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Abstract
A semismooth Newton method, based on variational inequalities and generalized
derivative, is designed and analysed for unilateral contact problem between two
membranes. The problem is first formulated as a corresponding regularized problem
with a nonlinear function, which can be solved by the semismooth Newton method.
We prove the convergence of the method in the function space. To improve the
performance of the semismooth Newton method, we use the path-following method
to adjust the parameter automatically. Finally, some numerical results are presented
to illustrate the performance of the proposed method.
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1 Introduction
Contact problems appear in many applications in industry and engineering, such as the
contact between two elastic membranes [1–7]. This problem describes the equilibrium
position of two membranes under the action between them. The membranes cannot in-
terpenetrate and are fixed on the boundary. In this system, there are three unknowns: the
position of each membrane and the action of each membrane on the other one [2]. One
of the main challenges is the fact that the contact zone is not known in advance and has
to be identified. Although the main results on existence and uniqueness can be found in
the recent literature [1–4], little attention has been paid to methods for the numerical so-
lution. Therefore, the accurate and efficient numerical simulation of the contact problem
is necessary.

We note that different Newton methods have been successfully applied to constrained
problems such as complementary problems and variational inequalities in finite or infi-
nite dimensional space [8–17]. Motivated by theoretical and numerical results obtained
in recent years, we develop a coupling procedure with combination of semismooth New-
ton methods (SSNMs) and path-following methods (PFMs) in function space [10, 15, 18].
The essence of the procedure is to reduce the problem to a regularized problem which
can be solved by SSNM. The main advantage of SSNM is that the inequality constraints
are formulated as a nonlinear system which is equivalent to a sequence of linear systems.
However, the convergence speed of SSNM is sensitive to a parameter. To make SSNM
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more efficient, we propose a path-following strategy to update the parameter automati-
cally for numerical implementation.

The paper is organized as follows: In the next section, we start with the formulation
of the contact problem between two elastic membranes and recall some basic results.
In Sect. 3, we give a regularized problem and its convergence. The semismooth Newton
method is proposed in Sect. 4. A path-following method, based on the semismooth New-
ton method, is presented in Sect. 5. Finally, in Sect. 6 some numerical results are given to
show the performance of our method.

2 Problem setting and main results
We consider two elastic membranes in unilateral contact. Throughout the paper, let Ω be
the bounded and convex domain in R

2 with a Lipschitz boundary Γ . For given functions
f1, f2 and nonnegative g , the problem is to determine the displacements u1, u2 ∈ H1(Ω) =
{u ∈ L2(Ω); ∂αu ∈ L2(Ω), |α| ≤ 1}. The associated norm is ‖u‖H1(Ω) = { ∑

|α|≤1
‖∂αu‖2

L2(Ω)}1/2

and the action λ ∈ L2(Ω) = H0(Ω) (the norm is ‖u‖L2(Ω) = {∫
Ω

|u(x)|2 dx}1/2) such that

– μ1�u1 – λ = f1 in Ω , (2.1)

– μ2�u2 + λ = f2 in Ω , (2.2)

u1 – u2 ≥ 0, λ ≥ 0, (u1 – u2)λ = 0 in Ω , (2.3)

u1 = g on Γ , (2.4)

u2 = 0 on Γ , (2.5)

where the tension coefficients μ1 > 0 and μ2 > 0. The solution (u1, u2) of (2.1)–(2.5) may
be interpreted as a vertical displacement of two membranes stretched by different hori-
zontal heights and pressed together by vertical forces with two densities. In this system,
λ represents the action of the second membrane on the first one and –λ is the reaction.
The contact condition (2.3) describes the non-interpenetration of two membranes in Ω ,
and the first membrane can press the second one in the domain that is in contact, i.e.
u1 – u2 = 0. If there is no contact, i.e. u1 – u2 > 0, then the action vanishes with λ = 0. The
boundary conditions (2.4) and (2.5) mean that the first membrane is fixed on Γ at the
height g which is a nonnegative function, and the second one is fixed at zero, respectively.
(More details are given in [2–4].)

