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Abstract
In this paper, we introduce a new algorithm with self-adaptive method for finding a
solution of the variational inequality problem involving monotone operator and the
fixed point problem of a quasi-nonexpansive mapping with a demiclosedness
property in a real Hilbert space. The algorithm is based on the subgradient
extragradient method and inertial method. At the same time, it can be considered as
an improvement of the inertial extragradient method over each computational step
which was previously known. The weak convergence of the algorithm is studied
under standard assumptions. It is worth emphasizing that the algorithm that we
propose does not require one to know the Lipschitz constant of the operator. Finally,
we provide some numerical experiments to verify the effectiveness and advantage of
the proposed algorithm.
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1 Introduction
Throughout this paper, let H be a real Hilbert space with the inner product 〈·, ·〉 and norm
‖ · ‖. Let C be a nonempty, closed and convex subset of H . Let N and R be the sets of
positive integers and real numbers, respectively.

The variational inequality problem (VIP) is the problem to find a point x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ 0, ∀x ∈ C. (1)

The solution set of VIP is denoted by VI(C, A). The variational inequality problem is an
important branch of the nonlinear problem and it has received a lot of attentions by many
authors in recent years (see [1–3] and the references therein). Under appropriate condi-
tions, there are two general approaches for solving the variational inequality problem, one
is the regularized method and the other is the projection method. Now, we mainly study
the projection method.
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For every point x ∈ H , there exists a unique point in C such that

‖x – PCx‖ = inf
{‖x – y‖ : y ∈ C

}
,

where PC : H → C is called the metric projection from H into C.
We know that the variational inequality problem can be turned into the fixed point prob-

lem, which means (1) is equivalent to

x∗ = PC(I – λA)x∗, (2)

where PC : H → C is the metric projection and λ > 0. Thus we generate {xn} in the follow-
ing manner:

xn+1 = PC(I – λA)xn. (3)

This simple algorithm is an extension of the projection gradient method. However, the
convergence of this method requires a slight assumption that the operator A : H → H is
strongly monotone or inverse strongly monotone.

To avoid this strong assumption, Korpelevich [4] proposed an algorithm which was
called the extragradient method:

⎧
⎨

⎩
yn = PC(xn – λAxn),

xn+1 = PC(xn – λAyn),
(4)

for each n = 1, 2, . . . , where λ ∈ (0, 1/L). At the beginning, this method was used to solve
saddle point problems. Soon, this method was extended to Euclidean spaces and Hilbert
spaces. In particular, this method only requires that the operator A is monotone and L-
Lipschitz continuous in a Hilbert space. If VI(C, A) 
= ∅, the sequence {xn} generated by
(4) converges weakly to an element of VI(C, A).

However, the extragradient method needs to calculate two projections from H onto the
closed convex set C and it is applicable to the case that PC has a closed form which means
that PC has an explicit expression. In fact, in some cases, the projection onto the nonempty
closed convex subset C might be difficult to calculate. To overcome this drawback, it has
received great attentions by many authors who had improved it in various ways.

To our knowledge, there were four kinds of methods to overcome this drawback. The
first one was the modification of the extragradient method by Tseng [5] who proposed it
in 2000 with the following remarkable scheme:

⎧
⎨

⎩
yn = PC(xn – λAxn),

xn+1 = yn – λ(Ayn – Axn),
(5)

where A is monotone, L-Lipschitz continuous and λ ∈ (0, 1/L). From (5), we find using this
method one only needs to calculate one projection, which is simpler than (4). The second
one was the subgradient extragradient method which was proposed by Censor et al. [6] in
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2011:

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(xn – λAxn),

Tn = {w ∈ H | 〈xn – λAxn – yn, w – yn〉 ≤ 0},
xn+1 = PTn (xn – λAyn),

(6)

where A is monotone, L-Lipschitz continuous and λ ∈ (0, 1/L). The key operation of the
subgradient extragradient method replaces the second projection onto C of the extragra-
dient method by a projection onto a special constructible half-space, which significantly
reduces the difficulty of calculations.

