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Abstract
In this paper, we give another proof of the Orlicz–Lorentz centroid inequality which is
obtained by Nguyen (Adv. Appl. Math. 92:99–121, 2018). We prove that a family of
parallel chord movement under the Orlicz–Lorentz centroid operator is a shadow
system along the same direction.
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1 Introduction
Let K be an origin-symmetric convex body in Euclidean n-space, Rn, the centroid body
of K is the body whose boundary consists of the locus of the centroids of the halves of
K formed when K is cut by codimension 1 subspaces. The concept of centroid body
plays an important role in convex geometry. The most important affine isoperimetric
inequalities that relate the volume of a convex body and of its centroid body or its
projection body were established in the 1960s by Petty (see [18]), and nowadays are
known as the Busemann–Petty centroid inequality or the Busemann-projection inequal-
ity. With the development of convex geometry, the Busemann-centroid inequality (or the
Busemann-projection inequality) has gone through the Lp Busemann-centroid inequal-
ity (or Lp Busemann-projection inequality), and the Orlicz Busemann-centroid inequal-
ity (or the Orlicz Busemann-projection inequality). The Orlicz Busemann-centroid in-
equality and the Orlicz Busemann-projection inequality were given by Lutwak, Yang and
Zhang in 2010 (see [15, 16]), which extend the Lp Brunn–Minkowski theory to Orlicz–
Brunn–Minkowski theory. For more about the Lp Brunn–Minkowski theory and the Or-
licz Brunn–Minkowski theory see, e.g., [1–14, 20, 22–26] and the references therein. Re-
cently, Nguyen (see [17]) used the methods of [14, 15] to extend the Orlicz centroid bodies
to the Orlicz–Lorentz centroid bodies and establishes the Orlicz–Lorentz centroid in-
equality. He conjectures that the shadow system approach would give another proof of
the Orlicz–Lorentz centroid inequality. In this paper, we conform his assertion and give a
proof of that a family of parallel chord movement under the behavior of the Orlicz–Lorentz
centroid operator Γφ,ω is a shadow system along the same direction.

In the next section, we follow the notation of [17]. Let (Ω ,Σ ,μ) be a measure space with
an σ -finite, non-atom measure of these space. For any measurable function f : Ω →R, we
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define the distribution function of f by

μf (s) = μ
({

x :
∣∣f (x)

∣∣ > s, x ∈ Ω
})

, ∀s > 0,

and the decreasing rearrangement of f by

f ∗(t) = inf
{
λ > 0 : μf (λ) ≤ t

}
,

for any t > 0.
We denote I = (0,μ(Ω)). A function φ : [0,∞) → [0,∞) is called an Orlicz function if

φ is a convex function such that φ(t) > 0 if t > 0, φ(0) = 0 and limt→∞ φ(t) = ∞. A weight
function ω : I → (0,∞) is non-increasing function which is locally integrable with respect
to the Lebesgue measure on I such that

∫
I ω(t) dt = ∞ if I = (0,∞). The Orlicz–Lorentz

space Λφ,ω on (Ω ,Σ ,μ) is the set of all measurable functions f on Σ such that
∫

I
φ

(
f ∗(t)

λ

)
ω(t) dt < ∞,

for some λ > 0. If the function f ∈ Λφ,ω , its Orlicz norm is defined by

‖f ‖Λφ,ω = inf

{
λ > 0 :

∫

I
φ

(
f ∗(t)

λ

)
ω(t) dt ≤ 1

}
. (1.1)

By the definition of the Orlicz norm, it is obvious that if f and g have the same distri-
bution function then ‖f ‖Λφ,ω = ‖g‖Λφ,ω . Specially, when ω ≡ 1, the Orlicz–Lorentz space
Λφ,ω is the Orlicz space. When φ(t) = tp, and ω ≡ 1, it is the Lebesgue space Lp(Ω ,μ).
When φ(t) = t, we obtain the Lorentz space Λω .

Let φ be a convex function and a weight function ω on I = (0, 1), consider the measure
space (K ,BK ,μK ), here BK denotes the σ -algebra of all Lebesgue measurable subset of
K , and μK denotes the normalized measure on K . For any vector x ∈ R

n, we define the
function fx,K on K by

fx,K = 〈x, y〉, y ∈ K .

