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Abstract
In this paper we establish a restriction estimate for a class of oscillatory integral
operators along a paraboloid,

P
d–1 :=

{
(x1, . . . , xd) : xd = x21 + · · · + x2d–1

}
.

Specifically, we consider the oscillatory integral operators defined by

Tm,nf (x) =
∫

Rd
ei(x

m
1 ξn1 +···+xmd ξnd )f (ξ )dξ , (1)

where n,m are integers satisfying 2≤ d < n ≤ 2md, then

‖Tm,nf‖L2(dσ ,Pd–1∩Bd (0,1)) ≤ Cm,n,d‖f‖Lp(Rd )

holds for 1 < p ≤ 4md
4md–n . A necessary condition is also given to ensure this

boundedness.

MSC: 42B20; 47G10

Keywords: Restriction estimate; Oscillatory integral operator; Multidimensional Van
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1 Introduction
The Fourier restriction conjecture has attracted a lot of attention in the development of
modern harmonic analysis. It was raised by Stein in the 1960s and can be stated as follows
(in its dual form).

Conjecture 1 Suppose S0 is a compact subset of a smooth (d – 1)-dimensional manifold S
with nonvanishing Guassian curvature and dσ is the surface measure on S induced by the
Lebesgue measure on R

n, then
∫

S0

∣∣f̂ (ξ )
∣∣dσ ≤ C‖f ‖Lp(Rd) (2)

holds for 1 < p < 2d
d+1 .
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A natural idea to attack this problem is to establish a stronger estimate, for example the
L2 estimate, of the left hand side of (2). Therefore, the Hölder inequality and the finite
measure of S0 yield the corresponding inequality. Combining the TT∗ method with the
Fourier decay of surface measure dσ , one may get the nontrivial estimate

‖f̂ ‖L2(S,dσ ) ≤ C‖f ‖Lp(Rd), (3)

for

1 < p ≤ 4d
3d + 1

. (4)

It should be noted that our paper replaces the Fourier decay of dσ by an oscillatory integral
decay estimate. In [1], Tomas improved the estimate (4) to

1 < p <
2d + 2
d + 3

up to the endpoint

p =
2d + 2
d + 3

.

The endpoint case was due to Stein. The inequality (3) for

1 < p ≤ 2n + 2
n + 3

(5)

is now known as the Tomas–Stein estimate; it is also sharp in view of Knapp’s counterex-
ample; see [2]. Now, we return to the conjecture 1. Obviously, the Tomas–Stein estimate
gives rise to a highly nontrivial improvement on this conjecture. However, the case

2d + 2
d + 3

< p <
2d

d + 1

was still unknown until the breakthrough of Bourgain [3] in 1991. Bourgain first improved
the exponent in (5) by connecting the Fourier restriction with the behavior of Kakeya max-
imal operators. Later, a bilinear approach was developed by Wolff, Tao and other mathe-
maticians, which refers to the interaction between two different surfaces. Since a bilinear
restriction implies a linear restriction in some sense, improvements on a bilinear restric-
tion naturally lead to improvements on linear restriction; this work can be found in [4–8].
In the first decade of the 21st century, the concentration on Fourier restriction turns to
multilinear case. Some remarkable results were obtained in [9] by Bennett, Carbery and
Tao; they proved the near-optimal multilinear Kakeya and restriction conjectures. But
to what extent multilinear restriction can imply linear restriction was not clear until the
breakthrough by Bourgain and Guth [10]. Later, Guth applied the polynomial partitioning
method to the restriction problem and obtained the range for p,

1 < p <
13
9

,

in the 3-dimensional case; see [11].
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The purpose of our paper is to extend the restriction estimate from Fourier transform
to oscillatory integral operators. Xu and Yan have established some corresponding results
on the (d – 1)-dimensional unit sphere in [12]. The definition of the oscillatory integral
operators is given by

Tλ(f )(ξ ) =
∫

Rd–1
eiλφ(x,ξ )ψ(x, ξ )f (x) dx

where φ(x, ξ ) is a smooth function and ψ(x, ξ ) is a cut-off function. For this kind of oper-
ator, we show the decay estimate