To give the weak formulation of the problem (2.1)–(2.5), we introduce the following
space of functions:

H1
g (Ω) :=

{
v ∈ H1(Ω); v = g on Γ

}
,

and the convex subsets

Kg :=
{

(v1, v2) ∈ H1
g (Ω) × H1

0 (Ω); v1 – v2 ≥ 0 a.e. in Ω
}

,

H
1
2

+ (Γ ) :=
{

v ∈ H
1
2 (Γ ); v ≥ 0 a.e. in Γ

}
,

Λ :=
{

v ∈ L2(Ω); v ≥ 0 a.e. in Ω
}

.
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For given (f1, f2) in L2(Ω)×L2(Ω) and g in H
1
2

+ (∂Ω), we consider the following variational
problem: Find (u1, u2,λ) in H1

g (Ω) × H1
0 (Ω) × Λ, such that

⎧
⎪⎪⎨

⎪⎪⎩

∑2
i=1 μi

∫
Ω

∇ui · ∇vi dx –
∫
Ω

λ(v1 – v2) dx

=
∑2

i=1
∫
Ω

fivi dx, ∀(v1, v2) ∈ H1
0 (Ω) × H1

0 (Ω),
∫
Ω

(χ – λ)(x)(u1 – u2)(x) dx ≥ 0, ∀χ ∈ Λ,

(2.6)

or a variational inequality: Find (u1, u2) in Kg , such that

2∑

i=1

μi

∫

Ω

∇ui · ∇(vi – ui) dx ≥
2∑

i=1

∫

Ω

fi(vi – ui) dx, ∀(v1, v2) ∈ Kg . (2.7)

For the above problems, we summarize the main conclusions for the existence and
uniqueness as follows (see Proposition 1, Lemma 2 and Proposition 3 in [3]).

Proposition 2.1 Problem (2.6) is equivalent to problem (2.1)–(2.5), so that any triple
(u∗

1, u∗
2,λ∗) in H1

g (Ω) × H1
0 (Ω) × L2(Ω) is a weak solution of (2.1)–(2.5) if and only if it

is a solution of (2.6).

Proposition 2.2 For any solution (u∗
1, u∗

2,λ∗) ∈ H1
g (Ω) × H1

0 (Ω) × L2(Ω) of problem (2.6),
the pair (u∗

1, u∗
2) ∈ H1

g (Ω) × H1
0 (Ω) is a solution of (2.7).

Proposition 2.3 Let data (f1, f2) be in L2(Ω) × L2(Ω) and g be in H
1
2

+ (∂Ω), then the prob-
lem (2.7) has a unique solution (u∗

1, u∗
2) in Kg .

In this paper, we consider the numerical method of the unilateral contact problem.

3 Equivalent reformulations
For any u, v ∈ L2(Ω), we define the inner product

〈u, v〉 :=
∫

Ω

u(x)v(x) dx,

and for any u, v ∈ H1(Ω) the symmetric bilinear form

a(u, v) :=
∫

Ω

∇u(x) · ∇v(x) dx,

it follows that the bilinear form a(·, ·) on H1(Ω) × H1(Ω) satisfies coercivity and Lipschitz
continuity, i.e.

a(v, v) ≥ α‖v‖2
H1

0
, a(w, z) ≤ β‖w‖H1(Ω)‖z‖H1(Ω), (3.1)

where α > 0, β > 0, v ∈ H1
0 (Ω), w, z ∈ H1(Ω). We also require that the bilinear form a(·, ·)

satisfies the weak maximum principle, i.e. for all v ∈ H1
0 (Ω),

a
(
v, v+) ≤ 0 implies v+ = 0, (3.2)

where v+ = max(0, v). This property can easily be proved by using the bilinear form a(·, ·).
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We note that the condition (2.3) can be rewritten as

λ = max
(
0,λ – γ (u1 – u2)

)
, (3.3)

for any γ > 0 [11, 15]. If we replace (3.3) by

λ = max
(
0, λ̄ – γ (u1 – u2)

)
, (3.4)

where λ̄ ∈ L2(Ω) is given, then problem (2.1)–(2.5) can be expressed as

⎧
⎪⎪⎨

⎪⎪⎩

μ1a(u1, v) – 〈λ, v〉 = 〈f1, v〉, ∀v ∈ H1
0 (Ω),

μ2a(u2, v) + 〈λ, v〉 = 〈f2, v〉, ∀v ∈ H1
0 (Ω),

λ = max(0, λ̄ – γ (u1 – u2)) a.e. in Ω .