The Orlicz–Lorentz centroid body Γφ,ωK of K is defined by whose support function is
given by

h(Γφ,ωK , x) = ‖fx,K‖Λφ,ω = inf

{
λ > 0 :

∫ 1

0
φ

( f ∗
x,K (t)
λ

)
ω(t) dt ≤ 1

}
. (1.2)

Specially, when ω ≡ 1, the definition of (1.2) coincides with the definition of Orlicz cen-
troid body given by Lutwak, Yang and Zhang [15] for even convex function φ in R

n. The
following Orlicz–Lorentz centroid inequality was established by Nguyen.

Orlicz–Lorentz centroid inequality If φ is an Orlicz function, ω is a weight function on
(0, 1) and K is a convex body in R

n containing the origin in its interior, then the volume
ratio

|Γφ,ωK |
|K | (1.3)

is minimized if and only if K is an origin-centered ellipsoid.
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The method used by Nguyen in [17] is the Steiner symmetrization and the trouble of the
proof of the Orlicz–Lorentz centroid inequality is the decreasing rearrangement function
of ω. In this paper, we prove the following.

Theorem 1.1 If {Kt : t ∈ [0, 1]} is a parallel chord movement along the direction v, then
Γφ,ωKt is a shadow system along the same direction v.

The paper is organized as follows. In Sect. 2, we give some basic facts regarding convex
bodies, shadow system and properties of shadow system. Section 3 contains the proof of
the main theorem.

2 Shadow system of convex body
Let Sn–1 and B denote the unit sphere and the unit ball in R

n, write ωn for the n-
dimensional volume of B, and where ωn = π

n
2

Γ (1+ n
2 ) , Γ (·) is the Gamma function. We write

Kn for the set of convex bodies (compact convex subsets) of Rn, and denote Kn
o by the set

of convex bodies that contain the origin in their interiors. For K in R
n, the support func-

tion hK is the real-valued function defined by hK (u) = max{〈u, y〉 : y ∈ K} for all u ∈ Sn–1.
From the definition of the support function we know that, for c > 0, the support function
of the convex body cK = {cx : x ∈ K} is

hcK = chK . (2.1)

Moreover, for A ∈ GL(n) the support function of the image AK = {Ay : y ∈ K} is given by

hAK (x) = hK
(
Atx

)
.

A shadow system (or a linear parameter system) along the direction v is a family of con-
vex bodies Kt ⊂R

n that can be defined by (see [19, 21])

Kt = conv
{

z + α(z)tv : z ∈ A ⊂R
n}, (2.2)

where A is an arbitrary bounded set of points, α(z) is a real bounded function on A, and
the parameter t runs in an interval of the real axis.

Note that the orthogonal projection Kt|v⊥ of Kt onto v⊥ = {x ∈ R
n : 〈v, x〉 = 0} is inde-

pendent of t.
The following lemma related to the volumes of Kt is due to Shephard (see [21]).

Lemma 2.1 Every mixed volume involving n shadow systems along the same direction is a
convex function of the parameter. In particular, the volume V (Kt) and all quermassintegrals
Wi(Kt), i = 1, 2, . . . , n, of a shadow system are convex functions of t.

A parallel chord movement along the direction v is a family of convex bodies Kt in R
n

defined by

Kt =
{

z + β(x)tv : z ∈ K , x = z – 〈z, v〉v}, (2.3)

where K is a convex body in R
n, β(x) is a continuous real function on v⊥ and the parameter

t runs in an interval of the real axis, say t ∈ [0, 1]. In other words, to each chord of K parallel
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to v we assign a speed vector β(x)v, where x is the projection of the chord onto v⊥; then
we let the chords move for a time t and denote by Kt their union. Such a union has to be
convex, this is the only restriction we have on defining the speed function β .

Notice that if {Kt : t ∈ [0, 1]} is a parallel chord movement, then via Fubini’s theorem one
deduces that the volume of Kt is independent of t.

Another special instance is the movement related to Steiner’s symmetrization. For a
direction v and let

K =
{

x + yv ∈R
n : x ∈ K |v⊥, y ∈ R, f (x) ≤ y ≤ g(x)

}
, (2.4)

here f and –g are convex functions on K |v⊥. If let β(x) = –(f (x) + g(x)) and t ∈ [0, 1] is such
that K0 = K and K1 = Kv, where Kv is the reflection of K in the hyperplane v⊥, and K1/2 is
the Steiner symmetrization of K with respect to v⊥.

