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Abstract
The degenerate parabolic equations from the reaction–diffusion problems are
considered on an unbounded domain Ω ⊂ R

N . It is expected that only a partial
boundary should be imposed the homogeneous boundary value, but how to give
the analytic expression of this partial boundary seems very difficult. A new method,
which is called the general characteristic function method, is introduced in this paper.
By this new method, a reasonable analytic expression of the partial boundary value
condition is found. Moreover, the stability of the entropy solutions is established
based on this partial boundary value condition.
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1 Introduction
In the theory of water infiltration through porous media, Darcy’s linear relation

V = –K(θ )∇φ,

satisfactorily describes the flow conduction provided that the velocities are small, where
V represents the seepage velocity of water, θ is the volumetric moisture content, K(θ ) is
the hydraulic conductivity and φ is the total potential, which can be expressed as the sum
of a hydrostatic potential ψ(θ ) and a gravitational potential z

φ = ψ(θ ) + z.

But when the flow has large velocities, Darcy’s linear relation is invalid. In this case, in
order to obtain a more accurate description of the flow, several nonlinear versions have
been proposed. One of these versions is

V = –K(θ )∇φ.
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Moreover, if infiltration takes place in a horizontal column of the medium, then the con-
tinuity equation has the form

∂θ

∂t
+

∂V
∂x

= 0.

Thus, one obtains

∂θ

∂t
=

∂

∂x
(
D(θ )θx

)
, (1.1)

with D(θ ) = K(θ )ψ ′(θ ).
If one considers the convection process additionally, then Eq. (1.1) can be generalized

to the following equation:

∂u
∂t

= �A(u) + div
(
b(u, x, t)

)
, (x, t) ∈ QT = Ω × (0, T), (1.2)

where Ω ⊂R
N is a smooth domain, b(s, x, t) = {bi(s, x, t)} is a C1 function and

A(u) =
∫ u

0
a(s) ds, a(s) ≥ 0.

In fact, Eq. (1.2) comes from many reaction–diffusion problems and has been deeply in-
vestigated, one can refer to [1–3] and [4] for more details.

For the initial-boundary value problem of Eq. (1.2), since the equation has the parabolic–
hyperbolic mixed type, the initial value condition

u(x, 0) = u0(x), x ∈ Ω , (1.3)

is usually needed. But how to give a suitable boundary value condition becomes an in-
teresting and challenging problem. To see that, let us consider the completely degenerate
case, A(u) ≡ 0, since boundary layer may appear, the solutions may not assume the given
condition

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.4)

at the boundary, otherwise the problem will be overdetermined. To solve the problem,
in [5], the authors first gave an interpretation of the boundary condition (1.4) as an “en-
tropy” inequality on ∂Ω , which is the so-called BLN condition. Later, in [6], the author
extended the result to the case L∞ data. He proposed that the boundary condition should
be held in the integral form by introducing appropriate boundary entropy (i.e. entropy flux
pairs). After the work of [6], many efforts have been focused on the strongly degenerate
parabolic–hyperbolic equations

∂u
∂t

=
N∑

i=1

∂

∂xi

(
aij(u, x, t)

∂u
∂xj

)
+ div

(
b(u, x, t)

)
, (1.5)

which includes Eq. (1.2) as the isotropic diffusion case. In particular, the homogeneous
boundary condition was considered in [7–9], and the nonhomogeneous boundary con-
dition was considered in [10–14]. In all this work, the boundary condition is not directly
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shown as (1.4) in sense of the trace, but it is elegantly implicitly contained in a family of
entropy inequalities (for example [10]), or is treated in a special weak sense such as [11].
Also, one can refer to [15, 16] for the latest progress in this direction.

If we still insist on the boundary value condition is imposed in the sense of the trace,
then only a partial boundary condition,

u(x, t) = 0, (x, t) ∈ Σ1 × (0, T), (1.6)

is required generally, where Σ1 ⊆ ∂Ω is a relative open subset. This idea follows the theory
of the second order differential equations with nonnegative characteristic form [17]. By
this theory, if one wants to consider the boundary value problem of the equation

N+1∑

r,s=1

ars(x)
∂2u

∂xr ∂xs
+

N+1∑

r=1

br(x)
∂u
∂xr

+ c(x)u = f (x), x ∈ Ω̃ ⊂R
N+1,

one only needs to give partial boundary condition

u(x) = 0, x ∈ Σp ⊆ ∂Ω ,

where

Σp =
∑

2

∪
∑

3

,

Σ2 =
{

x ∈ ∂Ω̃ : arsnrns = 0,
(
br – ars

xs

)
nr < 0

}
,

Σ3 =
{

x ∈ ∂Ω̃ : arsnsnr > 0
}

,

and {ns} is the unit inner normal vector of ∂Ω̃ . Following this idea, in [18], the authors
had given a suitable partial boundary value condition in the sense of the trace to Eq. (1.5),
provided that

S1 ∩ S2 = ∅,

where

S1 =
{

(x, t) ∈ ∂Ω × [0, T] : aij(0, x, t)ninj = 0
}

,

S2 =
{

(x, t) ∈ ∂Ω × [0, T] : aij(0, x, t)ninj > 0
}

.

In [19], the author had considered Eq. (1.2) in the half space ofRN and shown that Σ1 = ∅
in (1.6) when b(u, x, t) = b(u) and bN ′(0) ≥ 0. If the domain Ω is bounded, our previous
papers [20, 21] had shown that Σ1 also can be an empty set in some cases. Recently, the
case that Σ1 ⊆ ∂Ω is a subset has been studied in [22], where Σ1 ⊆ ∂Ω is represented by
the distance function d(x) = dist(x, ∂Ω).

In order to find a reasonable analytic expression Σ1, we will summarize these results to
give a general method, which is called the general characteristic function method in this
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paper. We first give a basic conception. Let g(x) be a continuous nonnegative function on
R

N , satisfying

Ω =
{

x ∈R
N : g(x) > 0

}
, ∂Ω =

{
x ∈R

N : g(x) = 0
}

,

and g(x) = 0, x ∈ R
N \ Ω . Assume that there is a small enough λ0 > 0, such that g(x) ∈

C2(Ωλ) for any λ < λ0, where

Ωλ =
{

x ∈ Ω : g(x) < λ
}

.

