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Abstract
Employing a generalized Riccati transformation and integral averaging technique, we
show that all solutions of the higher order nonlinear delay differential equation

y(n+2)(t) + p(t)y(n)(t) + q(t)f (y(g(t))) = 0

will converge to zero or oscillate, under some conditions listed in the theorems of the
present paper. Several examples are also given to illustrate the applications of these
results.

MSC: 34K11; 34K25

Keywords: Asymptotic behavior; delay differential equation; higher order differential
equation; oscillation; Schwarz inequality

1 Introduction
The objective of this paper is to investigate the oscillation and asymptotic behavior of
solutions to the following higher order nonlinear delay differential equation:

y(n+2)(t) + p(t)y(n)(t) + q(t)f (y
(
g(t)

)
= 0, t ∈ I, (1.1)

where n is a positive integer, I = [a, +∞) ⊂ R (a ≥ 0). The coefficients p ∈ C1(I,R) and
q ∈ C(I,R) satisfy p(t) ≥ 0 and q(t) > 0. The function g ∈ C1(I,R) satisfies 0 < g(t) ≤ t,
g ′(t) ≥ 0, and limt→+∞ g(t) = +∞. The function f ∈ C(R,R) satisfies f (u)/u ≥ K (u 	= 0)
for some positive constant K . Our attention is restricted to the solutions of equation (1.1)
which exist on the interval I and satisfy supt≥T |y(t)| > 0 for any T ≥ a. We make a standing
hypothesis that equation (1.1) possesses such solutions.

A solution of equation (1.1) is called oscillatory if it has arbitrarily large zeroes, other-
wise it is called non-oscillatory. Equation (1.1) is called oscillatory if all its solutions are
oscillatory. For solutions of some nonlinear delay differential equations, some interesting
phenomena will occur. For example, some solutions are oscillatory, while there may exist
some other solutions which are not oscillatory but will converge to zero as time approaches
to infinity. We take a third-order delay differential equation as example. The equation

y′′′ + 2y′ + y
(

t –
π

2

)
= 0

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1949-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1949-7&domain=pdf
http://orcid.org/0000-0001-7420-4872
mailto:lianghhgdin@126.com


Ye and Liang Journal of Inequalities and Applications          (2019) 2019:2 Page 2 of 17

has an oscillatory solution y1(t) = sin(t) and a non-oscillatory solution y2(t) = eλt , where
λ < 0 is a root to the characteristic function λ3 + 2λ + e– π

2 λ = 0. Another example is that
the delay differential equation y′′′ + y(t – τ ) = 0 for τ > 0 is oscillatory if and only if τe > 3.
However, the corresponding equation y′′′ + y = 0 has a non-oscillatory solution y1(t) =
e–t and two oscillatory solutions y2(t) = e t

2 cos(
√

3t
2 ) and y3(t) = e t

2 sin(
√

3t
2 ). So for higher-

order delay differential equation, people naturally ask the following question: under what
conditions does the equation have oscillatory or asymptotic behavior? This is the topic we
will study in this paper.

Since Sturm [20] introduced the concept of oscillation when he studied the problem of
the heat transmission, the oscillation theory has been a very active area of research in the
qualitative analysis of both ordinary and functional differential equations. Usually, a quali-
tative approach is concerned with the behavior of solutions of a given differential equation
and does not seek explicit solutions. Since then, asymptotic and oscillatory properties of
solutions to different equations, functional differential equations, and dynamical equation
have attracted the attention of many researchers.

The oscillation and asymptotic behavior have extensive applications in the real world,
the readers can refer to the monographs [1, 4, 6, 14], and [21] for more details. The problem
of obtaining the oscillatory and asymptotic behavior of certain higher order nonlinear
functional differential equations has been studied by a number of authors. The interested
readers can see [3, 5, 9–11, 13, 17, 18], and the references cited therein.

There are many excellent works studying the oscillations and asymptotic behaviors of
solutions to higher-order nonlinear delay differential equations, to list all of which is al-
most impossible. We just list some studies relating to our work below.

In 1971 and 1977, Ladas [12] and Magfoud [16] studied the oscillation of solutions to
the equation

x(n)(t) + a(t)f
(
x
(
g(t)

))
= 0,

where 0 < g(t) < t, g(t) → ∞ as t → +∞ and a(t) > 0.
In 2008, the authors studied in [2] the following 2n-order nonlinear functional differen-

tial equation:

dn

dtn

(
a(t)

(
dnx(t)

dtn

)α)
+ q(t)f

(
x
(
g(t)

))
= 0,

where α is the ratio of two positive odd integers. The oscillation theorems established in
that paper extend a number of existing results.