3 Proof of Orlicz–Lorentz centroid inequality
Let K ∈ Sn

0 be a star body with respect to the origin in R
n, recall φ ∈ C and the definition

of hΓφ,ωK , there is a lemma obtained by Nguyen [17].

Lemma 3.1 Suppose K ∈ Sn
o and u0 ∈ Sn–1. Then we have

∫ 1

0
φ

( f ∗
u0,K (t)
λ0

)
ω(t) dt = 1,

if and only if

hΓφ,ωK (u0) = λ0.

Let {Kt : t ∈ [0, 1]} be a parallel chord movement along the direction v, for x ∈ v⊥, we
have

μfx,Kt
(λ) = μ

({
y′ :

∣
∣fx,Kt

(
y′)∣∣ > λ, y′ ∈ Kt

})

= μ
({

y :
∣
∣〈x,

(
y + β

(
y|v⊥)

tv
)〉∣∣ > λ, y ∈ K0

})

= μ
({

y :
∣∣fx,K0 (y)

∣∣ > λ, y ∈ K0
})

= μfx,K0
(λ)

and

f ∗
x,Kt (s) = inf

{
λ > 0 : μfx,Kt

(λ) ≤ s
}

= inf
{
λ > 0 : μfx,K0

(λ) ≤ s
}

= f ∗
x,K0 (s),

which means that, for x ∈ v⊥, we have f ∗
x,Kt (s) = f ∗

x,K0
(s). Moreover, we have

hΓφ,ωKt (x) = inf

{
λ ≥ 0 :

∫ 1

0
φ

( f ∗
x,Kt (t)

λ

)
ω(t) dt ≤ 1

}

= inf

{
λ ≥ 0 :

∫ 1

0
φ

( f ∗
x,K0

(t)
λ

)
ω(t) dt ≤ 1

}
, (3.1)
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for every x ∈ v⊥. Then we have

hΓφ,ωKt (x) = hΓφ,ωK0 (x), (3.2)

which means that the orthogonal projection of Γφ,ωKt onto v⊥ is independent of t. But
this is not sufficient to say that Γφ,ωKt is a shadow system. The following lemma, given
by Campi and Gronchi (see [2]), grants that a family of convex bodies having constant
orthogonal projection onto a fixed hyperplane is actually a shadow system.

Lemma 3.2 Let {Kt : t ∈ [0, 1]}, be one parameter family of convex bodies such that Kt|v⊥

is independent of t. If the bodies Kt have the following expression:

Kt =
{

x + ytv : |x ∈ Kt|v⊥, yt ∈ R, ft(x) ≤ yt ≤ gt(x)
}

, ∀t ∈ [0, 1],

for suitable functions gt(x), ft(x), then {Kt : t ∈ [0, 1]} is a shadow system along the direction
v if and only if for every x ∈ K0|v⊥,

1: gt(x) and –ft(x) are convex functions of the parameter t in [0, 1],
2: fμt1+(1–μ)t2 (x) ≤ μgt1 (x) + (1 – μ)ft2 (x) ≤ gμt1+(1–μ)t2 (x), for every t1, t2,μ ∈ [0, 1].

In the following we will prove that a parallel chord movement under the Orlicz–Lorentz
centroid operator satisfies the above lemma. Now we are in a position to prove Theo-
rem 1.1.

Proof of Theorem 1.1 Let {Kt : t ∈ [0, 1]} be a parallel chord movement along the direc-
tion v. Since the orthogonal projection of Γφ,ωKt onto v⊥ is independent of t, it is sufficient
to show that the family Γφ,ωKt satisfies conditions 1 and 2 of Lemma 3.2.

As the projection of Γφ,ωKt onto v⊥ is independent of t, then, for every t ∈ [0, 1], it can
be represented as

Γφ,ωKt =
{

x + ytv : x ∈ (Γφ,ωK0)|v⊥, ft(x) ≤ yt ≤ gt(x)
}

, (3.3)

where gt(x) and –ft(x) are concave functions defined on (Γφ,ωK0)|v⊥.
On the other hand, by the definition of the support function, let z ∈ Γφ,ωKt if and only if