If a function g(x) satisfies these requirements, we can call it as a general characteristic
function of Ω . For example, Ω ⊂ R

N is a bounded domain with an uniformly C2 smooth
boundary, then the distance function d(x) is a general characteristic function of Ω . Cer-
tainly, in this case, d2(x) is another general characteristic function of Ω . In other words,
the general characteristic function of Ω is not unique.

By the general characteristic function method it means that the part of the boundary Σ1

appearing in (1.6) can be expressed by the general characteristic function if one chooses a
suitable test function in the entropy solution inequality (see below, inequality (2.2)).

In addition, different from [10–14, 20, 21] and [15, 16], the domain Ω ⊂ R
N is an un-

bounded domain with an appropriately smooth boundary in this paper. The main innova-
tion is that, after imposing some restrictions on a(s) and bi(s, x, t), the part of the boundary
Σ1 appearing in (1.6) can be expressed as

Σ1 = Σg =
{

x ∈ ∂Ω : �g + |∇g| ≥ 0
}

. (1.7)

Moreover, depending on the partial boundary value condition (1.6), the stability of the
entropy solutions to Eq. (1.2) can be proved.

Naturally, since the general characteristic function g is not unique, if one chooses an-
other general characteristic function g1(x), the partial boundary value Σg1 may be different
from the first one Σg . By this token, we can say the partial boundary value condition (1.6)
is the best if the partial boundary Σ1 in (1.6) satisfies

Σ1 ⊆ Σg ,

for any general characteristic function g(x) and we may conjecture that Σ1 can be ex-
pressed as

Σ1 =
⋂

g
Σg . (1.8)

If there is a function g0 such that

Σg0 = Σ1 =
⋂

g
Σg , (1.9)

then we can call g0 the best general characteristic function. However, whether such a g0

exists or not is difficult to clarify.
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Moreover, the presented work is based on the Kruzkov doubling of variables trick to
study the stability of the solutions. Let us give a brief explanation. First, we assume that
x ∈ [0, 1] and consider the hyperbolic equation

∂u
∂t

=
∂B(u)

∂x
, (1.10)

it is well known that even if u0(x) is smooth, the solution u(x, t) may not be continuous.
Let Γu be the set of all jump points of u ∈ BV (QT ), (γt ,γx) be the normal of Γu at X = (x, t),
u+(X), u–(X) be the approximate limits of u at X ∈ Γu with respect to (v, Y – X) > 0 and
(v, Y – X) < 0, respectively, and ū = u++u–

2 be the symmetric mean value. Then u(x, t) not
only satisfies

∫∫

QT

(
u

∂ϕ

∂t
– B(u)

∂ϕ

∂x

)
dx dt = 0, (1.11)

for any ϕ ∈ C∞
0 (QT ), but it also satisfies the “entropy condition”

(ū – k)γt ≤ (
B(u) – B(k)

)
γx, ∀(x, t) ∈ Γu, k ∈R, (1.12)

Kruzkov [23] noticed that one can combine (1.11) with (1.12) and obtain the following
inequality:

∫∫

QT

sgn(u – k)
{

(u – k)
∂ϕ

∂t
–

(
B(u) – B(k)

)∂ϕ

∂x

}
dx dt ≥ o, (1.13)

is true for all 0 ≤ ϕ ∈∈ C∞
0 (QT ) and k ∈R. By this innovative discovery, the uniqueness of

the entropy solution to Eq. (1.10) was proved in [23] by a skillful method-which is called
the Kruzkov doubling of variables trick since then, and the corresponding weak solutions
are called the entropy solutions of Eq. (1.10).

Secondly, for the parabolic–hyperbolic mixed type equation

∂u
∂t

=
∂2A(u)

∂x2 +
∂B(u)

∂x
, (1.14)

if there exists an interior point in the set {s : a(s) = 0}, then the solution u(x, t) of Eq. (1.14)
also may be discontinuous and must have a similar “entropy condition”. A very tricky prob-
lem lies in that such a similar “entropy condition” cannot be depicted as in (1.12). Vol’pert
and Hudjaev [24] directly generalized (1.13) to the following inequality:

∫∫

QT

sgn(u – k)
{

(u – k)
∂ϕ

∂t
–

∂A(u)
∂x

ϕx –
(
B(u) – B(k)

)∂ϕ

∂x

}
dx dt ≥ o, (1.15)

and called u(x, t) an entropy solution to Eq. (1.15) provided that u ∈ BV (QT ) ∩ L∞(QT ),
∂A(u)

∂u ∈ L2
loc(QT ) and satisfies (1.15). Based on this definition, by the fact

A′(s) = a(s) = 0, if s ∈ I
(
ur(0, t), ul(0, t)

)
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it was shown that, if u and v are two entropy solutions of the initial-boundary value prob-
lem to Eq. (1.14),

∫∫

QT

sgn(u – v)
{

(u – v)
∂ϕ

∂t
– β(u – v)

∂ϕ

∂x
– (w1 – w2)

∂ϕ

∂x

}
dx dt ≥ 0, (1.16)

for any 0 ≤ ϕ ∈ C∞(QT ), suppϕ ⊂ [0, 1] × (0, T). Here, w1 = ∂A(u1)
∂x , w1 = ∂A(u2)

∂x , β =
∫ 1

0 B′(λu1 + (1 – λ)u2) dλ. By (1.16) and a very painstaking calculation and skillful work,
the uniqueness of the entropy solutions was proved by the Kruzkov doubling of variables
trick, one can refer to [24] or [1, pp. 299–324] for the details.

Naturally, one may easily generalize the inequality (1.15) to the case when the spatial
variable x ∈ Ω ⊂ R

N , i.e.

∂u
∂t

= �A(u) +
N∑

i=1

∂bi(u)
∂xi

, (1.17)

define the corresponding entropy solution inequality

∫∫

QT

sgn(u – k)

{

(u – k)
∂ϕ

∂t
– ∇A(u) · ∇ϕ –

N∑

i=1

(
bi(u) – bi(k)

) ∂ϕ

∂xi

}

dx dt ≥ o, (1.18)

and prove its existence. However, how to use the Kruzkov doubling of variables trick to
prove the uniqueness of the entropy solution, if one still insists on using a similar technique
as that in [24] or [1, pp. 299–324], becomes much more difficult. One can refer for the
explanation to our previous work [25, Appendix 2] where we considered details.