Before explaining the third method, let us take a look at the inertial method. In 2001, Al-
varez and Attouch [7] applied the inertial technique to obtain an inertial proximal method
to solve the problem of finding zero of a maximal monotone operator, which works as fol-
lows:

find xn+1 ∈ H , such that 0 ∈ λnA(xn+1) + xn+1 – xn – θn(xn – xn–1),

where xn–1, xn ∈ H , θn ∈ [0, 1) and λn > 0. It also can be written in the following form:

xn+1 = JA
λn

(
xn + θn(xn – xn–1)

)
, (7)

where JA
λn is the resolvent of A with parameter λn and the inertia is induced by the

term θn(xn – xn–1). Recently, considerable interest has been shown in studying the iner-
tial method by many authors. They constructed fast iterative algorithms by using inertial
method. The third method which was studied by Q.L. Dong et al. [8] in 2017:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn – xn–1),

yn = PC(wn – λAwn),

d(wn, yn) = (wn – yn) – λ(Awn – Ayn),

xn+1 = wn – γβnd(wn, yn),

(8)

for each k ≥ 1, where γ ∈ (0, 2), λ > 0,

βn :=

⎧
⎨

⎩
ϕ(wn, yn)/‖d(wn, yn)‖2, if d(wn, yn) 
= 0,

0, if d(wn, yn) = 0,

ϕ(wn, yn) =
〈
wn – yn, d(wn, yn)

〉
.

This algorithm incorporate the inertial terms in the projection and contraction algorithm,
which does not need the summability condition for the sequence. The fourth one was a
self-adaptive algorithm which was based on Tseng’s extragradient method [9] and it was
proposed by Duong Viet Thong and Dang Van Hieu [9] in 2017. The algorithm is described
as follows.

It is worth mentioning that the Algorithm 1 does not require one to know the Lipschitz
constant of the operator A, which is different from the other three algorithms. If VI(C, A) 
=
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Algorithm 1 A SA-Tseng’s EGM for monotone variational inequality problem
Step 1: Choose x0 ∈ H , γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Step 2: Given the current iterate xn, compute

yn = PC(xn – λnAxn),

where λn is chosen to be the largest λ ∈ {γ ,γ l,γ l2, . . .} satisfying

λ‖Axn – Ayn‖ ≤ μ‖xn – yn‖.

If yn = xn, then stop and xn is the solution of the variational inequality problem.
Otherwise,

Step 3: Compute the new iterate xn+1 via the following iterate formula:

xn+1 = yn – λn(Ayn – Axn).

Set n := n + 1 and return to Step 2.

∅, the sequences {xn} generated by (5), (6), (8) and Algorithm 1 all converge weakly to an
element of VI(C, A). For Algorithm 1, it does not require to know the Lipschitz constant,
but the step size may involve computation of additional projections.

In 2016, Mainge and Gobinddass [10] got xn+1 by the following algorithm:

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = PC(xn – λnAyn),
(9)

where θn = λn
δλn–1

, λnkn ≤ εδ(
√

2 – 1), λn ≤ kλn–1(δ + λn–1
λn–2

) 1
2 , {λn} ⊂ [μ,ν] and

kn :=

⎧
⎨

⎩

‖Ayn–Ayn–1‖
‖yn–yn–1‖ , if yn – yn–1 
= 0,

0, if yn – yn–1 = 0.

In this iterative algorithm, it does not require either additional projection for the determi-
nation of the step-sizes or the knowledge of the Lipschitz constant of the operator.

The fixed point problem is the problem to find x∗ ∈ H such that

Tx∗ = x∗, (10)

where x∗ is called a fixed point of T : H → H . The set of fixed points of T is denoted
by Fix(T). Recently, many iterative methods have been proposed (see [6, 11–21] and the
references therein) for finding a common element of Fix(T) and VI(C, A) in a real Hilbert
space.

In this paper, motivated and inspired by the above results, we introduce a new algorithm
with self-adaptive subgradient extragradient method and inertial modification for finding
a solution of the variational inequality problem involving monotone operator and the fixed
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point problem of a quasi-nonexpansive mapping with a demiclosedness property in a real
Hilbert space. Then the weak convergence theorem will be proved in Sect. 3.

This paper is organized as follows. In Sect. 2, we list some lemmas which will be used for
further proof. In Sect. 3, we proposed a new algorithm, then the weak convergence the-
orem is analyzed. In Sect. 4, we give some numerical examples to illustrate the efficiency
and advantage of our algorithm.

2 Preliminaries
In this section, we introduce some lemmas which will be used in this paper. Assume H is a
real Hilbert space and C is a nonempty closed convex subset of H . In the following of the
paper, we use the symbol xn → x to denote the strong convergence of the sequence {xn} to
x as n → ∞ and use the symbol xn ⇀ x to denote the weak convergence of the sequence
{xn} to x as n → ∞. If there exists a subsequence {xni} of {xn} converging weakly to a point
z, then z is called a weak cluster point of {xn} and the set of all weak cluster points of {xn}
is denoted by ωw(xn).