In 2014, the oscillation and asymptotic behavior of solutions to the following nonlinear
delay differential equation were studied in [15]:

x(n+3)(t) + p(t)x(n)(t) + q(t)f
(
x
(
g(t)

))
= 0.

In that paper, he used a generalized Riccati transformation and an integral averaging tech-
nique to study the sufficient conditions for the oscillations of differential equations. The
goal of the present paper is to use a generalized method to study the oscillation and asymp-
totic behavior of solutions to the nonlinear delay differential equation (1.1). We need to
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carry out much more delicate analysis to overcome the difficulties in the proof. For the
special case n = 1, equation (1.1) reduces to the form

y′′′(t) + p(t)y′(t) + q(t)f (y
(
g(t)

)
= 0,

which is exactly the main equation studied in [22] with r1(t) = 1 and r2(t) = 1 as a spe-
cial case. The third order differential equations arise in the study of entropy-flow phe-
nomenon, problems of hydrodynamics, three-layer beams and so forth, see the mono-
graph [7] and the references cited therein. It is interesting to study the oscillation and
asymptotic behavior of general higher order differential equation (1.1), and we give gen-
eralizations of the former studies in [22].

The present paper is organized as follows. In Sect. 2, we present some lemmas which
are useful in the proof of our main results. In Sect. 3, we carry out delicate analysis to give
several oscillatory and asymptotic criteria for the higher order nonlinear delay differential
equation (1.1). Noting that the delay g(t) has the form g(t) = t – τ or the form g(t) = at in
many applications, therefore, in Sect. 4, we give two examples to illustrate the applications
of our main theorems.

2 Some preliminary lemmas
To give the main results of this paper, we first present and prove some useful lemmas.
These lemmas play central roles in the proof of our new oscillation and asymptotic results
in the next section.

Lemma 2.1 Suppose that the equation

z′′(t) + p(t)z(t) = 0 (2.1)

is non-oscillatory and suppose that y(t) is a non-oscillatory solution of equation (1.1) on
[T , +∞), where T ≥ a. Then there exists t0 ∈ [T , +∞) such that, for any t ≥ t0, we have
y(n)(t) > 0 or y(n)(t) < 0.

Proof We use the contradiction argument to prove this lemma. Suppose that y(t) is a non-
oscillatory solution of equation (1.1). Without loss of generality, we may assume y(t) > 0
and y(g(t)) > 0 for t ≥ t0 ≥ T . It is easy to see that x(t) = –y(n)(t) is the solution of the
following second order delay differential equation:

x′′(t) + p(t)x(t) = q(t)f
(
y
(
g(t)

))
for t ≥ t0. (2.2)

Suppose that z(t) is a non-oscillatory solution of equation (2.1). Without loss of gen-
erality, we may assume z(t) > 0 for t ≥ t0. Suppose that x(t) is an oscillatory solution to
equation (2.2), a and b (t0 < a < b) are its two adjacent zero points of x such that x′(a) ≥ 0
and x′(b) ≤ 0. From equation (2.1) and equation (2.2), we get

z(t)q(t)f
(
y
(
g(t)

))
= z(t)

{
x′′(t) + p(t)x(t)

}

= x′′(t)z(t) + p(t)x(t)z(t) = x′′(t)z(t) – z′′(t)x(t)

=
(
x′(t)z(t) – x(t)z′(t)

)′,



Ye and Liang Journal of Inequalities and Applications          (2019) 2019:2 Page 4 of 17

i.e., we have

(
x′(t)z(t) – x(t)z′(t)

)′ = z(t)q(t)f
(
y
(
g(t)

))
. (2.3)

Integrating from a to b on both sides of equation (2.3), we obtain

0 ≥ x′(b)z(b) – x′(a)z(a) =
∫ b

a
z(t)q(t)f

(
y
(
g(t)

))
dt > 0,

which leads to a contradiction, and we thus complete the proof of Lemma 2.1. �

Lemma 2.2 Suppose that equation (2.1) is non-oscillatory, y(t) is a non-oscillatory solution
to equation (1.1), and there exists a constant T ≥ a such that y(t)y(n)(t) > 0 for t ≥ T ≥ a.
Then y(t)y(n+1)(t) is eventually positive.