For the Cauchy problem of Eq. (1.17) (or Eq. (1.2)), the essential improvements were
made in [26–31] etc. around 2000. By introducing various kinds of the entropy solutions,
in [26–31] etc., the authors had succeeded to prove the stability of the new kind of the en-
tropy solutions. For the initial-boundary value problem, the essential improvements were
made even later, one can refer to [10, 11] and [19] etc., this is due to the fact that, besides
the new definition of the entropy solution as that in the Cauchy problem, how to give a
suitable boundary value condition to ensure the well-posedness of Eq. (1.17) (or Eq. (1.2))
becomes a difficult problem; some details are given above in this paper. In this paper, we
will consider the initial-boundary value problem of Eq. (1.2) in an unbounded domain,
and we use some ideas of [31] and [19] to introduce a kind of the entropy solution of
Eq. (1.2). By the weak convergent theorem (Lemma 3.1) and using the gradient estimation
(Lemma 3.2), we can prove the existence of the entropy solution by the parabolical regu-
larization method. Moreover, we will give a suitable partial boundary value condition (1.6)
by the general characteristic function method, and we shall use the Kruzkov doubling of
variables trick to prove the stability of the entropy solutions.

This paper is arranged as follows. In the first section, we have given the introduction. In
the second section, we give the definition of the entropy solution and the main results. In
the third section, the existence of the entropy solution is proved. In the fourth section, the
stability of the entropy solutions is researched. In the fifth section, in order to show the
part of the boundary Σg changing along with the choice of g , some examples are given, and
one can see that how to choose a suitable general characteristic function to pick out the
partial boundary value condition (1.5) is important. At last, an application of the partial
boundary value conditio is given, and some conclusions are summarized.
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2 The definition of the entropy solution inequality and the main results
It is well known that, since Eq. (1.2) is of hyperbolic–parabolic characteristic, only impos-
ing the entropy conditions, the weak solution can be unique. We use some ideas from our
previous work [19, 31] to define the entropy solutions in BV loc(QT ).

For small η > 0, we set

Sη(s) =
∫ s

0
hη(τ ) dτ , hη(s) =

2
η

(
1 –

|s|
η

)

+
.

Then hη(s) ∈ C(R), and

∣∣Sη(s)
∣∣ ≤ 1; lim

η→0
Sη(s) = sgn s, lim

η→0
shη(s) = 0. (2.1)

Definition 2.1 A function u is said to be the entropy solution of Eq. (1.2) with the initial
value (1.3) and the partial boundary value (1.6), if:

1. u satisfies

u ∈ BV loc(QT ) ∩ L∞(QT ),
∂

∂xi

∫ u

0

√
a(s) ds ∈ L2(QT ).

2. For any ϕ ∈ C2
0(QT ), ϕ ≥ 0, for any k ∈ R, for any small η > 0, u satisfies

∫∫

QT

[
Iη(u – k)ϕt – Bi

η(u, x, t, k)ϕxi + Aη(u, k)�ϕ

– S′
η(u – k)

∣∣
∣∣∇

∫ u

0

√
a(s) ds

∣∣
∣∣

2

ϕ

]
dx dt

–
∫∫

QT

∫ u

k
bi

xi
(s, x, t)S′

η(s – k) dsϕ dx dt ≥ 0. (2.2)

3. For any positive constant R large enough,

lim
t→0

∫

ΩR

∣∣u(x, t) – u0(x)
∣∣dx = 0, (2.3)

where ΩR = {x ∈ Ω : |x| < R}.
4. The partial boundary value condition (1.6) is satisfied in the sense of trace.
Here, the inequality (2.2) is called the entropy solution inequality, BV loc(QT ) is the lo-

cally BV function space [1], b(u, x, t) = {bi(u, x, t)}, and

Bi
η(u, x, t, k) =

∫ u

k

∂bi(s, x, t)
∂s

Sη(s – k) ds,

Aη(u, k) =
∫ u

k
a(s)Sη(s – k) ds, Iη(u – k) =

∫ u–k

0
Sη(s) ds.

Since the domain Ω is unbounded, we use some techniques, as we had used in consider-
ing the Cauchy problem [31], to prove the existence of the entropy solutions. Throughout
this paper, the initial value u0(x) ∈ L∞(Ω) ∩ L1(Ω).
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Theorem 2.2 If A(s) ∈ C1(R), bi(s, x, t) ∈ C1(R×Ω ×[0, T]), then the problem (1.2)–(1.3)–
(1.6) has an entropy solution.

The main aim of this paper is to study the stability of the entropy solutions.

Theorem 2.3 Suppose that A(s) is C1(R), bi(s, x, t) ∈ C1(R× Ω × [0, T]), g(x) is a general
characteristic function of Ω . Let u(x, t) and v(x, t) be solutions of Eq. (1.2) with different ini-
tial values u0(x) and v0(x), respectively, and with the same partial homogeneous boundary
value condition

γ u|Σg = γ v|Σg = 0, (2.4)

where g is a general characteristic function of Ω , and Σp has the form (1.7). If x is close to
∂Ω , �g + |∇g| is bounded, and there is a constant δ < 0 such that

∣∣
∣∣
∂bi(s, x, t)

∂s

∣∣
∣∣ ≤ (1 – δ)a(s), (2.5)

then
∫

Ω

∣∣u(x, t) – v(x, t)
∣∣νδ(x) dx ≤

∫

Ω

∣∣u0(x) – v0(x)
∣∣νδ(x) dx. (2.6)

Here

νδ(x) = e–δ
√

1+|x|2 ,

and δ is a small positive constant.

The condition (2.5) seems not good enough. Since one always expects that convection
term is independent of a(s), Eq. (1.2) can be of the hyperbolic–parabolic mixed type. Fortu-
nately, we can find another condition to take the place of (2.5), and we obtain the following
theorem.