Lemma 2.1 ([22]) Let H be a real Hilbert space, for each x, y ∈ H and λ ∈R, we have
(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;

(ii) ‖λx + (1 – λ)y‖2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2.

In the following, we gather some characteristic properties of PC .

Lemma 2.2 ([23]) Let H be a real Hilbert space and C be a nonempty closed subset of H .
Then

(i) ‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H ;
(ii) ‖x – PCx‖2 + ‖y – PCx‖2 ≤ ‖x – y‖2, ∀x ∈ H , y ∈ C.

Lemma 2.3 Let H be a real Hilbert space and C be a nonempty closed subset of H . Given
x ∈ H and z ∈ C, then z = PCx if and only if there hold the inequality 〈x – z, y – z〉 ≤ 0,
∀y ∈ C.

Next, we present some concepts of an operator.

Definition 2.4 ([24]) An operator A : H → H is said to be:
(i) monotone, if

〈x – y, Ax – Ay〉 ≥ 0, ∀x, y ∈ H ;

(ii) L-Lipschitz continuous with L > 0, if

‖Ax – Ay‖ ≤ L‖x – y‖, ∀x, y ∈ H ;

(iii) nonexpansive, if

‖Ax – Ay‖ ≤ ‖x – y‖, ∀x, y ∈ H ;
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(iv) quasi-nonexpansive, if

‖Ax – p‖ ≤ ‖x – p‖, ∀x ∈ H , p ∈ Fix(A),

where Fix(A) 
= ∅.

Remark 2.5 ([25]) It is well that every nonexpansive mapping with a nonempty set of fixed
point is quasi-nonexpansive. However, a quasi-nonexpansive mapping may not be a non-
expansive mapping.

Lemma 2.6 ([23]) Assume that T : H → H is a nonlinear operator with Fix(T) 
= ∅. Then
I – T is said to be demiclosed at zero if for any {xn} in H , the following implication holds:

xn ⇀ x and (I – T)xn → 0 ⇒ x ∈ Fix(T).

Remark 2.7 We know that the Lemma 2.6 is clearly established when the operator T is
nonexpansive. However, there exists a quasi-nonexpansive mapping T but I – T is not
demiclosed at zero. Therefore, in this paper, we need to emphasize that T : H → H is a
quasi-nonexpansive mapping such that I – T is demiclosed at zero.

Example 1 Let H be the line real and C = [0, 3
2 ]. Define the operator T on C by

Tx =

⎧
⎨

⎩

x
2 , if x ∈ [0, 1],

x cos 2πx, if x ∈ (1, 3
2 ].

Indeed, it is easy to see that Fix(T) = {0}.
On the one hand, for any x ∈ [0, 1], we have

|Tx – 0| =
∣∣∣∣
x
2

– 0
∣∣∣∣ ≤ |x – 0|.

On the other hand, for any x ∈ (1, 3
2 ], we have

|Tx – 0| = |x cos 2πx – 0| = |x cos 2πx – 0| ≤ |x| = |x – 0|.

Thus, the operator T is quasi-nonexpansive.
By taking {xn} ⊂ (1, 3

2 ] and xn → 1 as n → ∞, we have

∣∣(I – T)xn
∣∣ = |xn – Txn| = |xn – xn cos 2πxn| = |xn| · |1 – cos 2πxn| → 0 (n → ∞).

But 1 /∈ Fix(T), so I – T is not demiclosed at zero.

Lemma 2.8 ([7]) Let {ϕn}, {δn} and {αn} be sequences in [0, +∞) such that

ϕn+1 ≤ ϕn + αn(ϕn – ϕn–1) + δn, ∀n ≥ 1,
+∞∑

n=1

δn < +∞,

and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈N. Then the following hold:
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(i)
∑+∞

n=1[ϕn – ϕn–1]+ < +∞, where [t]+ := max{t, 0};
(ii) there exists ϕ∗ ∈ [0, +∞) such that limn→+∞ ϕn = ϕ∗.

Lemma 2.9 ([26]) Let A : H → H be a monotone and L-Lipschitz continuous mapping
on C. Let S = PC(I – μA), where μ > 0. If {xn} is a sequence in H satisfying xn ⇀ q and
xn – Sxn → 0, then q ∈ VI(C, A) = Fix(S).

Lemma 2.10 ([27]) Let C be a nonempty closed and convex subset of a real Hilbert space
H and {xn} be a sequence in H . The following two properties hold:

(i) limn→∞ ‖xn – x‖ exists for each x ∈ C;
(ii) ωw(xn) ⊂ C.