〈z, u〉 ≤ hΓφ,ωKt (u),

for all u ∈R
n. Then we obtain

gt(x) = sup
{
μ ∈R : 〈x + μv, u〉 ≤ hΓφ,ωKt (u),∀u ∈R

n}

= sup
{
μ ∈R : μ〈v, u〉 ≤ hΓφ,ωKt (u) – 〈x, u〉,∀u ∈R

n}, (3.4)

for all x ∈ (Γφ,ωK0)|v⊥. Note that the inner product and support function are both homo-
geneous of degree 1. Thus in (3.4) we need consider only the vectors u such that |〈u, v〉| = 1
and there exists a vector  ∈ v⊥ such that

gt(x) = sup
{
μ ∈R : μ ≤ hΓφ,ωKt ( + v) – 〈x, + v〉,∀ ∈ v⊥}

= inf
∈v⊥

{
hΓφ,ωKt ( + v) – 〈x, 〉}. (3.5)
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Notice that gt(x) is in fact the minimum, as  ∈ v⊥, of hΓφ,ωKt ( + v) – 〈x, 〉, unless x
belongs to the boundary of (Γφ,ωKt)|v⊥. Actually, the minimum is attained when  + v is
directed as a normal vector to Γφ,ωKt at x + gt(x)v.

By the similar method we have

ft(x) = – sup
{
λ ∈R : 〈x – λv, u〉 ≤ hΓφ,ωKt (u),∀u ∈R

n},

which implies

ft(x) = – inf
 ′∈v⊥

{
hΓφ,ωKt

(
 ′ – v

)
–

〈
x, ′〉}. (3.6)

In order to prove the convexity of gt(x), we only need to prove that, for ∀t1, t2 ∈ [0, 1].

2g t1+t2
2

(x) ≤ gt1 (x) + gt2 (x).

Indeed by (3.4) and (3.5) we have

2g t1+t2
2

(x) = 2 inf
∈v⊥

{
hΓφ,ωK t1+t2

2
( + v) – 〈x, 〉}

= inf
∈v⊥

{
hΓφ,ωK t1+t2

2
2( + v) – 〈x, 2 〉}. (3.7)

Let hΓφ,ωK t1
2

(1 + v) = λt1 , hΓφ,ωK t2
2

(2 + v) = λt2 , and 1,2 ∈ v⊥, then

1 =
∫ 1

0
φ

( f ∗
1
2 (1+v),K t1

2

(t)

λt1
2

)
ω(t) dt, (3.8)

1 =
∫ 1

0
φ

( f ∗
1
2 (2+v),K t2

2

(t)

λt2
2

)
ω(t) dt. (3.9)

And let y ∈ K t1+t2
2

, then y = y′ + β(y′)( t1+t2
2 )v, where y′ = y|v⊥ , we define the map T1 :

K t1+t2
2

→ K t1
2

and T2 : K t1+t2
2

→ K t2
2

by

T1y = y′ + β
(
y′) t1

2
v, T2y = y′ + β

(
y′) t2

2
v.

Then we have

f 1
2 (1+2)+v,K t1+t2

2

(y) =
1
2
〈
1 + 2, y′〉 +

1
2
β
(
y′)

(
t1 + t2

2

)

=
1
2
〈
1, y′〉 +

1
2
β
(
y′) t1

2
+

1
2
〈
2, y′〉 +

1
2
β
(
y′) t2

2
= f 1

2 (1+v),K t1
2

(T1y) + f 1
2 (2+v),K t2

2

(T2y).

Notice that T1 and T2 are preserving-measure maps and

(f 1
2 (1+v),K t1

2

◦ T1)∗ = (f 1
2 (1+v),K t1

2

)∗,

(f 1
2 (2+v),K t2

2

◦ T2)∗ = (f 1
2 (2+v),K t2

2

)∗.
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Since the orthogonal projection of Γϕ,ωKt onto v⊥ is independent of t, and for φ ∈ C ,
φ(f ∗) = (φ(|f |))∗ holds for any measurable function f , which implies

φ

( f ∗
1
2 (1+2)+v,K t1+t2

2
1
2λt1 + 1

2λt2

)
= φ

[ (f 1
2 (1+v),K t1

2

◦ T1 + f 1
2 (2+v),K t2

2

◦ T2)∗

1
2λt1 + 1

2λt2

]

=
[
φ

( |f 1
2 (1+v),K t1

2

+ f 1
2 (2+v),K t2

2

|
1
2λt1 + 1

2λt2

)]∗
.