Theorem 2.4 Suppose that A(s) is C1(R), bi(s, x, t) ∈ C1(R× Ω × [0, T]), g(x) is a general
characteristic function of Ω . Let u(x, t) and v(x, t) be solutions of Eq. (1.2) with different
initial values u0(x) and v0(x), respectively, and with the same partial boundary value con-
dition (2.4). If x is close to ∂Ω , �g + |∇g| is bounded, and

∣
∣bi(·, x, t)

∣
∣ ≤ cg(x), (2.7)

then the stability of the entropy solutions (2.6) is true.

Remark 2.5 If condition (2.5) or condition (2.7) is not true, whether the part of the bound-
ary Σg appearing in (1.6) is true is unknown.

Remark 2.6 The general characteristic function method introduced above can be used to
any kinds of hyperbolic–parabolic mixed type equations to find a reasonable analytic ex-
pression of the partial boundary value condition (1.6), no matter the domain Ω is bounded
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or not. Certainly, for different domains, one should choose different general characteristic
functions.

If the domain Ω is bounded, and we choose g(x) = d(x), then Theorem 2.4 is just a ver-
sion of Theorem 1.4 in [22]. However, since the domain considered in this paper is un-
bounded, the test function ϕ appearing in the entropy inequality (2.2) cannot be chosen
as d(x) itself, in virtue of that d(x) is not integrable on Ω generally. Also, one can see that
the test function chosen in [22] cannot be used in the entropy inequality (2.2) when the
domain is unbounded.

3 Proof of Theorem 2.2
Lemma 3.1 ([32]) Assume that Ω ⊂ R

N is an open set and let fk , f ∈ Lq(Ω), as k → ∞,
fk ⇀ f weakly in Lq(Ω), 1 ≤ q < ∞. Then

lim inf
k→∞

‖fk‖q
Lq(Ω) ≥ ‖f ‖q

Lq(Ω). (3.1)

Consider the following parabolically regularized equation:

∂u
∂t

= �A(u) +
1
n

�u + div
(
b(u, x, t)

)
, (x, t) ∈ QnT = Ωn × (0, T), (3.2)

with

u(x, t) = 0, (x, t) ∈ ∂Ωn × (0, T), (3.3)

u(x, 0) = u0n(x), x ∈ Ωn, (3.4)

where, for large enough n, Ωn = {x ∈ Ω : |x| < n}, and u0n(x) ∈ C∞
0 (Ωn) such that u0n(x)

locally uniformly converges to u0(x).
From [1, 33], we know there are classical solutions un ∈ C2(QnT ) ∩ C3(QnT ), and by the

maximum principle,

|un| ≤ ‖u0n‖L∞ ≤ ‖u0‖L∞ . (3.5)

Moreover, similar to [19, 31], we can prove the following lemma, the details of the proof
are omitted here.

Lemma 3.2 Let un(x, t) be the solution of the problem (3.2)–(3.3)–(3.4). Then

∫

Ω

|grad un|νσ (x) dx ≤ c, (3.6)

where |grad u|2 =
∑N

i=1 | ∂u
∂xi

|2 + | ∂u
∂t |2, c is independent of n, and

νσ (x) = e–σ
√

1+|x|2 ,

σ is a given positive constant.
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By (3.2) and (3.6), we have

∫ T

0

∫

Ωn

(
a(un) +

1
n

)
|∇un|2 dx dt ≤ c. (3.7)

Now, let

ūn =

⎧
⎨

⎩
un, if x ∈ Ωn,

0, if x ∈ Ω \ Ωn.

Then, by (3.6) and (3.7), we have

∫

Ω

|grad ūn|νσ (x) dx dt ≤ c, (3.8)

∫ T

0

∫

Ω

(
a(ūn) +

1
n

)
|∇ūn|2νσ (x) dx dt ≤ c. (3.9)

Thus there exists a subsequence {un} of {ūn} and a function u ∈ BV loc(QT ) ∩ L∞(QT )
such that un → u a.e. on QT .

Proof of Theorem 2.2 First of all, by (3.8), u ∈ BV loc(QT ) and we can define the trace on
the boundary, the partial boundary value condition is understood in the sense of the trace.
Secondly, by (3.9)

∂

∂xi

∫ un

0

√
a(s) ds ⇀

∂

∂xi

∫ u

0

√
a(s) ds weakly in L2(ΩR × (0, T)

)
,∀R > 0, (3.10)

∂

∂xi

∫ u

0

√
a(s) ds ∈ L2(ΩR × (0, T)

)
, ∀R > 0, i = 1, 2, . . . , N , (3.11)

where ΩR = {x ∈ Ω : |x| < R}.
Moreover, let ϕ ≥ 0, ϕ ∈ C2

0(QT ), and multiply (3.2) by ϕSη(un – k), and integrate over
QT . Then we have

∫∫

QT

∂un

∂t
ϕSη(un – k) dx dt

=
∫∫

QT

�A(un)ϕSη(un – k) dx dt

+
1
n

∫∫

QT

�unϕSη(un – k) dx dt

+
N∑

i=1

∫∫

QT

∂bi(un, x, t)
∂xi

ϕSη(un – k) dx dt. (3.12)

Integration by part yields

∫∫

QnT

Iη(un – k)ϕt dx dt +
∫∫

QT

Aη(un, k)�ϕ dx dt +
∫∫

QT

Bi
η(un, x, t, k)ϕxi dx dt

–
1
n

∫∫

QT

∇un · ∇ϕSη(un – k) dx dt –
1
n

∫∫

QT

|∇un|2S′
η(un – k)ϕ dx dt
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+
∫∫

QT

∫ un

k
bi

xi
Sη(s – k) dsϕ dx dt –

∫∫

QT

a(un)|∇un|2S′
η(un – k)ϕ dx dt

= 0. (3.13)

Since

lim
n→∞

1
n

∫∫

QT

∇un · ∇ϕSη(un – k) dx dt = 0, (3.14)

–
1
n

∫∫

QT

|∇un|2S′
η(un – k)ϕ dx dt ≤ 0, (3.15)

and by Lemma 3.1,

lim inf
n→∞

∫∫

QT

S′
η(un – k)a(un)