(3.5)

Consequently, the optimization problem for system (3.5) is

⎧
⎪⎪⎨

⎪⎪⎩

Find (u1, u2) ∈ H1
g (Ω) × H1

0 (Ω) such that

min J(γ , u1, u2) :=
∑2

i=1( 1
2μia(ui, ui) – 〈fi, ui〉)

+ 1
2γ

‖max(0, λ̄ – γ (u1 – u2))‖2.

(3.6)

It follows from the uniform convexity of J(γ , ·, ·) that the system (3.5) admits a unique solu-
tion (u1γ , u2γ ,λγ ) for every γ > 0 [11, 15]. To highlight the dependence on γ , the solution
is denoted by (u1γ , u2γ ) and the corresponding multiplier by λγ . In the following theorem,
we can show that the problem (2.6) can be approximately formulated as the optimization
problem (3.6) with γ → ∞.

Theorem 3.1 For every λ̄ ∈ L2(Ω), the solutions (u1γ , u2γ ,λγ ) to problem (3.5) converge to
the solution (u∗

1, u∗
2,λ∗) to problem (2.6) in the sense that (u1γ , u2γ ) → (u∗

1, u∗
2) strongly in

H1
g (Ω) × H1

0 (Ω) and λγ → λ∗ weakly in H–1(Ω) as γ → ∞.

Proof From (3.5) we obtain, for any γ > 0,

⎧
⎨

⎩

μ1a(u1γ , u1γ – u∗
1) – 〈λγ , u1γ – u∗

1〉 = 〈f1, u1γ – u∗
1〉,

μ2a(u2γ , u2γ – u∗
2) + 〈λγ , u2γ – u∗

2〉 = 〈f2, u2γ – u∗
2〉,

(3.7)

it follows that

μ1a
(
u1γ , u1γ – u∗

1
)

+ μ2a
(
u2γ , u2γ – u∗

2
)

=
〈
λγ , u1γ – u2γ –

(
u∗

1 – u∗
2
)〉

+
〈
f1, u1γ – u∗

1
〉
+

〈
f2, u2γ – u∗

2
〉
. (3.8)
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Note that λγ ≥ 0 from (3.4) and u∗
1 – u∗

2 ≥ 0 from (2.3), we have

〈
λγ , u1γ – u2γ –

(
u∗

1 – u∗
2
)〉

=
〈

λγ ,
λ

γ
+ u1γ – u2γ –

(
u∗

1 – u∗
2
)

–
λ

γ

〉

≤
〈

λγ ,
λ

γ
+ (u1γ – u2γ ) –

λ

γ

〉

=
1
γ

〈λγ ,λ〉 –
1
γ

〈
λγ ,λ – γ (u1γ – u2γ )

〉
.

Consequently,

〈
λγ , u1γ – u2γ –

(
u∗

1 – u∗
2
)〉 ≤ 1

γ
〈λγ ,λ〉 –

1
γ

‖λγ ‖2
Ω , (3.9)

where (3.4) is used. Combining (3.8) and (3.9) we obtain

μ1a(u1γ , u1γ ) + μ2a(u2γ , u2γ ) +
1
γ

‖λγ ‖2
Ω

≤ μ1a
(
u1γ , u∗

1
)

+ μ2a
(
u2γ , u∗

2
)

+
〈
f1, u1γ – u∗

1
〉
+

〈
f2, u2γ – u∗

2
〉
+

1
γ

〈λγ ,λ〉,

from the coercivity (with positive constants α1, α2) and the Lipschitz continuity of a(·, ·)
it follows that