It is obvious that

|f 1
2 (1+v),K t1

2

+ f 1
2 (2+v),K t2

2

|
1
2λt1 + 1

2λt2

≤ λt1

λt1 + λt2

|f 1
2 (1+v),K t

2
|

1
2λt1

+
λt2

λt1 + λt2

|f(2+v),K t2
2
|

1
2λt2

. (3.10)

The increasing monotonicity and convexity of φ together imply

φ

( f ∗
1
2 (1+2)+v,K t1+t2

2
1
2λt1 + 1

2λt2

)

≤
[

λt1

λt1 + λt2
φ

( |f 1
2 (1+v),K t

2
|

1
2λt1

)
+

λt2

λt1 + λt2
φ

( |f 1
2 (2+v),K t2

2

|
1
2λt2

)]∗
. (3.11)

Multiplying both sides of (3.11) by ω, then integrating the inequality on (0, 1) and using
the fact

∫ 1

0
(g1 + g2)∗ω(t) dt ≤

∫ 1

0
(g1)∗ω(t) dt +

∫ 1

0
(g2)∗ω(t) dt

we obtain

∫ 1

0
φ

( f ∗
1
2 (1+2)+v,K t1+t2

2

(t)

1
2λt1 + 1

2λt2

)
ω(t) dt

≤ λt1

λt1 + λt2

∫ 1

0
φ

( f ∗
1+v

2 ,K t1
2

(t)

1
2λt1

)
ω(t) dt +

λt2

λt1 + λt2

∫ 1

0
φ

( f ∗
2+v

2 ,K t2
2

(t)

1
2λt2

)
ω(t) dt

= 1.

Then we have

hΓφ,ωK t1+t2
2

(
1 + 2

2
+ v

)
≤ λt1 + λt2

2
. (3.12)

Then we have

gt1 (x) + gt2 (x) = inf
1∈v⊥

{
hΓφ,ωKt1

(1 + v) – 〈x,1〉
}

+ inf
2∈v⊥

{
hΓφ,ωKt2

(2 + v) – 〈x,2〉
}

= inf
1∈v⊥

{
λt1 – 〈x,1〉

}
+ inf

2∈v⊥
{
λt2 – 〈x,2〉

}
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= inf
∈v⊥

{
λt1 + λt2 – 〈x, 2 〉}

≥ inf
∈v⊥

{
2hΓφ,ωK t1+t2

2
( + v) – 〈x, 2 〉}

= 2g t1+t2
2

(x).

The third equality comes from the fact that the sets {λt1 – 〈x,1〉} and {λt2 – 〈x,2〉} are
nonempty and bounded sets. Thus we prove the convexity of the gt(x). By the same method
we can prove the convexity of –ft(x).

Now we need to prove condition 2.
First we prove

fμt1+(1–μ)t2 (x) ≤ μgt1 (x) + (1 – μ)ft2 (x). (3.13)

Let hΓφ,ωKt1
(–μ1 +μv) = λt1 , and hΓφ,ωKμt1+(1–μ)t2

(2 – v) = λμt1+(1–μ)t2 , we write λ = λt1 +
λμt1+(1–μ)t2 for short. We also define the map T ′

1 : K(1–μ)t2+μt1 → Kt1 and T ′
2 : K(1–μ)t2+μt1 →

Kt2 by T ′
1y = y′ + β(y′)t1v, T ′

2y = y′ + β(y′)t2v. Note that

f2–μ1–(1–μ)vKt2

(
T ′

2y
)

=
〈
2 – μ1 – (1 – μ)v, T ′

2y
〉

=
〈
2 – μ1 – (1 – μ)v, y′ + β

(
y′)t2v

〉

=
〈
2 – v, y′〉 +

〈
–μ1 + μv, y′〉 – β

(
y′)(t2(1 – μ) + μt1 – μt1

)

=
〈
2 – v, y′〉 + β

(
y′)((1 – μ)t2 + μt1

)〈2 – v, v〉
+

〈
–μ1 + μv, y′〉 + β

(
y′)t1〈–μ1 + μv, v〉

= f2–vK(1–μ)t2+μt1 (y) + f–μ1+μvKt1

(
T ′

1y
)
.

So we have

φ

( f ∗
2–μ1–(1–μ)vKt2 ◦ T ′

2

λ

)
= φ

(
(f2–vK(1–μ)t2+μt1 + f–μ1+μvKt1 ◦ T ′

1)∗

λ

)

= φ

( |f2–vK(1–μ)t2+μt1 + f–μ1+μvKt1 ◦ T ′
1|

λ

)∗
.

