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Abstract
Let �p,φ be the weighted p-Laplacian defined on a smooth metric measure space.
We study the evolution and monotonicity formulas for the first eigenvalue,
λ1 = λ(�p,φ ), of �p,φ under the Ricci-harmonic flow. We derive some monotonic
quantities involving the first eigenvalue, and as a consequence, this shows that λ1 is
monotonically nondecreasing and almost everywhere differentiable along the flow
existence.
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1 Introduction
In this paper we study evolution, monotonicity, and differentiability of the first weighted
p-eigenvalue on an n-dimensional compact Riemannian manifold (M, g) equipped with
measure dμ, whose metric g = g(t) evolves along the Ricci-harmonic flow (RHF)

⎧
⎨

⎩

∂
∂t g(x, t) = –2Rc(x, t) + 2α∇φ(x, t) ⊗ ∇φ(x, t),
∂
∂t φ(x, t) = �gφ(x, t).

(1.1)

Here φ(x, t) =: φ : M × [0,∞) →R is a one-parameter family of smooth functions at least
C2 in x and C1 in t, ⊗ is the tensor product, Rc is the Ricci curvature tensor of (M, g), ∇
is the gradient operator, α is a nonincreasing constant function of time bounded below
by αn > 0 in time, and � is the Laplace–Beltrami operator on M. Sometimes, we shall
refer to (1.1) simply as RHF. System (1.1) was first studied by List [18] with motivation
coming from general relativity. It was generalized by Müller [20] to the situation where
φ : (M, g) → (N , h), ((N , h) is a compact Riemannian manifold endowed with static metric
h) and φ satisfies Eells and Sampson’s heat flow [9] for harmonic map. Indeed, if φ is a
constant function, the flow degenerates to the well-known Hamilton’s Ricci flow [12].

In recent time, getting useful information about behaviors of eigenvalues of geometric
operators on evolving manifolds has gained more popularity among researchers. This in-
formation usually turns to powerful tools in the study of geometry and topology of the
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underlying manifolds. Perelman [21] recorded a great success by proving that the first
nonzero eigenvalue of –4�+ R is nondecreasing along the Ricci flow via the monotonicity
formula for his energy functional F . Not quite long after Perelman’s paper [21], Cao [7]
extended Perelman’s result to the first eigenvalue of �+ R

2 on the condition that the curva-
ture operator is nonnegative. Later, Li [15] proved the same result without any curvature
assumption. The following papers [8, 16] are some results along this idea. Recently, the
first author studied the evolution and monotonicity of the first eigenvalue of p-Laplacian
and weighted Laplacian in [1] and [2], respectively. He found some monotonic quantities
under the respective flows. Azami [5] (see also [6]) extended these results to the setting
of Ricci–Bourguignon flow. In [11] and [10], the authors studied the evolution of the first
eigenvalue of �φ + R

2 under the Yamabe flow and the Ricci flow, respectively, and they
also obtained some monotonic quantities under these flows. For similar results, see [3,
4, 17, 25, 26] and the references therein. Motivated by the above works, in this paper we
extend the results in [1] and [2] to the first eigenvalue of weighted p-Laplacian under the
Ricci-harmonic flow.

The plan of the paper is as follows. In Sect. 2, we give background information in terms
of basic notation and relevant definitions. In Sect. 3 we discuss regularization procedure
for the nonlinear and degenerate operator and then present some evolution equations
that will be useful in the proofs of the main results. In the last section, we state and prove
the main results of the paper. Here, we discuss the time evolution and monotonicity of
λ1(�p,φ) without differentiability assumption on its corresponding eigenfunction. In fact,
the differentiability of the eigenvalue is a consequence of the monotonicity formula de-
rived.

2 Notation and preliminaries
By standard notations in the theory of Ricci-harmonic flow, we denote a symmetric 2-
tensor by Sc := Rc – α∇φ ⊗ ∇φ, its components by Sij := Rij – αφiφj, and its trace by S :=
R –α|∇φ|2, where Rij are the Ricci tensor’s components, R is the scalar curvature of (M, g),
and φi = ∇iφ = ∂

∂xi φ.
In most cases, our calculations will be performed in a local coordinate system {xi}n

1 ,
where repeated indices are summed. The Riemannian metric g(x) at any point x ∈ M is a
bilinear symmetric positive definite matrix written in local coordinates as

g(x) = gij dxi dxj.