α1μ1‖u1γ ‖2
H1

g
+ α2μ2‖u2γ ‖2

H1
0

+
1
γ

‖λγ ‖2
Ω

is uniformly bounded with respect to γ ≥ 1. Clearly u1γ , u2γ are bounded in H1
g and H1

0

respectively, and {λγ }γ≥1 is bounded in L2(Ω) from (3.7) [11]. Then there exist (̂u1, û2, λ̂) ∈
H1

g (Ω) × H1
0 (Ω) × L2(Ω) and a sequence {u1γn , u2γn ,λγn} with limγn = ∞ such that

lim
γn→∞(u1γn , u2γn ,λγn ) = (̂u1, û2, λ̂); (3.10)

here we drop subscript n with γn.
On the other hand, from (3.4) we note that

1
γ

‖λγ ‖2
Ω = γ

∥
∥
∥
∥max

(

0,
λ

γ
– (u1γ – u2γ )

)∥
∥
∥
∥

2

Ω

. (3.11)

Using the above equality and limγ→∞ 1
γ
‖λγ ‖2

L2(Ω) = 0, we have limγ→∞(u1γ – u2γ ) = û1 –
û2 ≥ 0 a.e. on Ω . Since (u∗

1, u∗
2,λ∗) is the unique solution of the problem (2.6), from (3.7)

we also have
⎧
⎨

⎩

μ1a(u1γ – u∗
1, u1γ – u∗

1) – 〈λγ – λ∗, u1γ – u∗
1〉 = 0,

μ2a(u2γ – u∗
2, u2γ – u∗

2) + 〈λγ – λ∗, u2γ – u∗
2〉 = 0,

(3.12)

then

μ1a
(
u1γ –u∗

1, u1γ –u∗
1
)

+μ2a
(
u2γ –u∗

2, u2γ –u∗
2
)

=
〈
λγ –λ∗, u1γ –u2γ –

(
u∗

1 –u∗
2
)〉

. (3.13)
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Using (3.9) and Young’s inequality, we have

〈
λγ , u1γ – u2γ –

(
u∗

1 – u∗
2
)〉 ≤ 1

2γ
‖λ‖2

Ω . (3.14)

Hence

0 ≤ α1μ1
∥
∥u1γ – u∗

1
∥
∥2

H1
0 (Ω) + α2μ2

∥
∥u2γ – u∗

2
∥
∥2

H1
0 (Ω)

≤ μ1a1
(
u1γ – u∗

1, u1γ – u∗
1
)

+ μ2a2
(
u2γ – u∗

2, u2γ – u∗
2
)

=
〈
λγ – λ∗, u1γ – u2γ –

(
u∗

1 – u∗
2
)〉

=
〈
λγ , u1γ – u2γ –

(
u∗

1 – u∗
2
)〉

–
〈
λ∗, u1γ – u2γ –

(
u∗

1 – u∗
2
)〉

≤ 1
2γ

‖λ‖2
Ω –

〈
λ∗, u1γ – u2γ –

(
u∗

1 – u∗
2
)〉

.

Note that λ∗ ≥ 0, û1 – û2 ≥ 0 and u∗
1 – u∗

2 ≥ 0, we thus have

0 ≤ lim
γ→∞ sup

(
α1μ1

∥
∥u1γ – u∗

1
∥
∥2

H1
0 (Ω) + α2μ2

∥
∥u2γ – u∗

2
∥
∥2

H1
0 (Ω)

)

≤ lim
γ→∞

(
1

2γ
‖λ‖2

Ω +
〈
λ∗, u∗

1 – u∗
2
〉
–

〈
λ∗, u1γ – u2γ

〉
)

= – lim
γ→∞

〈
λ∗, û1 – û2

〉

≤ 0.

This implies that

lim
γ→∞ u1γ = u∗

1, lim
γ→∞ u2γ = u∗

2.

So we obtain from (3.10)

û1 = u∗
1, û2 = u∗

2.