Then the sequence {xn} converges weakly to a point in C.

3 Main results
In this section, we propose a new iterative algorithm with self-adaptive method for solving
monotone variational inequality problems and quasi-nonexpansive fixed point problems
in a Hilbert space. Meanwhile, we combine subgradient extragradient method and inertial
modification for the algorithm. Under the assumption Fix(T) ∩ VI(C, A) 
= ∅, we prove the
weak convergence theorem. Let H be a real Hilbert space. Let C be a nonempty closed
convex subset in H . Let A : H → H be a monotone and L-Lipschitz continuous operator.
In particular, the information of the Lipschitz constant L does not require to be known.
Let T : H → H be a quasi-nonexpansive mapping such that I – T is demiclosed at zero.
The algorithm is described as follows.

Before giving the theorem and its proof, we propose several useful lemmas firstly.

Lemma 3.1 The sequence {λn} generated by Algorithm 2 is a monotonically decreasing
sequence, and its lower bound is min{μ

L ,λ0}.

Proof It is obvious that the sequence {λn} is a monotonically decreasing sequence.
Since A is L-Lipschitz continuous with L > 0, we have

‖Axn – Ayn‖ ≤ L‖xn – yn‖.

In the case of Axn – Ayn 
= 0, we have

μ‖xn – yn‖
‖Axn – Ayn‖ ≥ μ

L
.

Clearly, the lower bound of the sequence {λn} is min{μ

L ,λ0}. �

Lemma 3.2 If wn = yn = xn+1, then wn ∈ Fix(T) ∩ VI(C, A).

Proof If wn = yn, we have wn ∈ VI(C, A).
Besides, since wn = yn, yn = PC(wn – λnAwn), according to Lemma 2.3, we have 〈wn –

λnAwn – yn, x – yn〉 ≤ 0, ∀x ∈ C. Since wn = yn, zn = PTn (wn – λnAyn), where Tn = {x ∈
H|〈wn – λnAwn – yn, x – yn〉 ≤ 0}, we have yn = zn.
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Algorithm 2 A ISA-SEGM for monotone variational inequality problem
Step 1: Choose x0, x1 ∈ H , μ ∈ (0, 1), λ0 > 0.
Step 2: Set wn = xn + αn(xn – xn–1), compute

yn = PC(wn – λnAwn).

Step 3: Compute

zn = PTn (wn – λnAyn),

where Tn = {x ∈ H|〈wn – λnAwn – yn, x – yn〉 ≤ 0}.
Step 4: Compute

xn+1 = (1 – βn)wn + βnTzn

and

λn+1 :=

⎧
⎨

⎩
min{ μ‖xn–yn‖

‖Axn–Ayn‖ ,λn}, if Axn – Ayn 
= 0,

λn, otherwise.

If wn = yn = xn+1, then wn ∈ Fix(T) ∩ VI(C, A).
Set n := n + 1 and return to Step 2.

On the other hand, if wn = yn = xn+1, by xn+1 = (1 – βn)wn + βnTzn, we have

wn = (1 – βn)wn + βnTwn,

through deformation, we can get Twn = wn, which means wn ∈ Fix(T).
Therefore, wn ∈ Fix(T) ∩ VI(C, A). �

Lemma 3.3 Let {zn} be a sequence generated by Algorithm 2, then, for all p ∈ VI(C, A), and
for n sufficiently large, we have

‖zn – p‖2 ≤ ‖wn – p‖2 – (1 – μγ )‖yn – wn‖2

– (1 – μγ )‖zn – yn‖2 – 2λn〈Ap, yn – p〉. (11)

Proof Since p ∈ VI(C, A) and VI(C, A) ⊂ C ⊂ Tn, we have

‖zn – p‖2 =
∥∥PTn (wn – λnAyn) – p

∥∥2

≤ 〈
PTn (wn – λnAyn) – PTn p, wn – λnAyn – p

〉

= 〈zn – p, wn – λnAyn – p〉
=

1
2
‖zn – p‖2 +

1
2
‖wn – λnAyn – p‖2 –

1
2
‖zn – wn + λnAyn‖2

=
1
2
‖zn – p‖2 +

1
2
‖wn – p‖2 +

1
2
λ2

n‖Ayn‖2
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– 〈wn – p,λnAyn〉 –
1
2
‖zn – wn‖2 –

1
2
λ2

n‖Ayn‖2

– 〈zn – wn,λnAyn〉
=

1
2
‖zn – p‖2 +

1
2
‖wn – p‖2 –

1
2
‖zn – wn‖2 – 〈zn – p,λnAyn〉.