We denote the Laplace–Beltrami operator, p-Laplacian, weighted Laplacian, and weighted
p-Laplacian on (M, g) by �, �p, �φ , and �p,φ , respectively. For instance, in a local coor-
dinate system

� = gij
(

∂2

∂xi ∂xj – Γ k
ij

∂

∂xk

)

with respect to the Christoffel symbols Γ k
ij , where gij = (gij)–1 is the inverse matrix. We

denote dv as the Riemannian volume measure on (M, g) and dμ := e–ϕ(x) dv, the weighted
volume measure, where ϕ ∈ C∞(M). Throughout, M will be assumed to be closed (com-
pact without boundary), except if otherwise stated.

Let f : M →R be a smooth function.
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1. For p ∈ (1, +∞), the p-Laplacian of f is defined as

�pf = div
(|∇f |p–2∇f

)

= |∇f |p–2�f + (p – 2)|∇f |p–4 Hess f (∇f ,∇f ),

where div is the divergence operator, the adjoint of gradient for the L2-norm induced
by the metric on the space of differential forms. When p = 2, �p is the usual
Laplace–Beltrami operator.

2. For the weighted volume measure dμ = e–φ dv, the weighted-Laplacian is defined by

�φ f := eφ div
(
e–φ∇f

)
= �f – 〈∇φ,∇f 〉,

which is a symmetric diffusion operator on L2(M, g, dμ) and self-adjoint with respect
to the measure in the sense of integration by parts formula

∫

M
�φuv dμ = –

∫

M
〈∇u,∇v〉dμ =

∫

M
u�φv dμ

for any u, v ∈ C∞(M) (M is closed). When φ is constant, the weighted Laplacian is
just the Laplace–Beltrami operator.

3. The weighted p-Laplacian generalizes the p-Laplacian and the weighted Laplacian. It
is defined by

�p,φ := eφ div
(
e–φ|∇f |p–2∇f

)
= �pf – |∇f |p–2〈∇φ,∇f 〉.

When p = 2, this is just the weighted Laplacian, and when φ is a constant, it is just the
p-Laplacian.

The mini-max principle also holds for the weighted p-Laplacian where its first nonzero
eigenvalue is characterized as follows:

λ1(t) = inf
f

{∫

M
|∇f |p dμ :

∫

M
|f |p dμ = 1, f 	= 0, f ∈ W 1,p(M, g, dμ)

}

(2.1)

satisfying the constraints
∫

M |f |p–2f dμ = 0, where W 1,p(M, g, dμ) is the completion of
C∞(M, g, dμ) with respect to the norm

‖f ‖W 1,p =
(∫

M
|f |p dμ +

∫

M
|∇f |p dμ

) 1
p

.

The infimum in (2.1) is achieved by f ∈ W 1,p satisfying the Euler–Lagrange

∫

M
|∇f |p–2〈∇f ,∇ψ〉dμ – λ1

∫

M
|f |p–2〈f ,ψ〉dμ = 0 (2.2)

for all ψ ∈ C∞
0 (M) in the sense of distribution.

We need to compute evolution of λ1(t) but we know that it is nonlinear in general.
Even we do not know whether λ1(t) or its corresponding eigenfunction is C1-differentiable
along Ricci-harmonic flow. It has been pointed out that differentiability for the case p = 2
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under geometric flow is a consequence of eigenvalue perturbation theory, see for instance
[13]. To overcome this difficulty, we will use the approach of [7], see also Wu [25] and
Wu, Wang, and Zheng [24], as used under the Ricci flow. The details will be discussed in
Sect. 4.

3 Regularization procedure and basic lemma
Firstly, we introduce the linearized operator of the weighted p-Laplacian on function h ∈
C∞(M) defined pointwise at the points ∇h 	= 0 [23]

Lφ(f̃ ) := eφ div
(
e–φ|∇h|p–2G(∇ f̃ )

)

= |∇h|p–2�φ f̃ + (p – 2)|∇h|p–2 Hess f̃ (∇h,∇h) + (p – 2)�p,φh
〈∇h,∇ f̃ 〉

|∇h|2

+ 2(p – 2)|∇h|p–4 Hess f̃
(

∇h,∇ f̃ –
∇h
|∇h|

〈 ∇h
|∇h| ,∇ f̃

〉)

for a smooth function f̃ on M, where G can be viewed as a tensor defined as

G := Id + (p – 2)
∇h ⊗ ∇h

|∇h|2 .

Notice that Lφ is positive definite for p > 1 and strictly elliptic in general at these points
(∇h 	= 0), and that the sum of its second order part is

Lφ f̃ := |∇h|p–2�φ f̃ + (p – 2)|∇h|p–2 Hess f̃ (∇h,∇h)

with

Lφh = �p,φh.