∂un

∂xi

∂un

∂xi
ϕ dx dt

≥
∫∫

QT

S′
η(u – k)

∣
∣∣
∣∇

∫ u

0

√
a(s) ds

∣
∣∣
∣

2

ϕ dx dt, (3.16)

then letting n → ∞ in (3.13), we can obtain (2.2).
At last, the initial value is true in the sense of (2.3) as can be shown in a similar way to

that in [1, 31]. Then we have proved the existence of the entropy solution. �

4 Proof of Theorem 2.3 and Theorem 2.4
Proof of Theorem 2.3 Let u(x, t), v(x, t) be two entropy solutions of (1.2) with different
initial values

u(x, 0) = u0(x), v(x, 0) = v0(x), (4.1)

and with the same partially boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ Σg × (0, T). (4.2)

Here g is a general characteristic function of Ω , Σg has the form of (1.7).
For any η > 0, k, l ∈R, for any 0 ≤ ϕ ∈ C2

0(QT ), by Definition 2.1

∫∫

QT

{
Iη(u – k)ϕt – Bi

η(u, x, t, k)ϕxi + Aη(u, k)�ϕ

+
∫ u

k
bi

xi
(s, x, t)Sη(s – k) dsϕ – S′

η(u – k)
∣∣∣
∣∇

∫ u

0

√
a(s) ds

∣∣∣
∣

2

ϕ

}
dx dt

≥ 0, (4.3)
∫∫

QT

{
Iη(v – l)ϕτ – Bi

η(v, y, τ , l)ϕyi + Aη(v, l)�ϕ

+
∫ v

l
bi

yi
(s, y, τ )Sη(s – l) dsϕ – S′

η(v – l)
∣∣
∣∣∇

∫ v

0

√
a(s) ds

∣∣
∣∣

2

ϕ

}
dy dτ

≥ 0. (4.4)
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As usual, we let ψ(x, t, y, τ ) = φ(x, t)jh(x – y, t – τ ). Here φ(x, t) ≥ 0, φ(x, t) ∈ C∞
0 (QT ), ωh

is the mollifier and

jh(x – y, t – τ ) = ωh(t – τ )
N∏

i=1

ωh(xi – yi). (4.5)

If we choose k = v(y, τ ), l = u(x, t), ϕ = ψ(x, t, y, τ ) in (4.3) (4.4), then, by the Kruzkov
doubling of variables trick, we have

∫∫

QT

∫∫

QT

Iη(u – v)(ψt + ψτ ) dx dt dy dτ

–
∫∫

QT

∫∫

QT

[
Bi

η(u, x, t, v)ψxi + Bi
η(v, y, τ , u)ψyi

]
dx dt dy dτ

+
∫∫

QT

∫∫

QT

[
Aη(u, v)�xψ + Aη(v, u)�yψ

]
dx dt dy dτ

+
∫∫

QT

∫∫

QT

[∫ u

v
bi

xi
(s, x, t)Sη(s – v) dsψ

+
∫ v

u
bi

yi
(s, y, τ )Sη(s – u) dsψ

]
dx dt dy dτ

–
∫∫

QT

∫∫

QT

S′
η(u – v)

(∣
∣∣
∣∇

∫ u

0

√
a(s) ds

∣
∣∣
∣

2

+
∣
∣∣
∣∇

∫ v

0

√
a(s) ds

∣
∣∣
∣

2)
ψ dx dt dy dτ

≥ 0. (4.6)

Let η → 0, h → 0 in (4.6). Then we obtain
∫∫

QT

[∣∣u(x, t) – v(x, t)
∣∣φt – sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)
φxi

+
∣∣A(u) – A(v)

∣∣�φ
]

dx dt

+
∫∫

QT

[
bi

xi
(u, x, t) – bi

xi
(v, x, t)

]
sgn(u – v)φ dx dt

≥ 0. (4.7)

For 0 < τ < s < T , we denote

η(t) =
∫ s–t

τ–t
αε(σ ) dσ , ε < min{τ , T – s},

where αε(t) is the kernel of mollifier with αε(t) = 0 for t /∈ (–ε, ε). Let us choose the test
function

φ = η(t)ξ (x), (4.8)

in (4.7), in which ξ (x) ∈ C∞
0 (Ω).

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ξ (x) dx –

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ξ (x) dx

≤
∫ τ

s

∫

Ω

[
– sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)
ξxi
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+
(
bi

xi
(u, x, t) – bi

xi
(v, x, t)

)
sgn(u – v)ξ (x)

]
dx dt

+
∫ τ

s

∫

Ω

∣∣A(u) – A(v)
∣∣�ξ dx dt. (4.9)

Let

νδ = e–δ
√

1+|x|2 ,

as before. By the limit process, we can choose ξ in (4.9) as

ξ (x, t) = ωλ(x)νδ , (4.10)

where ωλ(x) ∈ C2
0(Ω) is defined as follows: for any given small enough 0 < λ, 0 ≤ ωλ ≤ 1,

ω|∂Ω = 0 and

ωλ(x) = 1, if g(x) ≥ λ, (4.11)

when 0 ≤ g(x) ≤ λ,

ωλ

(
g(x)

)
= 1 –

(g(x) – λ)2

λ2 . (4.12)

Now,

ωλxi =

⎧
⎨

⎩
– 2(g(x)–λ)

λ2 gxi , if g(x) < λ,

0, if g(x) ≥ λ,
(4.13)

�
(
ωλ

(
g(x)

))
= ∇(

ω′
λ(g)∇g

)

= ω′′
λ(g)|∇g|2 + ω′

λ(g)�g

= –
2|∇g|2

λ2 –
2(g(x) – λ)

λ2 �g, if g(x) < λ, (4.14)

and when g(x) ≥ λ, �(ωλ(g(x))) = 0 clearly.
Since

νδxi = –δνδ

xi√
1 + |x|2 ,

νδxixi = δ2νδ

x2
i

1 + |x|2 – δνδ

1 +
∑N

j=1,j �=i |xj|2
(1 + |x|2) 3

2
,

we have

ξxi = νδxiωλ

(
g(x)

)
+ νδω

′
λ(g)gxi (x)