It implies that

‖zn – p‖2 ≤ ‖wn – p‖2 – ‖zn – wn‖2 – 2〈zn – p,λnAyn〉.

Because the operator A is monotone and λn > 0, we have

2λn〈Ayn – Ap, yn – p〉 ≥ 0.

So

‖zn – p‖2 ≤ ‖wn – p‖2 – ‖zn – wn‖2 – 2〈zn – p,λnAyn〉
+ 2λn〈Ayn – Ap, yn – p〉

= ‖wn – p‖2 – ‖zn – wn‖2 + 2λn
(〈Ayn – Ap, yn – p〉

– 〈zn – p, Ayn〉
)

= ‖wn – p‖2 – ‖zn – wn‖2 + 2λn
(〈Ayn, yn – p〉 – 〈Ap, yn – p〉

– 〈zn – p, Ayn〉
)

= ‖wn – p‖2 – ‖zn – wn‖2 + 2λn
(〈Ayn, yn – zn〉 – 〈Ap, yn – p〉)

= ‖wn – p‖2 – ‖zn – wn‖2 + 2λn〈Ayn – Awn, yn – zn〉
+ 2λn〈Awn, yn – zn〉 – 2λn〈Ap, yn – p〉.

Since {λn} is a monotonically decreasing sequence, the limit of {λn} exists and λn
λn+1

≥ 1.
We denote λ = limn→∞ λn. Therefore, we have limn→∞ = λn

λn+1
= 1. We have μ ∈ (0, 1), 1

μ
>

1, let γ =
1+ 1

μ

2 , 1 < γ < 1
μ

. Therefore, ∃N ∈N, ∀n > N , λn
λn+1

< γ . Therefore, 1 – μγ < 1.

2λn〈Ayn – Awn, yn – zn〉 ≤ 2λn‖yn – zn‖ · ‖Ayn – Awn‖
≤ 2λn‖yn – zn‖ · μ

λn+1
‖yn – wn‖

≤ 2μγ ‖yn – zn‖ · ‖yn – wn‖
≤ μγ ‖yn – zn‖2 + μγ ‖yn – wn‖2.

Since zn ∈ Tn, we have

〈wn – λnAwn – yn, zn – yn〉 ≤ 0.

So

2λn〈Awn, yn – zn〉 ≤ 2〈yn – wn, zn – yn〉
= ‖zn – wn‖2 – ‖yn – wn‖2 – ‖zn – yn‖2.
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Therefore

‖zn – p‖2 ≤ ‖wn – p‖2 – ‖zn – wn‖2 + 2λn〈Ayn – Awn, yn – zn〉
+ 2λn〈Awn, yn – zn〉 – 2λn〈Ap, yn – p〉

≤ ‖wn – p‖2 – ‖zn – wn‖2 + μγ ‖yn – zn‖2 + μγ ‖yn – wn‖2

+ ‖zn – wn‖2 – ‖yn – wn‖2 – ‖zn – yn‖2 – 2λn〈Ap, yn – p〉
= ‖wn – p‖2 – (1 – μγ )‖yn – wn‖2 – (1 – μγ )‖zn – yn‖2

– 2λn〈Ap, yn – p〉. �

Theorem 3.4 Assume that the sequence {αn} is non-decreasing such that 0 ≤ αn ≤ α ≤ 1
4

and the sequence {βn} is a sequence of real numbers such that 0 < β ≤ βn ≤ 1
2 . Then the

sequence {xn} generated by Algorithm 2 converges weakly to an element of Fix(T)∩VI(C, A).

Proof Let p ∈ Fix(T) ∩ VI(C, A).
From Lemma 3.3, we have ∃N ≥ 0, ∀n > N , ‖zn – p‖ ≤ ‖wn – p‖.
Since T is quasi-nonexpansive, by Lemma 2.1, we have ∀n > N

‖xn+1 – p‖2 =
∥∥(1 – βn)wn + βnTzn – p

∥∥2

=
∥∥(1 – βn)(wn – p) + βn(Tzn – p)

∥∥2

= (1 – βn)‖wn – p‖2 + βn‖Tzn – p‖2 – βn(1 – βn)‖Tzn – wn‖2

≤ (1 – βn)‖wn – p‖2 + βn‖zn – p‖2 – βn(1 – βn)‖Tzn – wn‖2

≤ (1 – βn)‖wn – p‖2 + βn‖wn – p‖2 – βn(1 – βn)‖Tzn – wn‖2

= ‖wn – p‖2 – βn(1 – βn)‖Tzn – wn‖2. (12)