When p 	= 2, the weighted p-Laplacian degenerates or is singular at points ∇f = 0. In this
case ε-regularization technique is usually applied by replacing the linearized operator with
its approximate operator, see [14, 22] for examples. For ε > 0, we define an approximate
operator Lφ,ε := �p,φ,ε for a smooth function fε by

�p,φ,εfε = eφ div
(
e–φA

p–2
2

ε ∇fε
)

with the following characterization:

λε = inf
f

{∫

M
A

p
2
ε dμ :

∫

M
|fε|p dμ = 1,

∫

M
|fε|p–2fε dμ = 0

}

,

where Aε = |∇fε|2 + ε.
It has been shown in [22] that the infimum above is achieved by a C∞ eigenfunction fε

satisfying

�p,φ,εfε = –λε|fε|p–2fε
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with λε =
∫

M A
p–2

2
ε |∇fε|2 dμ by using standard elliptic theory. Taking the limit as ε ↘ 0, we

then obtain a continuous weak solution λ1 = limε↘0 λε and f = limε↘0 fε .
The following basic evolution formulas will be used in the proof of evolution of λ1(t)

under the Ricci-harmonic flow.

Lemma 3.1 Suppose that (M, g(t),φ(t), dμ), t ∈ [0, T], T < ∞ solves RHF (1.1). Then, for
any f ∈ C∞(M), we have the following formulas:

(1) ∂
∂t |∇f |p = p|∇f |p–2(Sij∇if ∇jf + gij∇if ∇jft),

(2) ∂
∂t |∇f |p–2 = (p – 2)|∇f |p–4(Sij∇if ∇jf + gij∇if ∇jft),

(3) ∂
∂t (�pf ) = 2S ij∇i(Z∇jf ) + gij∇i(Zt∇jf ) + gij∇i(Z∇jft) – 2αZ(�φ)gij∇iφ∇jf , and

(4)

∂

∂t
(�p,φ f ) = 2S ij∇i(Z∇jf ) + gij∇i(Zt∇jf ) + gij∇i(Z∇jft)

– 2αZ(�φ)gij∇iφ∇jf – Zt〈∇φ,∇f 〉 – Z〈∇φt ,∇f 〉,
– Z〈∇φ,∇ft〉 – 2SijZ∇iφ∇jf ,

where Z := |∇f |p–2 and ft = ∂
∂t f .

Proof The proofs of formulas (1), (2), and (3) are contained in [1, Lemma 2.2]. For com-
pleteness, we sketch the proofs of (2) and (4) here.

Recall that ∂
∂t gij = 2Sij (see [1]) and Aε := |∇fε|2 + ε = gij∇ifε∇jfε + ε. Thus

∂

∂t
A

p–2
2

ε =
p – 2

2
A

p–4
2

ε

∂

∂t
Aε

=
p – 2

2
A

p–4
2

ε

(
2Sij∇ifε∇jfε + 2gij∇ifε∇j(fε)t

)

= (p – 2)A
p–4

2
(
Sij∇ifε∇jfε + gij∇ifε∇j(fε)t

)
.

Sending ε ↘ 0, we arrive at formula (2). To prove formula (4), we write

�p,φ,εfε = �p,εfε – A
p–2

2
ε 〈∇φ,∇fε〉.

Then

∂

∂t
(�p,φ,εfε) =

∂

∂t
(�p,εfε) –

∂

∂t
(
A

p–2
2

ε gij∇iφ∇jfε
)
.

Note that ∂
∂t (�p,εfε) = ∂

∂t (�pf ) as ε ↘ 0. This is formula (3). For the second term, we have

∂

∂t
(
A

p–2
2

ε gij∇iφ∇jfε
)

=
∂

∂t
(
Zεgij∇iφ∇jfε

)

= (Zε)t〈∇φ,∇fε〉 + Zε〈∇φt ,∇fε〉 + Zε

〈∇φ,∇(fε)t
〉

+ 2SijZε∇φ∇jfε ,

where Zε = A
p–2

2
ε . Combining the computations and letting ε ↘ 0, we arrive at the result. �
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4 Evolution of λ1 and monotonic quantities
In this section, we derive an evolution formula for the first nonzero eigenvalue of �p,φ and
show that λ1 is monotone nondecreasing along the Ricci-harmonic flow as a corollary. We
also obtain some monotonic quantities involving λ1 which are also nondecreasing along
the flow. In order to do these, we need to compute time derivatives of λ1 and its corre-
sponding eigenfunction. Unfortunately, we do not know whether λ1 or its corresponding
eigenfunction (p 	= 2) is C1 or not along the flow. As we remarked earlier, we adopt Cao’s
approach [8] (see also [25] and [24]) to assume that λ1(f (t), t) = λ1(t) and that f (t) and
λ1(f (t), t) are smooth. Precisely, let (M, g(t),φ(t), dμ), t ∈ [0, T] be a smooth compact so-
lution of (1.1). Define a general smooth function as follows:

λ1
(
f (t), t

)
:=

∫

M
f (t)�p,φ f (t) dμ =

∫

M

∣
∣∇f (t)

∣
∣p dμ, (4.1)

where f (t) is a smooth function satisfying the normalization condition

∫

M

∣
∣f (t)

∣
∣p dμ = 1 and

∫

M

∣
∣f (t)

∣
∣p–2f (t) dμ = 0. (4.2)

By this, we claim that there exists a smooth function f (t0) at time t = t0 ∈ [0, T] satisfying
(4.1). To see this claim, we first assume that at t = t0, f (t0) is the eigenfunction correspond-
ing to λ1(t0) of �p,φ , which implies

∫

M

∣
∣f (t0)

∣
∣p dμ = 1 and

∫

M

∣
∣f (t0)

∣
∣p–2f (t0) dμ = 0.

Then we consider the following smooth function:

u(t) = f (t0)
(

det(g(t0))
det(g(t))

) 1
2(p–2)

(4.3)

under the Ricci-harmonic flow g(t). We normalize this smooth function

f (t) =
u(t)

(
∫

M |u(t)|p dμg(t))
1
p

(4.4)

under the flow g(t). By (4.4) we can easily check that f (t) satisfies (4.2). Note that in general
λ1(f , t) is not equal to λ1(t). But at time t = t0, if f (t0) is the eigenfunction of the first
eigenvalue λ1(t0), then we conclude that

λ1
(
f (t0), t0

)
= λ1(t0)

and that

d
dt

λ1
(
f (t0), t0

)
=

d
dt

λ1(t0)

at some time t = t0.
We are now set to state the main results of this section.
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Theorem 4.1 Let (M, g(t),φ(t), dμ), t ∈ [0, T], T < ∞ solve RHF (1.1) on a closed Rieman-
nian manifold M. Let λ1(t) be the first nonzero eigenvalue of the weighted p-Laplacian �p,φ

and f (x, t) its corresponding eigenfunction. Then λ1(t) evolves by

d
dt

λ1(t) = λ1(t)
∫

M
(S + φt)|f |p dμ –

∫

M
(S + φt)|∇f |p dμ

+ p
∫

M
|∇f |p–2Sij∇if ∇jf dμ (4.5)

for all time t ∈ [0, T], T < ∞.

Corollary 4.2 Under the assumption of Theorem 4.1. Furthermore, if Sij ≥ β(S + �φ)gij,
β > 1

p is a constant. Then

λ1(t2) ≥ λ1(t1) +
∫ t2

t1

Θ
(
g(t), f (x, t)

)
dt, (4.6)

where

Θ
(
g(t), f (x, t)

)
= λ1(t)

∫

M
(S + �φ)|f |p dμ + (βp – 1)

∫

M
(S + �φ)|∇f |p dμ

for t1 < t2, t1, t2 ∈ [0, T], T < ∞.

Note that (4.5) in the theorem above is a general formula to describe the evolution of
λ1(t) under the Ricci-harmonic flow. Under some technical assumptions, we can obtain
some monotonicity quantities.

Set Smin(0) = minx∈M S(x, 0), i.e., the minimum of S(x, t) with respect to g(t) and f (x, t) at
t = 0.

Theorem 4.3 Let (M, g(t),φ(t), dμ), t ∈ [0, T], T < ∞ solve RHF (1.1) on a closed Rieman-
nian manifold M. Let λ1(t) be the first nonzero eigenvalue of the weighted p-Laplacian �p,φ

and f (x, t) its corresponding eigenfunction. Suppose
(i) Sij ≥ β(S + �φ)gij, β > 1

p is a constant;
(ii) �φ ≥ 0, i.e., φ is subharmonic;

(iii) S ≥ Smin(0) ≥ 0, then

λ1(t2) ≥ λ1(t1) exp

(

βp
∫ t2

t1

Smin(t) dt
)

(4.7)

and λ1(t) is monotonically nondecreasing along RHF (1.1);
(iv) If instead of (iii), S ≥ Smin(0) 	= 0 (i.e., either Smin(0) > 0 or Smin(0) < 0), then

λ1(t)(Smin(0)–1 – 2
n t)

nβp
2 is monotonically nondecreasing along RHF (1.1).

Furthermore, λ1(t) is differentiable almost everywhere along RHF (1.1).

Corollary 4.4 Let (M, g(t),φ(t), dμ), t ∈ [0, T], T < ∞ solve RHF (1.1) on a compact Rie-
mannian surface (M2, g0). Let λ1(t) be the first nonzero eigenvalue of �p,φ with f (x, t) being
its corresponding eigenfunction. Assume φ is subharmonic (i.e., �φ ≥ 0).