Proof Let y(t) be a non-oscillatory solution to equation (1.1) such that y(t)y(n)(t) > 0 for
t ≥ T ≥ a. Without loss of generality, we may assume y(t) > 0, y(g(t)) > 0, and y(n)(t) > 0
(t ≥ t0 ≥ T ). Using equation (1.1), we know

y(n+2)(t) < 0 for t ≥ T . (2.4)

From the above inequality, we know y(n+1)(t) is strictly monotonically decreasing in the
interval [T , +∞), and therefore y(n+1)(t) is eventually positive or eventually negative.

We use a contradiction argument to exclude the case that y(n+1)(t) is eventually nega-
tive. In fact, if y(n+1)(t) is eventually negative, without loss of generality, we may assume
y(n+1)(t) < 0 for t ≥ T . By using the monotone decreasing of y(n+1)(t), we have

y(n+1)(t) ≤ y(n+1)(T) for t ≥ T . (2.5)

Integrating from T to t on both sides of inequality (2.5), we obtain

y(n)(t) ≤ y(n)(T) + (t – T)y(n+1)(T) for t ≥ T .

By letting t → +∞ in the above inequality, we see y(n)(t) → –∞ and this leads to a con-
tradiction. Therefore y(t)y(n+1)(t) is eventually positive and hence we have completed the
proof of Lemma 2.2.

By careful check of the proving process of Lemma 1.1 in [8], we obtain the following
results which will be used in the following proof. �

Lemma 2.3 Assume that x ∈ Cn([a, +∞),R) such that x(t) > 0, x(n)(t) ≤ 0 for t ≥ a,
and x(n)(t) does not vanish identically on any interval [T ,∞) ⊂ [a, +∞). If n is even (or
odd), then there exists l ∈ {1, 3, . . . , n – 1} (respectively l ∈ {0, 2, 4, . . . , n – 1}) such that,
for all sufficiently large t, x(t)x(j)(t) > 0 for j = 0, 1, . . . , l and (–1)n+j–1x(t)x(j)(t) > 0 for
j = l + 1, l + 2, . . . , n – 1. Furthermore, if l ≥ 1, then

∣∣x′(g(t)
)∣∣ ≥ gl–1(t)(t – g(t))n–l–1

2l–1(l – 1)!(n – l – 1)!
∣∣x(n–1)(t)

∣∣ (2.6)

for all sufficiently large t.
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Lemma 2.4 Suppose that the function x ∈ C2([T , +∞),R), then both of the following state-
ments hold:

(i) If x′′(t) ≤ 0 and x′(t) < 0 for t ≥ T , then limt→+∞ x(t) = –∞;
(ii) If limt→+∞ x′(t) = μ, where μ > 0 or μ = +∞, then limt→+∞ x(t) = +∞.

The statements are obvious, which can be easily checked, we therefore omit the proof
here.

Lemma 2.5 Suppose that n is a positive integer, x ∈ Cn([T , +∞),R), g ∈ C1([T , +∞),R),
x(n)(t) < 0, x(t) > 0, g(t) < t for t ≥ T and limt→+∞ x(t) 	= 0, limt→+∞ g(t) = +∞. Then both
of the following statements hold:

(i) If n = 1, then there exist λ > 0 and T ′ > 0 such that x(g(t)) > x(t) > λ for t ≥ T ′;
(ii) Suppose that n ≥ 2, then there exist λ > 0 and T ′ > 0 such that 0 < x(n–1)(t) < λ < x(t),

x(g(t)) > λ for t ≥ T ′.

Proof Suppose first n = 1. Then x′(t) < 0 and x(t) > 0 for t ≥ T . Hence the function x(t) > 0
is monotonically decreasing on the interval [T , +∞). Using the monotone bounded the-
orem, we know the limit limt→+∞ x(t) exists and we denote limt→+∞ x(t) = λ. Using the
monotonicity of x(t) again, we know x(t) > λ for t ≥ T . Noting g(t) < t and limt→+∞ g(t) =
+∞, we can find T ′ ≥ T such that t > g(t) ≥ T for t ≥ T ′. Since the function x(t) is mono-
tonically decreasing, we deduce that x(g(t)) > x(t) > λ for t ≥ T ′ and we have proved state-
ment (i).

Now we suppose that n ≥ 2. Since x(n)(t) < 0 for t ≥ T , we deduce that x(n–1)(t) is mono-
tonically decreasing on the interval [T , +∞), and therefore x(n–1)(t) is eventually positive
or eventually negative. We use a contradiction argument to exclude the case for eventual
negativeness. In fact, if x(n–1)(t) is eventually negative, by using the fact that x(n)(t) < 0 for
t ≥ T and Lemma 2.4, we obtain limt→+∞ x(n–2)(t) = –∞. Similarly, by using the induction
method, we know x(t) → –∞ as t → +∞, which is a contradiction with x(t) > 0. Hence
x(n–1)(t) is eventually positive. Without loss of generality, we may assume x(n–1)(t) > 0 for
t ≥ T and x(n–1)(t) is monotonically decreasing on the interval [T , +∞). By using the
monotone bounded theorem, we know

lim
t→+∞ x(n–1)(t) = μ ≥ 0.