Since xn+1 = (1 – βn)wn + βnTzn, we can write it as

Tzn – wn =
1
βn

(xn+1 – wn). (13)

Combining (12) and (13), with βn ≤ 1
2 , we have

‖xn+1 – p‖2 ≤ ‖wn – p‖2 –
1 – βn

βn
‖xn+1 – wn‖2

≤ ‖wn – p‖2 – ‖xn+1 – wn‖2. (14)

Besides,

‖wn – p‖2 =
∥∥xn + αn(xn – xn–1) – p

∥∥2

=
∥∥(1 + αn)(xn – p) – αn(xn–1 – p)

∥∥2

= (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2

+ αn(1 + αn)‖xn – xn–1‖2 (15)
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and

‖xn+1 – wn‖2 =
∥∥xn+1 –

(
xn + αn(xn – xn–1)

)∥∥2

= ‖xn+1 – xn‖2 + α2
n‖xn – xn–1‖2 – 2αn〈xn+1 – xn, xn – xn–1〉

≥ ‖xn+1 – xn‖2 + α2
n‖xn – xn–1‖2

– 2αn‖xn+1 – xn‖ · ‖xn – xn–1‖
≥ ‖xn+1 – xn‖2 + α2

n‖xn – xn–1‖2 – αn‖xn+1 – xn‖2

– αn‖xn – xn–1‖2

= (1 – αn)‖xn+1 – xn‖2 +
(
α2

n – αn
)‖xn – xn–1‖2. (16)

Combining (14), (15), (16), and {αn} being non-decreasing, we obtain

‖xn+1 – p‖2 ≤ (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 + αn(1 + αn)‖xn – xn–1‖2

– (1 – αn)‖xn+1 – xn‖2 –
(
α2

n – αn
)‖xn – xn–1‖2

= (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 – (1 – αn)‖xn+1 – xn‖2

+
[
αn(1 + αn) –

(
α2

n – αn
)]‖xn – xn–1‖2

= (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 – (1 – αn)‖xn+1 – xn‖2

+ 2αn‖xn – xn–1‖2

≤ (1 + αn+1)‖xn – p‖2 – αn‖xn–1 – p‖2 – (1 – αn)‖xn+1 – xn‖2

+ 2αn‖xn – xn–1‖2. (17)

Therefore,

‖xn+1 – p‖2 – αn+1‖xn – p‖2 + 2αn+1‖xn+1 – xn‖2

≤ ‖xn – p‖2 – αn‖xn–1 – p‖2 + 2αn‖xn – xn–1‖2

+ 2αn+1‖xn+1 – xn‖2 – (1 – αn)‖xn+1 – xn‖2

= ‖xn – p‖2 – αn‖xn–1 – p‖2 + 2αn‖xn – xn–1‖2

+ (2αn+1 – 1 + αn)‖xn+1 – xn‖2. (18)

Put Γn := ‖xn – p‖2 – αn‖xn–1 – p‖2 + 2αn‖xn – xn–1‖2.
From (18), we obtain

Γn+1 – Γn ≤ (2αn+1 – 1 + αn)‖xn+1 – xn‖2. (19)

We have 0 ≤ αn ≤ α ≤ 1
4 , –(2αn+1 – 1 + αn) ≥ 1

4 .
So Γn+1 – Γn ≤ –δ‖xn+1 – xn‖2 ≤ 0, where δ = 1

4 , which implies that the sequence {Γn} is
non-increasing.
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Besides,

Γn = ‖xn – p‖2 – αn‖xn–1 – p‖2 + 2αn‖xn – xn–1‖2

≥ ‖xn – p‖2 – αn‖xn–1 – p‖2 (20)

and

Γn+1 = ‖xn+1 – p‖2 – αn+1‖xn – p‖2 + 2αn+1‖xn+1 – xn‖2

≥ –αn+1‖xn – p‖2. (21)

Therefore,

‖xn – p‖2 ≤ αn‖xn–1 – p‖2 + Γn

≤ α‖xn–1 – p‖2 + Γ1

≤ . . .