Taking the limit γ → ∞ in

⎧
⎨

⎩

μ1a(u1γ , v) – 〈λγ , v〉 = 〈f1, v〉, ∀v ∈ H1
g (Ω),

μ2a(u2γ , v) + 〈λγ , v〉 = 〈f2, v〉, ∀v ∈ H1
0 (Ω),

yields

⎧
⎨

⎩

μ1a(u∗
1, v) – 〈̂λ, v〉 = 〈f1, v〉, ∀v ∈ H1

g (Ω),

μ2a(u∗
2, v) + 〈̂λ, v〉 = 〈f2, v〉, ∀v ∈ H1

0 (Ω).
(3.15)

Comparing (3.15) and (3.5) shows that λ∗ and λ̂ satisfy the same equation. Consequently,
we have λ∗ = λ̂ in H–1(Ω). It follows from the uniqueness of the solution variables
(u∗

1, u∗
2,λ∗) that the whole family {(u1γ , u2γ ,λγ )} converges in the sense stated in the theo-

rem. �
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4 Semismooth Newton method
This section is devoted to the discussion of an iterative algorithm for solving (3.5). Note
that the direct application of a Newton algorithm is impeded by the fact that the max-
function is not differentiable. Alternatively we shall apply a semismooth Newton method
to the mapping F : L2(Ω) → L2(Ω) defined by

F(λ) = λ – max
(
0, λ̄ – γ

(
u1(λ) – u2(λ)

))
.

We now briefly recall those facts on semismooth Newton methods which are relevant for
the present context [11, 13, 15].

Definition 4.1 The mapping F : D ⊂ X → Z is called generalized-differentiable on the
open subset U ⊂ D if there exists a family of generalized derivatives G : U → L(X, Z) such
that

lim
h→∞

1
‖h‖

∥
∥F(x + h) – F(x) – G(x + h)h

∥
∥ = 0,

for every x ∈ U .

Theorem 4.1 Suppose that x∗ ∈ D is a solution to F(x) = 0 and that F is Newton-
differentiable in an open neighborhood U containing x∗ and that ‖G(x)–1‖ : x ∈ U is
bounded. Then the Newton-iteration xk+1 = xk – G(xk)–1F(xk) converges superlinearly to
x∗ provided that ‖x0 – x∗‖ is sufficiently small.

Let us consider Newton-differentiability of the max-operation. We introduce candidates
for the generalized derivatives of the form

Gm(y)(x) =

⎧
⎨

⎩

1 y(x) > 0,

0 y(x) ≤ 0,

where y ∈ X.

Proposition 4.1 The mapping max(0, ·) with 1 ≤ p < q < ∞ is Newton-differentiable on
Lq(Ω) and Gm is a generalized derivative.

Now we can describe our semismooth Newton method for the problem (3.5) as follows.

Algorithm 1 (SSNM)
(1) Choose initial triple (u(0)

1 , u(0)
2 , λ̄) ∈ H1

g (Ω) × H1
0 (Ω) × L2(Ω) and big enough γ > 0,

set k = 0.
(2) Set Ak+1 = {x ∈ Ω : λ – γ (u(k)

1 – u(k)
2 ) > 0}, Ik+1 = Ω \Ak+1.

(3) Determine (u(k+1)
1 , u(k+1)

2 ) ∈ H1
g (Ω) × H1

0 (Ω) such that

⎧
⎨

⎩

μ1a(u(k+1)
1 , v) – 〈λ(k+1), v〉 = (f1, v), ∀v ∈ H1

0 (Ω),

μ2a(u(k+1)
2 , v) + 〈λ(k+1), v〉 = (f2, v), ∀v ∈ H1

0 (Ω).
(4.1)
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(4) Set

λ(k+1) =

⎧
⎨

⎩

0 on Ik+1,

λ – γ (u(k+1)
1 – u(k+1)

2 ) on Ak+1.

(5) Stop or set k := k + 1 and go to (2).

Following the analysis in [11, 15], we have the same results.

Proposition 4.2 If Ak+1 = Ak (k ≥ 1), then (u(k)
1 , u(k)

2 ,λ(k)) is the solution to (4.1).