From Lemma 2.3 we know that x(t) is eventually strictly monotonous and x(t) > 0 for
t ≥ T . Since limt→+∞ x(t) 	= 0, we assume limt→+∞ x(t) = λ0, where λ0 > 0 or λ0 = +∞. We
divide the proof of statement (ii) into two cases. We first deal with the case for μ = 0.
Let λ ∈ (0,λ0), then there exists T1 ≥ T such that 0 < x(n–1)(t) < λ < x(t) for t ≥ T1. Since
limt→+∞ g(t) = +∞, then there exists T ′ ≥ T1 such that g(t) ≥ T for t ≥ T ′. Therefore we
know x(g(t)) > λ and 0 < x(n–1)(t) < λ < x(t) for t ≥ T ′, and hence we have proved that state-
ment (ii) holds in this case. For the second case limt→+∞ x(n–1)(t) = μ > 0, we repeatedly
use Lemma 2.4 to deduce λ0 = +∞. If we let λ ∈ (μ, +∞), then there exists T ′ ≥ T such
that 0 < x(n–1)(t) < λ < x(t) and x(g(t)) > λ for t ≥ T ′. Statement (ii) also holds in this case,
and we have completed the proof of Lemma 2.5. �
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3 Asymptotic dichotomy
In this section we present some sufficient conditions which guarantee that every solution
to equation (1.1) oscillates or converges to zero as t approaches to infinity. Throughout
this section we will suppose that one of the following conditions holds:

⎧
⎨

⎩
lim supt→+∞

∫ t
T

∫ t
v
∫ +∞

s (Kq(u) – p′(s)) du ds dv = +∞,

lim supt→+∞
∫ t

T
∫ t

v p(s) ds dv < +∞,
(3.1)

or

lim sup
t→+∞

∫ t

T

(
Kq(s) – p′(s)

)
ds = +∞, (3.2)

where the integrand Kq(t) – p′(t) ≥ 0 for t ∈ [a, +∞) and does not vanish identically on
any subinterval of [a, +∞).

Theorem 3.1 Suppose that equation (2.1) is non-oscillatory and condition (3.1) or (3.2)
holds. We further assume that there exists a positive differentiable function ρ such that

lim sup
t→+∞

∫ t

T

{
Kρ(s)q(s) –

2nn!
4gn(s)g ′(s)ρ(s)

× (
ρ ′(s) – p(s)ρ(s)

(
s – g(s)

))2
}

ds = +∞. (3.3)

In addition, for n ≥ 2, we further assume p′(t) ≥ 0 for t ∈ [a, +∞). Then any solution y(t) of
equation (1.1) is oscillatory or converges to zero, i.e., y(t) → 0 as t → +∞.

Proof Suppose that y(t) is a non-oscillatory solution of equation (1.1) on the interval
[T , +∞), where T ≥ a. Without loss of generality, we may assume y(t) > 0 and y(g(t)) > 0
for t ≥ t0 ≥ T . By Lemma 2.1, there exists t1 such that y(n)(t) > 0 or y(n)(t) < 0 for t ≥ t1 ≥ t0.

If y(n)(t) > 0 for t ≥ t1, by using Lemma 2.2, we know that there exists t2 ≥ t1 such that
y(n+1)(t) > 0 for t ≥ t2. We now define a function

ω(t) = ρ(t)
y(n+1)(t)
y(g(t))

. (3.4)

Since ρ(t) is positive, we know that the function ω(t) > 0. Using equation (1.1), we know
y(n+2)(t) < 0 for t ≥ t2. Since y(t) > 0, y(n)(t) > 0, y(n+1)(t) > 0, and y(n)(t) > 0 for t ≥ t2, then we
can replace n with n + 2 and use Lemma 2.3 to conclude l = n + 1. Since limt→+∞ g(t) = +∞
by our assumption, we may find t3 ≥ t2 such that, for t ≥ t3, we have g(t) ≥ t2. Hence, for
t ≥ t3, we obtain

y(n)(t) ≥ y(n)(t) – y(n)(g(t)
) ≥ y(n+1)(t)

(
t – g(t)

)
. (3.5)
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By using equation (1.1), (3.4), (3.5), and Lemma 2.3, we know that, for t ≥ t3,