(A) Suppose Rc ≤ ε∇φ ⊗ ∇φ, where ε ≤ 2α(1–β)
1–2β

, β > 1
2 .
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(i) If Smin(0) ≥ 0, then λ1(t) is monotonically nondecreasing along RHF (1.1) for all
t ∈ [0, T], T < ∞.

(ii) If Smin(0) 	= 0, then the quantity λ1(t)(Smin(0)–1 – t)βp is monotonically
nondecreasing along RHF (1.1) for all t ∈ [0, T], T < ∞.

(B) Suppose that ∇φ ⊗ ∇φ ≤ 1
2 |∇φ|2gij .

(i) If Smin(0) ≥ 0, then λ1(t) is monotonically nondecreasing along RHF (1.1) for all
t ∈ [0, T], T < ∞.

(ii) If Smin(0) 	= 0, then the quantity λ1(t)(Smin(0)–1 – t)βp is monotonically
nondecreasing along RHF (1.1) for all t ∈ [0, T], T < ∞.

Remark 4.5 Assuming the weight function φ = ψ(x) is t-independent, i.e., dμ = e–ψ(x) dv,
then (4.5) of Theorem 4.1 becomes

d
dt

λ1(t) = λ1(t)
∫

M
S|f |p dμ –

∫

M
S|∇f |p dμ + p

∫

M
|∇f |p–2Sc(∇f ,∇f ) dμ. (4.8)

Then, scaling φ(x, t) by taking φ =
√

2
α

u(x, t), RHF (1.1) becomes

⎧
⎨

⎩

∂
∂t g = –2Rc + 4∇u ⊗ ∇u,
∂
∂t u = �u

(4.9)

studied by Li [17]. Thus, under these conditions our results in Theorem 4.1, Theorem 4.3,
and Corollary 4.4 reduce to Theorem 1.5, Theorem 1.6, and Corollary 1.7 of [17], respec-
tively.

4.1 Proof of Theorem 4.1

Proof The proof follows by direct computation using evolution formula (4) in Lemma 3.1.
Let f (t0) and λ(t0) = λ(f (t0), t) be an eigenpair. Then, for a smooth function f (t), we can set

λ
(
f (t), t

)
= –

∫

M
f (t)�p,φ f (t) dμ.

Then

d
dt

λ1(t)
∣
∣
∣
∣
t=t0

=
∂

∂t
λ1

(
f (t), t

)
= –

∂

∂t

∫

M
f (t)�p,φ f (t) dμ. (4.10)

Using evolution formula (4) of Lemma 3.1, we obtain

∂

∂t

∫

M
f �p,φ f dμ

=
∫

M

∂

∂t
(�p,φ f )f dμ +

∫

M
�p,φ f

∂

∂t
(f dμ)

= 2
∫

M
S ij∇i(Z∇jf )f dμ +

∫

M
gij∇i(Zt∇jf )f dμ +

∫

M
gij∇i(Z∇jft)f dμ
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– 2α

∫

M
Z(�φ)gij∇iφ∇jff dμ –

∫

M
Zt〈∇φ,∇f 〉f dμ –

∫

M
Z〈∇φt ,∇f 〉f dμ

–
∫

M
Z〈∇φ,∇ft〉f dμ – 2

∫

M
SijZ∇iφ∇jf +

∫

M
�p,φ f

∂

∂t
(f dμ). (4.11)

We now apply integration by parts formula on the first three terms on the right-hand side
of (4.11). For the first term

2
∫

M
Sij∇i(Z∇jf )f dμ = –2

∫

M
Z∇if ∇j

(
Sijfe–φ

)
dv = –2

∫

M
ZSij∇if ∇jf dμ

– 2
∫

M
Z∇iSij∇jff dμ + 2

∫

M
ZSij∇if ∇jφf dμ. (4.12)

The second term on the right-hand side of (4.12) can be written as (see the computation
in Lemma A.1 below):

–2
∫

M
Z∇iSij∇jff dμ =

∫

M
S(�p,φ f )f dμ +

∫

M
S|∇f |p dμ

+ 2α

∫

M
Z�φ〈∇φ,∇f 〉dμ. (4.13)

Substituting (4.13) into (4.12) we have

2
∫

M
Sij∇i(Z∇jf )f dμ = –2

∫

M
ZSij∇if ∇jf dμ +

∫

M
S(�p,φ f )f dμ

+
∫

M
S|∇f |p dμ + 2α

∫

M
Z�φ〈∇φ,∇f 〉dμ

+ 2
∫

M
ZSij∇if ∇jφf dμ. (4.14)

For the second term on the right-hand side of (4.11), integration by parts implies