Proof Consider Ak+1 = Ak , from (4.1) we have

⎧
⎨

⎩

μ1a(u(k+1)
1 , v) – 〈λ – γ (u(k+1)

1 – u(k+1)
2 ),χAk v〉 = (f1, v), ∀v ∈ H1

0 (Ω),

μ1a(u(k)
1 , v) – 〈λ – γ (u(k)

1 – u(k)
2 ),χAk v〉 = (f1, v), ∀v ∈ H1

0 (Ω).

Subtracting the second equation from the first one we can get

μ1μ2a
(
u(k+1)

1 – u(k)
1 , v

)
= –γμ2

〈
u(k+1)

1 – u(k+1)
2 –

(
u(k)

1 – u(k)
2

)
,χAk v

〉
. (4.2)

Similarly, we also have

μ1μ2a
(
u(k+1)

2 – u(k)
2 , v

)
= γμ1

〈
u(k+1)

1 – u(k+1)
2 –

(
u(k)

1 – u(k)
2

)
,χAk v

〉
. (4.3)

Subtracting (4.3) from (4.2), it follows that

μ1μ2a
(
u(k+1)

1 – u(k+1)
2 –

(
u(k)

1 – u(k)
2

)
, v

)

= –γ (μ1 + μ2)
〈
u(k+1)

1 – u(k+1)
2 –

(
u(k)

1 – u(k)
2

)
,χAk v

〉
. (4.4)

Setting v = u(k+1)
1 – u(k+1)

2 – (u(k)
1 – u(k)

2 ) and using the coercivity of a(·, ·), we then have

μ1μ2α
∥
∥u(k+1)

1 – u(k+1)
2 –

(
u(k)

1 – u(k)
2

)∥
∥ ≤ 0,

which implies that u(k+1)
1 – u(k+1)

2 = u(k)
1 – u(k)

2 . And we derive from (3.4) that λ(k+1) = λ(k).
Using the ellipticity of bilinear form a(u, v) and Ak+1 = Ak we see that (4.1) has unique
solution. It means that u(k+1)

1 = u(k)
1 , u(k+1)

2 = u(k)
2 . From what has been discussed above, it

follows that (u(k)
1 , u(k)

2 ,λ(k)) is the unique solution to (4.1). �

Proposition 4.3 For the sequence {(u(k)
1 , u(k)

2 )} generated by Algorithm 1 (SSNM), it follows
that u(k)

1 – u(k)
2 ≤ u(k+1)

1 – u(k+1)
2 (k ≥ 1) a.e. on Ω .

Proof We denote δu = δu2 –δu1, where δu1 = u(k+1)
1 –u(k)

1 , δu2 = u(k+1)
2 –u(k)

2 for k ≥ 1. From
(3.5) we have

μ1a
(
δu1, δu+)

–
〈
λk+1 – λk , δu+〉

= 0,

μ2a
(
δu2, δu+)

+
〈
λk+1 – λk , δu+〉

= 0.
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This yields

μ1μ2a
(
δu, δu+)

= –(μ1 + μ2)
〈
λk+1 – λk , δu+〉

.

From Algorithm 1 we have

λk+1(x) – λk(x)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

= 0 for x ∈ Ik+1 ∩ Ik ,

= γ δu(x) for x ∈Ak+1 ∩Ak ,

= (–λ + γ (u(k)
1 – u(k)

2 ))(x) ≥ 0 for x ∈ Ik+1 ∩Ak ,

> γ δu(x) for x ∈Ak+1 ∩ Ik .

It follows that (λk+1 – λk , δu+) ≥ 0, we obtain

a
(
δu, δu+)

= –(μ1 + μ2)
〈
λk+1 – λk , δu+〉 ≤ 0.

Consequently δu+ = 0, and the result follows from (3.2). �

Proposition 4.4 For all Ik(k ≥ 1) generated by Algorithm 1 (SSNM), it follows that Ik ⊂
Ik+1.

Proof Suppose that Ik+1 ⊆ Ik , then there exists a non-empty set S ⊂ Ω and S = Ak+1 ∩Ik .
From x ∈ Ik it follows that (λ–γ (u(k–1)

1 – u(k–1)
2 ))(x) ≤ 0 and by Proposition 4.3 (λ–γ (u(k)

1 –
u(k)

2 ))(x) ≤ 0. On the other hand x ∈ Ak+1, and hence (λ – γ (u(k)
1 – u(k)

2 ))(x) > 0. This gives
the desired contradiction. �

Proposition 4.5 For every k ≥ 1 we have 0 ≤ λ(k+1) ≤ λ(k).