≤ αn‖x0 – p‖2 +
(
1 + · · · + αn–1)Γ1

≤ αn‖x0 – p‖2 +
Γ1

1 – α
. (22)

This implies that the sequence {xn} is bounded.
Combining (21) and (22), we have

–Γn+1 ≤ αn+1‖xn – p‖2

≤ α‖xn – p‖2

≤ αn+1‖x0 – p‖2 +
αΓ1

1 – α
. (23)

From (19), we have

δ

k∑

n=1

‖xn+1 – xn‖2 ≤ Γ1 – Γk+1

≤ Γ1 + αk+1‖x0 – p‖2 +
αΓ1

1 – α

= αk+1‖x0 – p‖2 +
Γ1

1 – α

≤ ‖x0 – p‖2 +
Γ1

1 – α
, (24)

which means

∞∑

n=1

‖xn+1 – xn‖2 < +∞ (25)

and

lim
n→∞‖xn+1 – xn‖ = 0. (26)
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Besides, since αn ≤ α, we have

‖xn+1 – wn‖ =
∥∥xn+1 – xn – αn(xn – xn–1)

∥∥

≤ ‖xn+1 – xn‖ + αn‖xn – xn–1‖
≤ ‖xn+1 – xn‖ + α‖xn – xn–1‖. (27)

Therefore, by (26) and (27), we can obtain

‖xn+1 – wn‖ → 0 (n → ∞). (28)

We have

‖xn+1 – p‖2 ≤ (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 – (1 – αn)‖xn+1 – xn‖2

+ 2αn‖xn – xn–1‖2

≤ (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 + 2αn‖xn – xn–1‖2. (29)

Therefore, by (29) and Lemma 2.8, we have

lim
n→∞‖xn – p‖2 = l (30)

by (15), we have

lim
n→∞‖wn – p‖2 = l (31)

and we also have

lim
n→∞‖xn – wn‖2 = 0. (32)

We have

‖xn+1 – p‖2 ≤ (1 – βn)‖wn – p‖2 + βn‖zn – p‖2 – βn(1 – βn)‖Tzn – wn‖2

≤ (1 – βn)‖wn – p‖2 + βn‖zn – p‖2,

which means

‖zn – p‖2 ≥ ‖xn+1 – p‖2 – ‖wn – p‖2

βn
+ ‖wn – p‖2. (33)

Combining (30), (31) and (33), the sequence {βn} being bounded, we have

lim inf
n→∞ ‖zn – p‖2 ≥ lim

n→∞‖wn – p‖2 = l.

By (11), we have

lim sup
n→∞

‖zn – p‖2 ≤ lim
n→∞‖wn – p‖2 = l.
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Therefore, we have

lim
n→∞‖zn – p‖2 = l. (34)

From Lemma 3.3, we can obtain ∀n > N

‖zn – p‖2 ≤ ‖wn – p‖2 – (1 – μγ )‖yn – wn‖2

and

‖zn – p‖2 ≤ ‖wn – p‖2 – (1 – μγ )‖zn – yn‖2.

By (31) and (34), we have

lim
n→∞‖yn – wn‖ = 0 (35)

and

lim
n→∞‖zn – yn‖ = 0. (36)

So

lim
n→∞‖zn – wn‖ ≤ lim

n→∞
(‖zn – yn‖ + ‖yn – wn‖

)
= 0,

which implies

lim
n→∞‖zn – wn‖ = 0. (37)

Therefore, by (12), (30) and (31), we have

lim
n→∞‖Tzn – wn‖ = 0. (38)

So

lim
n→∞‖Tzn – z‖ ≤ lim

n→∞
(‖Tzn – wn‖ + ‖wn – zn‖

)
= 0,

which implies

lim
n→∞‖Tzn – zn‖ = 0. (39)

Since {xn} is bounded, there exist a subsequence {xnk } of {xn} and q ∈ H such that
xnk ⇀ q.

So, by (32) we have ωnk ⇀ q and by (37) we have znk ⇀ q.
Since znk ⇀ q and I – T is demiclosed at zero, by Lemma 2.6, we have q ∈ Fix(T).
On the other hand, for all n ∈ R, we have λn > μ

L . We have ωnk ⇀ q and

‖wn – yn‖ =
∥∥wn – PC(I – μA)wn

∥∥ → 0.
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By Lemma 2.9, we have q ∈ VI(C, A).
Therefore, q ∈ Fix(T) ∩ VI(C, A).
By Lemma 2.10, we get the conclusion that the sequence {xn} converges weakly to an

element of Fix(T) ∩ VI(C, A).
This completes the proof. �

4 Numerical experiments
In this section, we give some numerical examples to illustrate the efficiency and advantage
of our algorithm in comparisons with the well-known algorithm. We compare Algorithm 2
with the weakly convergent Algorithm 1 [19].