∫

M
gij∇i(Zt∇jf )f dμ = –

∫

M
Zt∇jf ∇ i(fe–φ

)
dv

= –
∫

M
Zt|∇f |2 dμ +

∫

Zt〈∇f ,∇φ〉f dμ. (4.15)

Similarly, the third term on the right-hand side of (4.11) implies

∫

M
gij∇i(Z∇jft)f dμ = –

∫

M
Z〈∇ft ,∇f 〉dμ +

∫

m
Z〈∇ft ,∇φ〉f dμ. (4.16)

Putting (4.14), (4.15), and (4.16) into (4.11), we obtain

∂

∂t

∫

M
f �p,φ f dμ = –2

∫

M
ZSij∇if ∇jf dμ +

∫

M
S�p,φff dμ

+
∫

M
S|∇f |p dμ –

∫

M
Zt|∇f |2 dμ –

∫

M
Z〈∇ft ,∇f 〉dμ

–
∫

M
Z〈∇φt ,∇f 〉f dμ +

∫

M
�p,φ f

∂

∂t
(f dμ). (4.17)
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Using the evolution formula (2) of Lemma 3.1 into (4.17) yields

∂

∂t

∫

M
f �p,φ f dμ = –p

∫

M
ZSij∇if ∇jf dμ +

∫

M
S�p,φff dμ

+
∫

M
S|∇f |p dμ – (p – 1)

∫

M
Z〈∇ft ,∇f 〉dμ

–
∫

M
Z〈∇φt ,∇f 〉f dμ +

∫

M
�p,φ f

∂

∂t
(f dμ). (4.18)

A straightforward computation also yields

– (p – 1)
∫

M
Z〈∇ft ,∇f 〉dμ

= (p – 1)
∫

M
∇i

(
Z∇jfe–φ

)
ft dv

= (p – 1)
∫

M
∇i(Z∇jf ) dμ – (p – 1)

∫

M
Z〈∇f ,∇φ〉ft dμ

= (p – 1)
∫

M
�p,φfft dμ (4.19)

and
∫

M
Z〈∇φt ,∇f 〉f dμ = –

∫

M
φt∇i

(
Z∇jffe–φ

)
dv

= –
∫

M
φt�p,φ f dμ –

∫

M
φt|∇f |p dμ. (4.20)

Putting (4.19) and (4.20) into (4.18) yields

∂

∂t

∫

M
f �p,φ f dμ

= –p
∫

M
ZSij∇if ∇jf dμ +

∫

M
S�p,φff dμ

+
∫

M
S|∇f |p dμ + (p – 1)

∫

M
�p,φfft dμ +

∫

M
φt�p,φff dμ

+
∫

M
φt|∇f |p dμ +

∫

M
�p,φ f

∂

∂t
(f dμ)

= –p
∫

M
ZSij∇if ∇jf dμ +

∫

M
S�p,φff dμ +

∫

M
S|∇f |p dμ

+
∫

M
φt�p,φff dμ +

∫

M
φt|∇f |p dμ +

∫

M
�p,φ f

(

(p – 1)ft dμ –
∂

∂t
(f dμ)

)

.

Using the facts that

∂

∂t

∫

M
f �p,φ f dμ = –

∂

∂t
λ1

(
f (t), t

)
∣
∣
∣
∣
t=t0

,

�p,φ f = –λ1(t0)|f |p–2f
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and the normalization condition
∫

M |f |p dμ = 1, which implies

0 =
∂

∂t

(∫

M
|f |p dμ

)

=
∂

∂t

(∫

M
|f |p–1f dμ

)

=
∫

M
|f |p–2f

[

(p – 1)ft dμ + |f |p–1 ∂

∂t
(f dμ)

]

,

we arrive at

d
dt

λ1
(
f (t), t

)
∣
∣
∣
∣
t=t0

= λ1(t0)
∫

M
S|f |p dμ –

∫

M
S|∇f |p dμ + λ1(t0)

∫

M
φt|f |p dμ

–
∫

M
φt|∇f |p dμ + p

∫

M
|∇f |p–2Sij∇if ∇jf dμ,

which is what we wanted to prove. �

4.2 Proof of Corollary 4.2

Proof Using the condition Sij ≥ β(S + �φ)gij in (4.5) of Theorem 4.1, we have

d
dt

λ1(t) ≥ λ1(t)
∫

M
(S + �φ)|f |p dμ + (βp – 1)

∫

M
(S + �φ)|∇f |p dμ. (4.21)

Denote

Θ
(
g(t), f (x, t)

)
:= λ1(t)

∫

M
(S + �φ)|f |p dμ + (βp – 1)

∫

M
(S + �φ)|∇f |p dμ. (4.22)