Proof From Proposition 4.3 we have

u(k)
1 – u(k)

2 ≤ u(k+1)
1 – u(k+1)

2 .

Moreover, λ(k+1) in Algorithm 1 is defined by

λ(k+1) =

⎧
⎨

⎩

0 on Ik+1,

λ – γ (u(k+1)
1 – u(k+1)

2 ) on Ak+1.

This means that the sequence {λk} is monotonically decreasing and bounded. �

Theorem 4.2 For every γ > 0 we have

lim
k→∞

(
u(k)

1 , u(k)
2 ,λk

)
= (u1γ , u2γ ,λγ )

in H1
g (Ω) × H1

0 (Ω) × L2(Ω).

Proof Let u(k) = u(k)
2 – u(k)

1 , then it follows from Proposition 4.3 and Proposition 4.5 that
the sequences {uk}∞k=1 and {λk}∞k=1 are decreasing pointwise almost everywhere and are
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uniformly bounded in H1(Ω) and L2(Ω), respectively. Hence there exist û ∈ H1(Ω) and
λ̂ ∈ L2(Ω) such that limk→∞ u(k) = û a.e. and limk→∞ λ(k) = λ̂ a.e. Note that Ik ⊂ Ik+1 from
Proposition 4.4 and λ(k) = 0 on Ik , we have λ̂ = 0 on I =

⋃∞
k=1 Ik . In this case, we have

(λ – γ û)(x) ≤ 0. On the other hand, λ̂ = λ – γ û on A =
⋂∞

k=1 Ak where such that (λ –
γ u(k))(x) > 0 for all k and hence (λ–γ û)(x) ≥ 0. Consequently, we have λ̂ = max(0,λ–γ û).
Using Lebesgue’s bounded convergence theorem, it follows that limk→∞ λ(k) = λ̂ in L2(Ω).
Take the limit in the system

⎧
⎨

⎩

μ1a(u(k)
1 , v) – (λ(k), v) = (f1, v), ∀v ∈ H1

g (Ω),

μ2a(u(k)
2 , v) + (λ(k), v) = (f2, v), ∀v ∈ H1

0 (Ω),

we obtain

⎧
⎪⎪⎨

⎪⎪⎩

μ1a(̂u1, v) – (̂λ, v) = (f1, v), ∀v ∈ H1
g (Ω),

μ2a(̂u2, v) + (̂λ, v) = (f2, v), ∀v ∈ H1
0 (Ω),

λ̂ = max(0,λ – γ û),

where limk→∞ u(k)
1 = û1, limk→∞ u(k)

2 = û2. Considering that the solution of the system (3.5)
is unique, we have (̂u1, û2, λ̂) = (u1γ , u2γ ,λγ ); that is limk→∞(u(k)

1 , u(k)
2 ,λ(k)) = (u1γ , u2γ ,λγ ).

Then the result follows from the coercivity of a(·, ·). �

5 Path-following method
As in Theorem 3.1, the solution converge only if γ → ∞. If the parameter γ is too small,
the SSNM converges slowly. On the contrary, if the γ is too big, it may result in a badly
conditioned problem. Therefore, the SSNM needs a continuous procedure with respect
to γ . We mention that path-following schemes for problems posed in function space have
become popular in recent years. Such a procedure has already been applied to obstacles
and contact problems in linear elasticity [10, 15, 18].

In this section, we give a brief review of path-following method for treating semismooth
Newton methods, which can be applied to the unilateral contact problem between mem-
branes. We introduce the primal infeasibility measure ρF , and the complementarity mea-
sure ρC for the (k + 1)th iterate as follows:

ρ
(k+1)
F :=

∫

Ω

(
u(k+1)

1 – u(k+1)
2

)– dx,

ρ
(k+1)
C :=

∫

Ik+1

(
u(k+1)

1 – u(k+1)
2

)– dx +
∫

Ak+1

(
u(k+1)

1 – u(k+1)
2

)+ dx.