= –δνδ

xiωλ(g(x))
√

1 + |x|2 + νδω
′
λ(g)gxi (x)

= –δνδ

xiωλ(g(x))
√

1 + |x|2 – νδ

2(g(x) – λ)
λ2 gxi (x), if g(x) < λ, (4.15)
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while

ξxi = –δνδ

xiωλ(g(x))
√

1 + |x|2 , if g(x) ≥ λ. (4.16)

Then

�ξ = �νδωλ

(
g(x)

)
+ 2νδxiω

′
λ(g)gxi + νδ�ωλ

(
g(x)

)

=
[
δ2νδ

|x|2
1 + |x|2 – δνδ

N + (N – 1)|x|2
(1 + |x|2) 3

2

]
ωλ

(
g(x)

)

+ 4δνδ

xi√
1 + |x|2

(g(x) – λ)
λ2 gxi (x)

– νδ

2|∇g|2
λ2 – νδ

2(g(x) – λ)
λ2 �g, if g(x) < λ, (4.17)

and

�ξ =
[
δ2νδ

|x|2
1 + |x|2 – δνδ

N + (N – 1)|x|2
(1 + |x|2) 3

2

]
ωλ

(
g(x)

)
, if g(x) ≥ λ. (4.18)

Accordingly,

∫ τ

s

∫

Ω

∣
∣A(u) – A(v)

∣
∣�ξ dx dt

=
∫ τ

s

∫

Ω

[
δ2νδ

|x|2
1 + |x|2 – δνδ

N + (N – 1)|x|2
(1 + |x|2) 3

2

]
ωλ

(
g(x)

)|A(u) – A(v)|dx dt

+ 4
∫ τ

s

∫

Ωλ

δνδ

xi√
1 + |x|2

(g(x) – λ)
λ2 gxi (x)

∣∣A(u) – A(v)
∣∣dx dt

–
∫ τ

s

∫

Ωλ

[
νδ

2|∇g|2
λ2 + νδ

2(g(x) – λ)
λ2 �g

]∣∣A(u) – A(v)
∣∣dx dt. (4.19)

At the same time,

∫ τ

s

∫

Ω

[
– sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)
ξxi

]
dx dt

= δ

∫ τ

s

∫

Ω

[
sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)]
νδ

xiωλ(g(x))
√

1 + |x|2 dx dt

+
∫ τ

s

∫

Ωλ

[
sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)]
νδ

2(g(x) – λ)
λ2 gxi (x) dx dt. (4.20)

Once more

∫ τ

s

∫

Ω

[
bi

xi
(u, x, t) – bi

xi
(v, x, t)

]
sgn(u – v)ξ (x) dx dt

=
∫ τ

s

∫

Ω

[
bi

xi
(u, x, t) – bi

xi
(v, x, t)

]
sgn(u – v)ωλ(x)νδ dx dt. (4.21)
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By (4.9), (4.19)–(4.21), and using the assumption

∣∣
∣∣
∂bi(s, x, t)

∂s

∣∣
∣∣ ≤ (1 – δ)a(s),

by the Cauchy mean value theorem, we have
∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ξ (x) dx –

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ξ (x) dx

≤
∫ τ

s

∫

Ω

[
– sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)
ξxi

+
(
bi

xi
(u, x, t) – bi

xi
(v, x, t)

)
sgn(u – v)ξ (x)

]
dx dt

+
∫ τ

s

∫

Ω

∣
∣A(u) – A(v)

∣
∣�ξ dx dt

≤
∫ τ

s

∫

Ωλ

νδ

∣∣A(u) – A(v)
∣∣–2(g(x) – λ)

λ2

·
[
�g – δ

2xigxi√
1 + |x|2 –

sgn(u – v)(bi(u, x, t) – bi(v, x, t))
|A(u) – A(v)| gxi (x)

]
dx dt

+ c
∫ τ

s

∫

Ω

νδ

∣∣u(x, t) – v(x, t)
∣∣dx dt

≤
∫ τ

s

∫

Ωλ

νδ

∣∣A(u) – A(v)
∣∣–2(g(x) – λ)

λ2

·
[
�g +

(
δ

2|xi|√
1 + |x|2 +

|bi′(ζ , x, t)|
a(ζ )

)∣
∣gxi (x)

∣
∣
]

dx dt

+ c
∫ τ

s

∫

Ω

νδ

∣
∣u(x, t) – v(x, t)

∣
∣dx dt

≤
∫ τ

s

∫

Ωλ

νδ

∣∣A(u) – A(v)
∣∣–2(g(x) – λ)

λ2

[
�g + (δ + 1 – δ)

∣∣gxi (x)
∣∣]dx dt

+ c
∫ τ

s

∫

Ω

νδ

∣∣u(x, t) – v(x, t)
∣∣dx dt

≤
∫ τ

s

∫

Ωλ

νδ

∣
∣A(u) – A(v)

∣
∣–2(g(x) – λ)

λ2

[
�g + |∇g|]dx dt

+ c
∫ τ

s

∫

Ω

νδ

∣∣u(x, t) – v(x, t)
∣∣dx dt

≤
∫ τ

s

∫

Ωλ1

νδ

∣∣A(u) – A(v)
∣∣–2(g(x) – λ)

λ2

[
�g + |∇g|]dx dt

+ c
∫ τ

s

∫

Ω

νδ

∣∣u(x, t) – v(x, t)
∣∣dx dt. (4.22)

Here, we have denoted

Ωλ1 =
{

x ∈ Ωλ : �g + |∇g| ≥ 0
}

and

bi′(ζ , x, t) =
∂bi(s, x, t)

∂s

∣∣
∣∣
s=ζ

.
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By the definition of the trace, we have

lim
λ→0

∫

Ωλ1

νδ

∣
∣A(u) – A(v)

∣
∣–2(g(x) – λ)

λ2

[
�g + |∇g|]dx

=
∫

Σp

νδ

[
�g + |∇g|]∣∣A(u) – A(v)

∣
∣dΣ

= 0. (4.23)

Let λ → 0 in (4.20). By (4.21), we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣νδ(x) dx

≤
∫

Ω

∣
∣u(x, τ ) – v(x, τ )