‖Tλ‖Lp→Lq ≤ Cλ–θ , (6)

for suitable p, q, θ . Since the Fourier restriction operator is a Hörmander-type oscillatory
integral operator, if letting λ → +∞ and some limiting arguments, the decay estimate
will imply the restriction conjecture. Details can be found in [2]. The Hörmander-type
oscillatory integral operator requires that the mixed Hessian matrix of phase function φ

should have maximal rank d – 1 on the support of ψ . Consider the dual operator of (1)

T∗
m,ng(ξ ) =

∫

Rd–1
ei[xm

1 ξn
1 +···+(x2

1+···+x2
d–1)mξn

d ]ψ̃(x)g(x) dx1 · · ·dxd–1.

It is obvious that the mixed Hessian matrix

[
∂2φ

∂xj∂ξk

]
(x, ξ ) = mn

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

xm–1
1 ξn–1

1 · · · 0 2x1|x|2(m–1)ξn–1
d

...

0
. . . 0

...
...
0 · · · xm–1

d–1 ξn–1
d–1 2xd–1|x|2(m–1)ξn–1

d

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

has rank zero at (x, ξ ) = (0, 0) since n > 2. Therefore, (1) is not of Hörmander-type. For
such non-Hörmander-type oscillatory integral operators we obtain the following restric-
tion estimate.

Theorem 1 Suppose that n, m, d are integers satisfying 2 ≤ d < n ≤ 2md. Define the oscil-
latory integral operators Tm,n as (1). Then, for all 1 < p ≤ 4md

4md–n ,

‖Tm,nf ‖L2(dσ ,Pd–1∩Bd(0,1)) ≤ Cm,n,d‖f ‖Lp(Rd), (7)

where dσ is the surface measure on paraboloid and Bd(0, 1) is the unit ball in n-dimensional
Euclidean space.

2 Proof of Theorem 1

Proof TT∗ transforms our boundedness estimate to scalar oscillatory integral estimate.
For any Schwartz function f , we now compute the L2 norm of Tm,n(f ) on the compact
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subset of (n – 1)-dimensional paraboloid. It follows that

∥∥Tm,n(f )
∥∥2

L2(Pd–1∩Bd(0,1))

=
〈
Tm,n(f ), Tm,n(f )

〉
Pd–1∩Bd(0,1)

=
∫

Pd–1∩Bd(0,1)
Tm,n(f )(x)Tm,n(f )(x) dσ (x)

=
∫

Rd

∫

Rd

∫

Pd–1∩Bd(0,1)
ei[xm

1 (ξn
1 –ηn

1 )+···+xm
d (ξn

d –ηn
d)] dσ (x)f (ξ )f (η) dξ dη

≤
∫

Rd

∫

Rd

∣∣∣∣

∫

Pd–1∩Bd(0,1)
ei[(xm

1 (ξn
1 –ηn

1 )+···+xm
d (ξn

d –ηn
d)] dσ (x)

∣∣∣∣
∣∣f (ξ )f (η)

∣∣dξ dη.

Denoting the inner integral in the last inequality by K(ξ ,η), then

∥∥Tm,n(f )
∥∥2

L2(Pd–1∩Bd(0,1)) ≤
∫

Rd

∫

Rd

∣∣K(ξ ,η)
∣∣∣∣f (ξ )f (η)

∣∣dξ dη.

Set

I(λ) =
∫

Pd–1∩Bd(0,1)
ei(λ1xm

1 +···+λdxm
d ) dσ (x),

where λ = (λ1, . . . ,λd). We desire to establish the decay estimate of |I(λ)| with respect to
|λ| � 1. In fact,

I(λ) =
∫

Pd–1∩Bd(0,1)
ei(λ1xm

1 +···+λdxm
d ) dσ (x)

=
∫

U
ei(λ1xm

1 +···+λd(x2
1+···+x2

d–1)m)ϕ(x1, . . . , xd–1) dx1 · · ·dxd–1,

where U ⊂R
d–1 is the projection of Pd–1 ∩Bd(0, 1) on (d – 1)-dimensional Euclidean space

and

ϕ(x1, . . . , xd–1) =
√

1 + 4
(
x2

1 + · · · + x2
d–1

)
. (8)

Note that the phase function of I(λ) is a polynomial of degree 2m with variable coefficients
λ1, . . . ,λd–1. To establish the decay estimate of I(λ) with respect to |λ|, we should precisely
describe the relation between decay estimate and these variable coefficients. The following
lemma is exactly what we want.