Integrating (4.21) from t1 to t2, t1 < t2, where t1, t2 ∈ [0, T], T < ∞ yields

λ1(t2) – λ1(t1) ≥
∫ t2

t1

Θ
(
g(t), f (x, t)

)
dt,

which is the desired result. �

4.3 Proof of Theorem 4.3

Proof For t1 < t2, t1, t2 ∈ [0, T], T < ∞, for all time t ∈ [0, T], T < ∞, we use (4.22)

Θ
(
g(t), f (x, t)

)

= λ1(t)
∫

M
(S + �φ)|f |p dμ + (βp – 1)

∫

M
(S + �φ)|∇f |p dμ

= λ1(t)
∫

M
(S + �φ)|f |p dμ + (βp – 1)

∫

M
(S + �φ)|∇f |p–2gij∇if ∇jf dμ

= λ1(t)
∫

M
(S + �φ)|f |p dμ – (βp – 1)

∫

M
(S + �φ) div

(
e–φ |∇f |p–2∇f

)
f dv

= λ1(t)
∫

M
(S + �φ)|f |p dμ – (βp – 1)

∫

M
(S + �φ)�p,φ f · f dμ

= λ1(t)βp
∫

M
(S + �φ)|f |p dμ.
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Using the conditions �φ ≥ 0, S ≥ Smin(t) and
∫

M |f |p dμ = 1, we have

d
dt

λ1(t) ≥ λ1(t)βpSmin(t). (4.23)

Integrating between t1 and t2, t1, t2 ∈ [0, T], we have

lnλ1(t2) ≥ lnλ1(t1) + βp
∫ t2

t1

Smin(t) dt,

which yields (4.7).
Now, set Smin(0) = z0 	= 0. Recall that S satisfies an evolution equation [18, 20]

∂S
∂t

= �S + 2|Sij|2 + 2α|�φ|2

and inequality |Sij|2 ≥ 1
n S2. Then solving

∂S
∂t

≥ �S +
2
n

|Sij|2

by applying the maximum principle, where one can compare S with the solution of an
ODE z′ = 2

n z2, z(0) = z0 = Smin(0), we have

S(t) ≥ z(t) =
1

z–1
0 – 2

n t
, t ∈ [0, T], T <

n
2Smin(0)

< ∞.

Applying (4.23), we obtain

d
dt

λ1(t) ≥ λ1(t)βp · 1
z–1

0 – 2
n t

,

which implies

λ1(t2) ≥ λ1(t1) exp

(

βp
∫ t2

t1

dt
z–1

0 – 2
n t

)

. (4.24)

It is easy to check by elementary calculus that

∫ t2

t1

dt
z–1

0 – 2
n t

= ln

(z–1
0 – 2

n t1

z–1
0 – 2

n t2

) n
2

. (4.25)

Substituting (4.25) into (4.24), we obtain

ln

(
λ1(t2)
λ1(t1)

)

≥ ln

(z–1
0 – 2

n t1

z–1
0 – 2

n t2

) n
2 βp

for any time t1 < t2. By this we have

λ1(t2)
(

z–1
0 –

2
n

t2

) n
2 βp

≥ λ1(t1)
(

z–1
0 –

2
n

t1

) n
2 βp

,
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which means that the quantity λ1(t)(z–1
0 – 2

n t) n
2 βp is nondecreasing in the interval [t1, t2]

along the Ricci-harmonic flow. Notice that (z–1
0 – 2

n t) is decreasing in the interval t1 < t2,
t1, t2 ∈ [0, T). This means that λ1(t) is nondecreasing along the flow. This completes the
proofs of monotonicity.

For differentiability of λ1(t), it is easy to see that λ1(t) is differentiable almost everywhere
by the classical Lebesgue’s theorem [19, Chap. 4] since λ1(t) is nondecreasing on the time
interval [0, T). �

Remark 4.6 By the maximum principle, the assumption that φ is subharmonic implies that
the maximum of φ cannot be achieved in M since φ is not a constant function; however,
its minimum can be achieved in M.

Remark 4.7 Our proofs of evolution and monotonicity of the first eigenvalue of �p,φ do
not use any differentiability of the first eigenvalue or its corresponding eigenfunction un-
der the Ricci-harmonic flow. In fact, it is not known whether they are differentiable in
advance.

4.4 Proof of Corollary 4.4

Proof Note that on M2 we have Rij = 1
2 Rgij. Then we compute

Sij – βSgij =
R
2

gij – α∇iφ∇jφ – β
(
R – α|∇φ|2)gij

=
(

1
2

– β

)

Rgij – α∇iφ∇jφ – βα|∇φ|2gij.