Then we can update the parameter γ by

γ (k+1) = max

(

γ (k) max

(

τ ,
ρ

(k+1)
F

ρ
(k+1)
C

)

,
1

(max(ρ(k+1)
F ,ρ(k+1)

C ))q

)

, (5.1)

where τ > 1 and q ≥ 1. So we obtain the following path-following method.
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Algorithm 2 (PFM)
(1) Choose (u(0)

1 , u(0)
2 ) ∈ H1

g (Ω) × H1
0 (Ω), λ̄ ∈ L2(Ω) and γ (0) > 0, set k = 0.

(2) Set Ak+1 = {x ∈ Ω : λ – γ (k)(u(k)
1 – u(k)

2 ) > 0}, Ik+1 = Ω \Ak+1.
(3) Determine (u(k+1)

1 , u(k+1)
2 ) ∈ H1

g (Ω) × H1
0 (Ω) such that

⎧
⎨

⎩

μ1a(u(k+1)
1 , v) – 〈λ(k+1), v〉 = (f1, v), ∀v ∈ H1

0 (Ω),

μ2a(u(k+1)
2 , v) + 〈λ(k+1), v〉 = (f2, v), ∀v ∈ H1

0 (Ω).
(5.2)

(4) Set

λ(k+1) =

⎧
⎨

⎩

0 on Ik+1,

λ – γ (k)(u(k+1)
1 – u(k+1)

2 ) on Ak+1.

(5) Stop or update γ (k) according to (5.1), set k := k + 1 and go to (2).

In our numerical test, we take τ = 2 and q = 2 in (5.1).

6 Numerical results
To demonstrate the efficiency and accuracy of the proposed method, we present some
numerical results in this section. In this example, we consider the problem in the domain
Ω = (–1, 1) × (–1, 1) with μ1 = μ2 = 1 and

f1(r, θ ) =

⎧
⎨

⎩

–10h r ≤ 1√
2 ,

–8h r ≥ 1√
2 ,

f2(r, θ ) =

⎧
⎨

⎩

–6h r ≤ 1√
2 ,

–h 1+8g–18r2

r

√
2√

2–1 r ≥ 1√
2 ,

where 0 ≤ θ ≤ 2π , h = 0.05 and r =
√

x2 + y2 (x = r cos θ , y = r sin θ ). For this problem, the
exact solution in the domain Ω is given by

u1(r, θ ) = h
(
2r2 – 1

)
,

u2(r, θ ) =

⎧
⎨

⎩

h(2r2 – 1) r ≤ 1√
2 ,

h(1 – r)(2r2 – 1)
√

2√
2–1 r ≥ 1√

2 ,

λ(r, θ ) =

⎧
⎨

⎩

2h r ≤ 1√
2 ,

0 r ≥ 1√
2 .

From the analytic solution, we can easily obtain the boundary condition on Γ [4].
To simplify the numerical process, we use linear finite elements to discretize problem

(5.2) and solve the corresponding linear system in Matlab codes. We first apply our method
to this problem with the number of element N = 800 × 800 and ρ = 10,000. Figure 1 plots
the numerical and the exact results for the boundary of the contact zone u1 = u2. It can be
seen that our results are in good agreement with the exact contact zone.
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Figure 1 The comparison between numerical result and exact result

Figure 2 Evolution of Ek with respect to k for different N

Next, we investigate the convergence behavior of our method. In Fig. 2 we provide the
evolution of the relative error,

Ek :=
‖u1 – u(k)

1h ‖2
L2(Ω) + ‖u2 – u(k)

2h ‖2
L2(Ω)

‖u1‖2
L2(Ω) + ‖u2‖2

L2(Ω)
,
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with respect to the iteration index k for N = 200 × 200, N = 400 × 400 and N = 800 × 800.
We note that our method converges for different mesh sizes. Although the number of
iterations increases for increasing number of elements, the finer grid yields the smaller
relative error.
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