Lemma 1 Let P(x) =
∑

|α|≤D cαxα be a polynomial of degree ≤ D, ϕ be a smooth function
in the unit ball Bd(0, 1), and Ω be any convex subset of the unit ball. Then

∣∣∣∣

∫

Ω

eiP(x)ϕ(x) dx
∣∣∣∣ ≤ CD,d

( ∑

0<|α|≤D

|cα|
)– 1

D
sup

x∈Bd(0,1)

(∣∣ϕ(x)
∣∣ +

∣∣∇ϕ(x)
∣∣).

This uniform multidimensional Van der Corput lemma can be found in [13] and [14]. By
applying this lemma to I(λ), we can see that

∣∣I(λ)
∣∣ ≤ Cm,d

(|λ1| + · · · + cm|λd|
)– 1

2m ,
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where cm > 1 is a positive constant only depending on m. A pigeonholing argument yields

∣∣I(λ)
∣∣ ≤ Cm,d|λ|– 1

2m .

Returning to our original argument, the decay estimate of |I(λ)| naturally gives rise to an
upper bound of |K(ξ ,η)|,

∣∣K(ξ ,η)
∣∣ ≤ Cm,d

(∣∣ξn
1 – ηn

1
∣∣ + · · · +

∣∣ξn
d – ηn

d
∣∣)– 1

2m

≤ Cm,d
∣∣|ξ1|n – |η1|n + · · · + |ξ ∣∣n

d–|ηd|n
∣∣– 1

2m .

Define a norm by

|ξ |n =
(|ξ1|n + · · · + |ξd|n

) 1
n .

Thus

∣∣K(ξ ,η)
∣∣ ≤ Cm,d

∣∣|ξ |nn – |η|nn
∣∣– 1

2m .

Consequently,

∥∥Tm,n(f )
∥∥2

L2(Pd–1∩Bd(0,1))

≤ Cm,d

∫

Rd

∫

Rd

∣∣|ξ |nn – |η|nn
∣∣– 1

2m
∣∣f (ξ )f (η)

∣∣dξ dη.

For positive a, b, define a fractional integration operator by

Rb
a(f )(η) =

∫

Rd

∣∣|ξ |aa – |η|aa
∣∣– d

b f (ξ ) dξ .

The boundedness of Rb
a on Lebesgue spaces was essentially established in [15]; it states the

following.

Lemma 2 For n < a ≤ b,
1. Rb

a is of weak type (1, b/a).
2. Rb

a is bounded from Lp(Rd) to Lq(Rd), whenever 1
p = 1

q + b–a
b and 1 < p < b

b–a .

Obviously,

∥∥Tm,n(f )
∥∥2

L2(Pd–1∩Bd(0,1)) ≤ Cm,d

∫

Rd
R2md

n
(|f |)(ξ )

∣∣f (η)
∣∣dη.

The Hölder inequality implies

∥∥Tm,n(f )
∥∥2

L2(Pd–1∩Bd(0,1)) ≤ Cm,d
∥∥R2md

n
(|f |)∥∥Lp′ ‖f ‖Lp .

We use (2) and set

1
p

=
1
p′ +

2md – n
2md

.
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Simple computation gives

p =
4md

4md – n
.

By the density of Schwartz functions in Lp, a limiting argument yields the same restriction
phenomena on Lp. The proof of Theorem 1 is completed. �

Remark 1 In fact, as Xu and Yan have done in [12], Theorem 1 can be extended to oscil-
latory integral operators with more general phase functions.

3 The necessary condition to guarantee (7)
In this part, we will construct an example in the spirit of Knapp’s counterexample to show
the necessary condition of (7). Then we have following.