The increasing monotonicity and convexity of φ and the preserving-measure maps T ′
1 and

T ′
2, imply

φ

( |f2–vK(1–μ)t2+μt1 + f–μ1+μvKt1 ◦ T ′
1|

λ

)

≤ λt1

λ
φ

( |f–μ1+μvKt1 ◦ T ′
1|

λt1

)
+

λμt1+(1–μ)t2

λ
φ

( |f2–vK(1–μ)t2+μt1 |
λμt1+(1–μ)t2

)
.

Then

φ

( f ∗
2–μ1–(1–μ)vKt2

λ

)

≤
(

λt1

λ
φ

( |f–μ1+μvKt1 |
λt1

)
+

λμt1+(1–μ)t2

λ
φ

( |f2–vK(1–μ)t2+μt1 |
λμt1+(1–μ)t2

))∗
.
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Integrating both sides on [0, 1] we have

∫ 1

0
φ

( f ∗
2–μ1–(1–μ)vKt2

λ

)
ω(t) dt

≤
∫ 1

0

(
λt1

λ
φ

( |f–μ1+μvKt1 |
λt1

)
+

λμt1+(1–μ)t2

λ
φ

( |f2–vK(1–μ)t2+μt1 |
λμt1+(1–μ)t2

))∗
ω(t) dt

≤ λt1

λ

∫ 1

0
φ

( f ∗
–μ1+μvKt1

λt1

)
ω(t) dt +

λμt1+(1–μ)t2

λ

∫ 1

0
φ

( f ∗
2–vK(1–μ)t2+μt1

λμt1+(1–μ)t2

)
ω(t) dt

= 1.

The definition of h(Γφ,ωK , ·) gives

hΓφ,ωKt2

(
2 – μ1 – (1 – μ)v

)

≤ hΓφ,ωKt1
(–μ1 + μv) + hΓφ,ωKμt1+(1–μ)t2

(2 – v). (3.14)

Note that

(1 – μ)ft2 (x)

= – inf
∈v⊥

{
hΓφ,ωKt2

(
(1 – μ)( – v)

)
–

〈
x, (1 – μ)

〉}

= – inf
1,2∈v⊥

{
hΓφ,ωKt2

(
(2 – μ1) – (1 – μ)v

)
) –

〈
x, (2 – μ1

〉}

≥ – inf
1,2∈v⊥

{
hΓφ,ωKt1

(–μ1 + μv) + hΓφ,ωKμt1+(1–μ)t2
(2 – v) – 〈x, (2 – μ1)

}

= – inf
1∈v⊥

{
hΓφKμt1+(1–μ)t2

(2 – v) – 〈x,2〉
}

– inf
2∈v⊥

{
hΓφKt1

(–μ1 + μv) – 〈x,μ1〉
}

= gμt1+(1–μ)t2 (x) – μgt1 (x).

So we obtain

μgt1 (x) + (1 – μ)ft2 (x) ≥ fμt1 +(1–μ)t2 (x). (3.15)

This prove that the left hand of 2 of Lemma 3.2. The same as the right hand inequality. So
we complete the proof of Theorem 1.1. �

Specially, when taking φ = φp = | · |p in Theorem 1.1, we obtain the following corollary,
which was given by Campi and Gronchi.

Corollary 3.1 Let {Kt : t ∈ [0, 1]} be a parallel chord movement along the direction v, then
ΓφKt is a shadow system along the same direction v.

By Theorem 1.1 we can give another proof of the Orlicz centroid inequality. First we
need the following lemma.
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Lemma 3.3 Let K ∈ Sn
o and φ ∈ C , denote by Kv the reflection of K in the hyperplane v⊥,

then we have

Γφ,ωKv = (Γφ,ωK)v. (3.16)

Proof In fact, note that

hKv
(
μw + (1 – μ)v

)
= hK

(
μw – (1 – μ)v

)
, (3.17)

for all w ∈ v⊥ and μ ∈ [0, 1]. We write K = {x : x + yv, x ∈ K |v⊥, f (x) ≤ y ≤ g(x)}. In order to
prove (3.16), by (3.17) we only need to prove that

hΓφ,ωK
(
μw – (1 – μ)v

)
= hΓφ,ωKv

(
μw + (1 – μ)v

)
.

