. Our approach may have further applications in the theory of ma-
jorization.
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