We choose αn = 1
4 , βn = 1

2 , μ = 1
2 , λ0 = 1

7 . The starting point is x0 = x1 = (1, 1, . . . , 1) ∈ Rm.
In order to show the converges of the algorithm, we illustrate the behavior of the sequence
Dn = ‖xn – x∗‖2, n = 0, 1, 2, . . . , when the execution time in second elapses where x∗ is the
solution of the problem and {xn} is the sequence generated by the algorithms. Now we
introduce the examples in detail.

Example 2 Let A be a Lipschitz continuous and monotone mapping. Let T be a quasi-
nonexpansive mapping. Assume Fix(T) ∩ VI(C, A) 
= ∅ and C = [–2, 5], H = R. Let A and
T be given by

Ax := x + sin x,

Tx :=
x
2

sin x.

In the following, let us verify if A and T meet the requirements of the topic.
First, for all x, y ∈ H , we have

‖Ax – Ay‖ = ‖x + sin x – y – sin y‖ ≤ ‖x – y‖ + ‖ sin x – sin y‖ ≤ 2‖x – y‖,

〈Ax – Ay, x – y〉 = (x + sin x – y – sin y)(x – y) = (x – y)2 + (sin x – sin y)(x – y) ≥ 0.

Therefore, ‖Ax – Ay‖ ≤ L‖x – y‖, where L = 2 and 〈Ax – Ay, x – y〉 ≥ 0. Therefore, A is
L-Lipschitz continuous and monotone.

Second, for Tx = x
2 sin x, if x 
= 0 and Tx = x, then we have x = x

2 sin x, and sin x = 2, which
is impossible. Therefore, we obtain x = 0, which means Fix(T) = {0}.

For all x ∈ H ,

‖Tx – 0‖ =
∥∥∥∥

x
2

sin x
∥∥∥∥ ≤

∥∥∥∥
x
2

∥∥∥∥ < ‖x‖ = ‖x – 0‖,

which means T is quasi-nonexpansive.
Besides, take x = 2π and y = 3π

2 , we have

‖Tx – Ty‖ =
∥∥∥∥

2π

2
sin 2π –

3π

4
sin

3π

2

∥∥∥∥ =
3π

4
>

∥∥∥∥2π –
3π

2

∥∥∥∥ =
π

2
,

which means T is not a nonexpansive mapping.
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Figure 1 Experiment for Example 2

Therefore, A and T meet the requirements of the topic. The numerical results for the
example are shown in Fig. 1.

From Fig. 1, we can see that the Algorithm 2 converges for a shorter time than the pre-
viously studied Algorithm 1 [19].

Example 3 We consider the operator T : H → H with Tx = – 1
2 x and a linear operator

A : Rm →Rm in the form A(x) = Mx + q [28, 29], where

M = NNT + S + D,

N is a m × m matrix, S is a m × m skew-symmetric matrix, D is a m × m diagonal matrix
which its diagonal entries are nonnegative, and q ∈Rm is a vector, therefore M is positive
definite. The feasible set is

C =
{

x = (x1, . . . , xm ∈R
m}

: –2 ≤ xi ≤ 5, i = 1, 2, . . . , m}.

It is obvious that A is monotone and Lipschitz continuous. For experiments, q is equal
to zero vector, all the entries of N , S are generated randomly and uniformly in [–2, 2], and
the diagonal entries of D are in (0, 2).

We can easily see that the solution of the algorithm in this case is x∗ = 0. In order to
illustrate the effectiveness of the algorithm, we show the behavior of Dn when execution
time elapses(in second) by Figs. 2, 3, 4 in R20, R50, R100 respectively.

According to Figs. 2, 3, and 4, we have confirmed that the proposed algorithm have the
competitive advantages over the existing Algorithm 1 [19].
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Figure 2 Experiment withm = 20 for Example 3

Figure 3 Experiment withm = 50 for Example 3
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Figure 4 Experiment withm = 100 for Example 3

5 Conclusion
In this paper, we introduce a new algorithm with self-adaptive method for finding a so-
lution of the variational inequality problem involving monotone operator and the fixed
point problem of a quasi-nonexpansive mapping with a demiclosedness property in a real
Hilbert space. We combine a subgradient extragradient method and inertial modification
for the algorithm. Under some suitable conditions, we have proved the weak convergence
of the algorithm. In particular, it is worth emphasizing that the algorithm that we propose
does not need any additional projections of the Lipschitz constant. Finally, some numeri-
cal experiments are performed to verify the convergence of the algorithm and compared
with previously known Algorithm 1 [19].
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