Let hΓφ,ωKv (μw + (1 – μ)v) = λ0, by Lemma 3.1 we obtain

1 =
∫ 1

0
φ

( f ∗
μw+(1–μ)v,Kv (t)

λ0

)
ω(t) dt =

∫ 1

0
φ

( f ∗
μw–(1–μ)v,K (t)

λ0

)
ω(t) dt.

This means that hΓφ,ωK (μw + (1 – μ)v) = λ0, we prove that Γφ,ωKv = (Γφ,ωK)v. �

If {Kt : t ∈ [0, 1]} is the parallel chord movement related to Steiner symmetrization along
v, then

2|Γφ,ωK1/2| ≤ |Γφ,ωK0| + |Γφ,ωK1| = |Γφ,ωK | +
∣
∣(Γφ,ωK)v∣∣ = 2|Γφ,ωK |,

that is, the volume of the Orlicz–Lorentz centroid body is not increased after a Steiner
symmetrization. Note that after finite Steiner symmetrizations a convex body can be
transformed into a ball. Thus we see that the ratio |Γφ,ωK |/|K | attains its minimum value
when K is a ball.

Moreover, by the definition of the Orlicz–Lorentz centroid body we know that it is origin
symmetric, then we have the following.

Theorem 3.1 Let φ ∈ C , {Kt : t ∈ [0, 1]} be a parallel chord movement with speed function
β , then the volume of Γφ,ωKt is strictly convex function of t unless β is linear function defined
on v⊥, that is, β(x) = 〈x, u〉.

Proof By definition, Γφ,ωKt is an origin-symmetric convex body, then –ft(x) = gt(–x) for
all x ∈ (Γφ,ωKt)|v⊥. Then the volume of Γφ,ωKt can be expressed as

V (Γφ,ωKt) =
∫

(Γφ,ωK0)|v⊥

[
gt(x) – ft(x)

]
dx =

∫

(Γφ,ωK0)|v⊥

[
gt(x) + gt(–x)

]
dx

= 2
∫

(Γφ,ωK0)|v⊥
gt(x) dx. (3.18)

Hence the convexity of the gt(x) with t implies the convexity of the volume V (Γφ,ωKt).
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If 2V (Γφ,ωK t1+t2
2

) = V (Γφ,ωKt1 ) + V (Γφ,ωKt2 ) for some t1, t2 ∈ [0, 1], then we deduce that

2g t1+t2
2

(x) = gt1 (x) + gt2 (x), (3.19)

for almost every x ∈ (Γφ,ωK0)|v⊥. In fact, the function gt is a minimum, for every t. There-
fore there exist 1,2 ∈ v⊥ such that

gt1 (x) + gt2 (x) = hΓφ,ωKt1
– 〈x,1〉 + hΓφ,ωKt2

– 〈x,2〉. (3.20)

Let hΓφ,ωKt1
= λt1 , hΓφ,ωKt2

= λt2 , then we obtain

gt1 (x) + gt2 (x) = λt1 + λt2 – 2
〈
x,

1 + 2

2

〉
.

Thus by (3.12) we have

gt1 (x) + gt2 (x) ≥ 2hΓφ,ωK t1+t2
2

(
1 + 2

2
+ v

)
– 2

〈
x,

1 + 2

2

〉
≥ g t1+t2

2
(x). (3.21)

Note that the first inequality in (3.21) holds if and only if hΓφ,ωK t1+t2
2

( 1+2
2 + v) = λt1 +λt2

2 ,

which means

∫ 1

0
φ

( f ∗
2(w+v),K 1+2

2
(t)

λt1 + λt2

)
ω(t) dt = 1.

By the convexity of φ and the continuity of β , we see that

〈(1 + v), z〉 + β(y|v⊥)t1

λt1
=

〈(2 + v), y〉 + β(y|v⊥)t2

λt2
, (3.22)

for every y ∈ K0. This means that β is a linear function. Set y = y′ + sv, y′ ∈ K0|v⊥ in (3.22)
and differentiating with respect to the parameter s, it turns out that λt1 /λt2 = 1, that is,

〈
(1 + v), z

〉
+ β

(
y|v⊥)

t1 =
〈
(2 + v), y

〉
+ β

(
y|v⊥)

t2. (3.23)

So we conclude that β(x) = 〈x, u〉 for some vector u. This completes the proof. �
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