∣
∣νδ dx + c

∫ τ

s

∫

Ω

νδ|u – v|dx dt. (4.24)

By the Gronwall inequality, we have the conclusion. �

Proof of Theorem 2.4 Similar to the proof of Theorem 2.3, the calculations (4.1)–(4.21)
are still true. In addition, by the assumption of (2.7), we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ξ (x) dx –

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ξ (x) dx

≤
∫ τ

s

∫

Ω

[
– sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)
ξxi

+
(
bi

xi
(u, x, t) – bi

xi
(v, x, t)

)
sgn(u – v)ξ (x)

]
dx dt

+
∫ τ

s

∫

Ω

∣
∣A(u) – A(v)

∣
∣�ξ dx dt

≤
∫ τ

s

∫

Ωλ

νδ

∣∣A(u) – A(v)
∣∣–2(g(x) – λ)

λ2

[
�g – δ

2xigxi√
1 + |x|2

]
dx dt

+
∫ τ

s

∫

Ωλ

νδ

2(g(x) – λ)
λ2 sgn(u – v)

[
bi(u, x, t) – bi(v, x, t)

]
gxi (x) dx dt

+ c
∫ τ

s

∫

Ω

νδ

∣
∣u(x, t) – v(x, t)

∣
∣dx dt

≤
∫ τ

s

∫

Ωλ

νδ

∣
∣A(u) – A(v)

∣
∣–2(g(x) – λ)

λ2

[
�g + δ|∇g|]dx dt

+ c
∫ τ

s

∫

Ωλ

νδ

1
λ

g(x)|∇g|dx dt

+ c
∫ τ

s

∫

Ω

νδ

∣∣u(x, t) – v(x, t)
∣∣dx dt. (4.25)

Since x ∈ Ωλ, g(x) ≤ λ,

lim
λ→0

∫

Ωλ

νδ

1
λ

g(x)|∇g|dx = 0. (4.26)

By (4.25) and (4.26), similar the proof of Theorem 2.3, we have the conclusion. �
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From the proof of Theorem 2.3 and Theorem 2.4, we easily obtain the following theorem.

Theorem 4.1 Suppose that A(s) is a C1 function, bi(s, x, t) is a C1 function on R × Ω ×
[0, T], g(x) is a general characteristic function of Ω . Let u(x, t), v(x, t) be solutions of Eq. (1.2)
with different initial values u0(x), v0(x), respectively. If there is a general characteristic func-
tion of Ω such that

∣
∣bi(·, x, t)

∣
∣ ≤ cg(x), (4.27)

�g ≤ 0, �x · ∇g ≥ 0, (4.28)

then

∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣νδ(x) dx ≤

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣νδ(x) dx. (4.29)

Proof First, we still have (4.1)–(4.18). Secondly, by (4.28),

∫ τ

s

∫

Ω

∣
∣A(u) – A(v)

∣
∣�ξ dx dt

=
∫ τ

s

∫

Ω

[
δ2νδ

|x|2
1 + |x|2 – δνδ

N + (N – 1)|x|2
(1 + |x|2) 3

2

]
ωλ

(
g(x)

)∣∣A(u) – A(v)
∣∣dx dt

+ 4
∫ τ

s

∫

Ωλ

δνδ

xi√
1 + |x|2

(g(x) – λ)
λ2 gxi (x)

∣∣A(u) – A(v)
∣∣dx dt

–
∫ τ

s

∫

Ωλ

[
νδ

2|∇g|2
λ2 + νδ

2(g(x) – λ)
λ2 �g

]∣∣A(u) – A(v)
∣∣dx dt

≤
∫ τ

s

∫

Ω

[
δ2νδ

|x|2
1 + |x|2 – δνδ

N + (N – 1)|x|2
(1 + |x|2) 3

2

]
ωλ

(
g(x)

)∣∣A(u) – A(v)
∣∣dx dt

≤ c
∫ τ

s

∫

Ω

νδ

∣∣u(x, t) – v(x, t)
∣∣dx dt (4.30)

and by (4.27)

lim
λ→0

∫ τ

s

∫

Ω

[
– sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)
ξxi

]
dx dt

= lim
λ→0

δ

∫ τ

s

∫

Ω

[
sgn(u – v)

(
bi(u, x, t) – b6i(v, x, t)

)]
νδ

xiωλ(g(x))
√

1 + |x|2 dx dt

+ lim
λ→0

∫ τ

s

∫

Ωλ

[
sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)]
νδ

2(g(x) – λ)
λ2 gxi (x) dx dt

≤ c
∫ τ

s

∫

Ω

νδ

∣
∣u(x, t) – v(x, t)

∣
∣dx dt

+ lim
λ→0

∫ τ

s

∫

Ωλ

[
sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)]
νδ

2(g(x) – λ)
λ2 gxi (x) dx dt

≤ c
∫ τ

s

∫

Ω

νδ

∣
∣u(x, t) – v(x, t)

∣
∣dx dt. (4.31)
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Here, we have used the fact that

lim
λ→0

∣
∣∣
∣

∫ τ

s

∫

Ωλ

[
sgn(u – v)

(
bi(u, x, t) – bi(v, x, t)

)]
νδ

2(g(x) – λ)
λ2 gxi (x) dx dt

∣
∣∣
∣

≤ lim
λ→0

∫ τ

s

∫

Ωλ

g2(x)
λ2 dx dt

= 0.

Thirdly,
∣
∣∣
∣

∫ τ

s

∫

Ω

[
bi

xi
(u, x, t) – bi

xi
(v, x, t)

]
sgn(u – v)ξ (x) dx dt

∣
∣∣
∣

=
∣
∣∣
∣

∫ τ

s

∫

Ω

[
bi

xi
(u, x, t) – bi

xi
(v, x, t)

]
sgn(u – v)ωλ(x)νδ dx dt

∣
∣∣
∣

≤ c
∫ τ

s

∫

Ω

νδ

∣
∣u(x, t) – v(x, t)

∣
∣dx dt. (4.32)

By (4.30)–(4.32), we have (4.24). Then we have the conclusion. �

Theorem 4.1 implies that, in some cases, one can obtain the stability (4.30) without the
boundary value condition. In other words, the conditions (4.27)–(4.28) can take the place
of the boundary value condition.