Theorem 2 If (7) holds, the exponent p must obey

p ≤ 2m(d + 1)
2m(d + 1) – (d – 1)n

. (9)

Proof If the inequality

[∫

Pd–1∩Bd(0,1)

∣∣Tm,nf (x)
∣∣2 dσ

] 1
2 ≤ Cm,n,d‖f ‖Lp(Rd)

holds, then, for sufficiently small δ > 0, we have

[∫

Rδ∩Pd–1∩Bd(0,1)

∣∣Tm,nf (x)
∣∣2 dσ

] 1
2 ≤

[∫

Pd–1∩Bd(0,1)

∣∣Tm,nf (x)
∣∣2 dσ

] 1
2

≤ Cm,n,d‖f ‖Lp(Rd), (10)

where

Rδ =
{

(x1, . . . , xd) : |xj| ≤ cδ
1
2 , xd ≤ cδ, j = 1, . . . , d – 1

}
,

where 0 < c < 1 is a small absolute constant determined later. Let

f (ξ ) =
d∏

k=1

χIk (ξk) (11)

where Id = [–c′δ– m
n , c′δ– m

n ] and Ik = [–c′δ– m
2n , c′δ– m

2n ] (1 ≤ k ≤ d – 1) are intervals and 0 <
c′ < 1 is a sufficiently small constant, determined later. For a fixed point x ∈ Rδ ∩ P

d–1 ∩
Bd(0, 1), we have

∣∣Tm,nf (x)
∣∣ (12)

=

∣∣
∣∣∣

∫

Rd
ei(xm

1 ξn
1 +···+xm

d ξn
d )

d∏

k=1

χIk (ξk) dξ1 · · ·dξd

∣∣∣∣∣
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=
d∏

k=1

∣∣∣∣

∫

R

eixm
k ξn

k χIk (ξk) dξk

∣∣∣∣

:=
d∏

k=1

∣∣Fk(xk)
∣∣. (13)

Now, we give the lower bound of Fk(x). In fact, for 1 ≤ k ≤ d – 1, we have

∣∣Fk(xk)
∣∣

=
∣∣∣∣

∫ +∞

–∞
eixm

k ξn
k χIk (ξk) dξk

∣∣∣∣

=
∣∣∣∣

∫ c′δ– m
2n

–c′δ– m
2n

eixm
k ξn

k dξk

∣∣∣∣

=
∣∣∣∣

∫ c′δ– m
2n

–c′δ– m
2n

[
cos

(
xm

k ξn
k
)

+ i sin
(
xm

k ξn
k
)]

dξk

∣∣∣∣

≥
∣∣∣∣

∫ c′δ– m
2n

–c′δ– m
2n

cos
(
xm

k ξn
k
)

dξk

∣∣∣∣.

Since x ∈ Rδ ∩ P
d–1 ∩ Bd(0, 1), we have

∣∣Fk(xk)
∣∣ ≥ c′δ– m

2n

if

cm(
c′)n < 2–10.

With the same assumptions on c and c′, we also have |Fd(xd)| ≥ c′δ– m
n .

By plugging the constructed function (11) into the inequality (10), we obtain

Cm,n,d‖f ‖Lp(Rd) = Cm,n,d
(
2c′) d

p δ
– m(d+1)

2np

≥
[∫

Rδ∩Pd–1∩Bd(0,1)

∣∣Tm,nf (x)
∣∣2 dσ

] 1
2

=

[∫

Rδ∩Pd–1∩Bd(0,1)

∣∣∣∣∣

d∏

k=1

∣∣Fk(xk)
∣∣
∣∣∣∣∣

2

dσ

] 1
2

�
[
σ
(
Rδ ∩ P

d–1 ∩ Bd(0, 1)
)] 1

2 δ– m(d+1)
2n .

From (8), the Jacobi of dσ can be bounded from below and above on the unit ball. Thus

σ
(
Rδ ∩ P

d–1 ∩ Bd(0, 1)
) ≈ δ

d–1
2 .

It means that

1 � δ
m(d+1)

2np – m(d+1)
2n + d–1

4
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holds for all sufficiently small δ. This requires

m(d + 1)
2np

–
m(d + 1)

2n
+

d – 1
4

≥ 0,

which equals

p ≤ 2m(d + 1)
2m(d + 1) – (d – 1)n

.

We finish our proof of necessity. �

Remark 2 It is easy to verify that

4md
4md – n

<
2m(d + 1)

2(d + 1)m – (d – 1)n
.

Our result is not sharp since there is a gap between sufficient and necessary conditions.
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