For any nonzero vector X = (Xi) and the condition Rij ≤ ε∇iφ∇jφ, we have

(Sij – βSgij)XiXj =
(

1
2

– β

)

R|X|2 – α〈∇φ, X〉2 + βα|∇φ|2|X|2

≥
[(

1
2

– β

)

ε – (1 – β)α
]

|∇φ|2|X|2.

From here one can conclude that [( 1
2 – β)ε – (1 – β)α]|∇φ|2 ≥ 0 since ε ≤ 2α(1–β)

1–2β
, β > 1

2 ,
which implies that the condition Sij – βSgij ≥ 0, β > 1

2 holds on M2. Then consequences
A(i) and A(ii) of the corollary follow from Theorem 4.3.

On the other hand, we can show that ∇φ⊗∇φ ≤ 1
2 |∇φ|2gij holds on the Riemann surface

M2. Note that

(Sij – βSgij)XiXj =
[

R
2

gij – α∇iφ∇jφ – β
(
R – α|∇φ|2)gij

]

XiXj

=
R
2

|X|2 – α〈∇φ, X〉2 – β
(
R – α|∇φ|2)|X|2

≥ R
2

|X|2 –
α

2
||∇φ|2|X|2 – β

(
R – α|∇φ|2)|X|2

meaning that

SijXiXj ≥ 1
2
(
R – α|∇φ|2)|X|2,
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which implies Sij – 1
2 Sgij ≥ 0. Then consequences B(i) and B(ii) follow from Theorem 4.3. �

Appendix
In the following lemma we want to establish formula (4.13).

Lemma A.1 Let (M, g, dμ) be a closed Riemannian manifold on which RHF (1.1) holds.
Then

–2
∫

M
Z∇iSij∇jff dμ =

∫

M
S(�p,φ f )f dμ

+
∫

M
S|∇f |p dμ + 2α

∫

M
Z�φ〈∇φ,∇f 〉dμ. (A.1)

Proof Notice that

∇iSij = ∇i
(
Rij – α∇ iφ∇ jφ

)
= gikgjl(∇iRkl – α∇i(∇kφ∇lφ)

)

= gikgjl(∇iRkl – α∇i∇kφ∇lφ – α∇k∇i∇lφ),

and by the contracted second Bianchi identity,

gik∇iRkl =
1
2
∇lR.

We now compute using the last two expressions:

–2
∫

M
Z∇iSij∇jff dμ = –2

∫

M
Zgikgjl∇jf ∇iRklf dμ + 2α

∫

M
Zgikgjl∇jf ∇i∇kφ∇lφf dμ

+ 2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ

= –
∫

M
Zgjl∇jf ∇lRf dμ + 2α

∫

M
Z�φgjl∇jf ∇lφf dμ

+ 2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ

=
∫

M
R div

(
Z∇jffe–φ

)
dv + 2α

∫

M
Z�φ〈∇φ,∇f 〉dμ

+ 2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ

=
∫

M
R(�p,φ f )f dμ +

∫

M
RZ|∇f |2 dμ + 2α

∫

M
Z�φ〈∇φ,∇f 〉dμ

+ 2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ

=
∫

M
R(�p,φ f )f dμ +

∫

M
R|∇f |p dμ + 2α

∫

M
Z�φ〈∇φ,∇f 〉dμ

+ 2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ,
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which implies

–2
∫

M
Z∇iSij∇jff dμ =

∫

M
R(�p,φ f )f dμ + 2α

∫

M
Z�φ〈∇φ,∇f 〉dμ

+
∫

M
R|∇f |p dμ + 2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ. (A.2)

Similarly, by direct computation the last term of the last equation implies

2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ

= –2α

∫

M
∇i

(
Z∇ lf ∇ iφe–φ f

)
dv

= 2α

∫

M
Z∇ lf ∇ iφ∇l∇iφf dμ – 2α

∫

M
∇l

(
Z∇ lf ∇ iφf

)∇iφ dμ

= –2α

∫

M
∇l

(
Z∇ lf

)∇ iφ∇iφf dμ – 2α

∫

M
Z∇ lf ∇i∇ iφ∇iφf dμ

– 2α

∫

M
Z∇ lf ∇ iφ∇iφ∇lf dμ + 2α

∫

M
Z∇ lf ∇ iφ∇lφ∇iφf dμ

= –2α

∫

M
�pf |∇φ|2 dμ – 2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ

– 2α

∫

M
Z|∇f |2|∇φ|2 dμ + 2α

∫

M
|∇φ|2〈∇φ,∇f 〉f dμ,

which implies

2α

∫

M
Zgikgjl∇jf ∇kφ∇i∇lφf dμ = –α

∫

M
�p,φ f |∇φ|2f dμ – α

∫

M
|∇f |p|∇φ|2 dμ.

(A.3)

Combining (A.2) and (A.3) yields (A.1). �
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