5 Examples of the partial boundary value
In this section, we will give some examples to show that the part of the boundary Σg in
(1.7) changes along with the choice of the general characteristic function g .

(i) As we have said above, the general characteristic function method also can be used in
the case that domain Ω is bounded. Let us first give an example to show, for the bounded
domain, how the part of the boundary Σg in (1.7) changes along with the choice of the
general characteristic function g . Let r > 0 be a given constant, and

Ωr =
{

x ∈R
2 : |x|2 > r2}.

If we choose

g1(x) = |x|2 – r2,

then

g1xi = 2xi, i = 1, 2; �g1 = 4.

On ∂Ωr , |x| = r, we have

�g1 + |∇g1| = 4 + 2r > 0.

Then

Σg1 = ∂Ω . (5.1)
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If we choose

gr(x) = ln
(
1 + |x|2 – r2),

then

grxi =
2xi

1 + |x|2 – r2 , i = 1, 2,

�gr =
2(–|x|2 + 1 – r2)

1 + |x|2 – r2 .

Then on ∂Ωr ,

Σgr =
{

x ∈ ∂Ωr : �gr + |∇gr| = 2
(
1 – 2r2 + r

) ≥ 0
}

. (5.2)

Thus, if r < 1, then

Σgr = ∅, (5.3)

which implies that there is no boundary value condition (1.5) required. In other words,
when r < 1, gr is the best characteristic function.

While r ≥ 1

Σgr = ∂Ωr , (5.4)

is the whole boundary and the boundary value condition (1.6) becomes the usual Dirichlet
boundary value condition.

(ii) Two examples of the unbounded ∂Ω are given in what follows. The first one is

Ω2 =
{

x ∈R
2 : x2 > x2

1
}

.

If we choose

g1(x) = x2 – x2
1,

then

g1x1 = 2x1, g1x2 = 1, �g = 2.

On ∂Ω2, x2 = x2
1, then

�g1 + |∇g1| = 4x2
1 + 1 = 4x2 + 1 > 0.

Then

Σg1 = ∂Ω2. (5.5)
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If we choose g2(x) = ex2–x2
1 – 1, then

∂g2

∂x1
= ex2–x2

1 (–2x1),
∂g2

∂x2
= ex2–x2

1 ,

|∇g2| = ex2–x2
1

√
4x2

1 + 1,

�g2 = ex2–x2
1
(
4x2

1 – 1
)
.

Thus on ∂Ω2,

�g2 + |∇g2| = ex2–x2
1
(

4x2
1 – 1 +

√
4x2

1 + 1
)

= ex2–x2
1 (4x2 – 1 +

√
4x2 + 1),

which implies that

Σg2 =
{

x ∈ ∂Ω2 : x2 ≤ 3
4

}
⊂ ∂Ω2.

If we choose g3(x) = ln(1 + x2 – x2
1), then

g3x1 =
–2x1

1 + x2 – x2
1

, g3x2 =
1

1 + x2 – x2
1

,

and

�g3 = –2
(1 + x2 – x2

1) + 2x2
1

(1 + x2 – x2
1)2 –

1
(1 + x2 – x2

1)2

= –
2(x2 + x2

1) + 3
(1 + x2 – x2

1)2 . (5.6)

On ∂Ω2, x2 = x2
1, then

�g3 + |∇g3| = –2 < 0,

which means that there is not boundary value condition (1.6) required, g3 is the best gen-
eral characteristic function.

The second one is the half space Ω3 = {x ∈ R
N : xN > 0}. If one chooses

g4(x) = x2
N ,

then

�g4 + |∇g4| > 0

and

Σg4 = ∂Ω3.
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If one chooses

g5 = xN (1 – XN ), xN ∈
(

–1,
1
2

)
,

and appropriately defined elsewhere, then

�g5 + |∇g5| < 0

and

Σg5 = ∅,

which means that there is no boundary value condition (1.6) required. g5 is the best general
characteristic function of Ω3.

6 Conclusion
The partial homogeneous boundary value condition no doubt maintain the dominance
of this paper. It is a possible abstract application with no physical (trivial) interpretation
at this stage. This seems to be good math/science. However, if we regard Eq. (1.1) as a
nonlinear heat conduction equation, then the condition (1.6)

u(x, t) = 0, (x, t) ∈ Σg × (0, T),

implies that on this part we must control its heat conduction by technical means. No
boundary value being imposed on ∂Ω \ Σp implies that there is a thermal insulation on
∂Ω \ Σp, the heat conduction cannot pass ∂Ω \ Σp.

For a parabolic–hyperbolic equation, how to impose a suitable partial boundary value
condition to ensure the well-posedness of the entropy solutions is a very interesting prob-
lem. This problem can be traced back to 1960s, which is called the theory of the second
order differential equations with nonnegative characteristic form. In brief, for a degenerate
elliptic (or parabolic) equation, the partial boundary on which the boundary value should
be imposed is determined by the diffusion coefficient ars, the Fichera function br – ars

xs

and the inner normal vector n = {nr}. When the equation becomes nonlinear, for exam-
ple, in the equation considered in this paper, there is no diffusion coefficient, it is almost
impossible to find a function similar to the Fichera function to express the boundary value
condition. In this paper, a new method—the general characteristic function method—is
introduced. Instead of the Fichera function, the partial boundary on which the boundary
value should be imposed, can be expressed by the general characteristic function. One
can see that the partial boundary value condition (1.6) with the expression of Σp (1.7)
changes along with the choice of the general characteristic function. The simplest one is
the distance function from the boundary d(x) = dist(x, ∂Ω), in this case, ∇d = n is the inner
normal vector of Ω . The novelty of this method lies in that there is not any requirement
of the regularity of the weak solutions on the boundary, and it can be generalized to the
other kinds of the degenerate parabolic equations. A fly in the ointment is that it is difficult
to find the best characteristic function g0 to ensure the best partial boundary value con-
dition. By the way, the domain considered in this paper is unbounded, some innovative
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techniques are used and can be generalized to the other kinds of the degenerate parabolic
equations.
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