ω′(t) = ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)

y(g(t))
{

p(t)y(n)(t) + q(t)f (y
(
g(t)

)}
– ω(t)

y′(g(t))g ′(t)
y(g(t))

≤ –Kρ(t)q(t) + ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)p(t)y(n)(t)

y(g(t))
– ω(t)

gn(t)
2nn!

y(n+1)(t)g ′(t)
y(g(t))

≤ –Kρ(t)q(t) + ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)p(t)y(n)(t)

y(g(t))
– ω2(t)

gn(t)g ′(t)
2nn!ρ(t)

≤ –Kρ(t)q(t) + ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)p(t)y(n+1(t)(t – g(t))

y(g(t))
– ω2(t)

gn(t)g ′(t)
2nn!ρ(t)

≤ –Kρ(t)q(t) + ω(t)
{

ρ ′(t)
ρ(t)

– p(t)
(
t – g(t)

)}
– ω2(t)

gn(t)g ′(t)
2nn!ρ(t)

= –Kρ(t)q(t) –
gn(t)g ′(t)
2nn!ρ(t)

{
ω2(t) –

2nn!ρ(t)
gn(t)g ′(t)

×
(

ρ ′(t)
ρ(t)

– p(t)
(
t – g(t)

))
ω(t)

}

= –Kρ(t)q(t) –
gn(t)g ′(t)
2nn!ρ(t)

[
ω(t) –

2nn!
2gn(t)g ′(t)

×(
ρ ′(t) – p(t)ρ(t)

(
t – g(t)

))]2

+
2nn!

4gn(t)g ′(t)ρ(t)
(
ρ ′(t) – p(t)ρ(t)

(
t – g(t)

))2

≤ –
{

Kρ(t)q(t) –
2nn!

4gn(t)g ′(t)ρ(t)
(
ρ ′(t) – p(t)ρ(t)

(
t – g(t)

))2
}

.

Integrating from t3 to t on both sides of the above inequality, we deduce that, for t ≥ t3,

∫ t

t3

{
Kρ(s)q(s) –

2nn!
4gn(s)g ′(s)ρ(s)

(
ρ ′(s) – p(s)ρ(s)

(
s – g(s)

))2
}

ds

≤ ω(t3) – ω(t) ≤ ω(t3),

which is a contradiction with (3.3) valuing at T = t3.
Therefore we know y(n)(t) < 0 for t ≥ t1. Noting that y(t) > 0 and y(g(t)) > 0, we consider

y(n+1)(t) is either eventually negative or eventually positive.
First we prove Theorem 3.1 under condition (3.1). We now exclude the case that y(n+1)(t)

is eventually negative. In fact, if y(n)(t) < 0 for t ≥ t1. By using Lemma 2.4, we obtain
limt→+∞ y(n–1)(t) = –∞. Similarly, by induction on n, we deduce that y(t) → –∞ as t →
+∞, which is a contradiction with y(t) > 0. Hence the function y(n+1)(t) is eventually posi-
tive, and hence there exists t4 ≥ t1 such that y(n+1)(t) > 0 for t ≥ t4.

We prove y(t) → 0 as t → +∞ by using a contradiction argument. Otherwise, we assume
limt→+∞ y(t) 	= 0. We divide the proof into two cases with respect to n.

First we prove for the special case n = 1. Then we have y′′(t) > 0, y′(t) < 0, y(t) > 0 for
t ≥ t4. By Lemma 2.5, we know there exist μ > 0 and t5 ≥ t4 such that y(g(t)) > y(t) > μ for
t ≥ t5. By equation (1.1), we get

y′′′(t) +
(
p(t)y(t)

)′ + q(t)f (y
(
g(t)

)
– p′(t)y(t) = 0. (3.6)
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Integrating from s to t on both sides of (3.6), we get

y′′(s) + p(s)y(s) = y′′(t) + p(t)y(t) +
∫ t

s
y(u)

(
q(u)

f (y(g(u)))
y(u)

– p′(u)
)

du

≥ μ

∫ t

s

(
q(u)

f (y(g(u)))
y(g(u))

– p′(u)
)

du

≥ μ

∫ t

s

(
Kq(u) – p′(u)

)
du

for t ≥ s ≥ t5. Letting t → +∞ in the above inequality, we obtain

y′′(s) + p(s)y(s) ≥ μ

∫ +∞

s

(
Kq(u) – p′(u)

)
du. (3.7)

We integrate from v to t on both sides of inequality (3.7) to get

–y′(v) + y(v)
∫ t

v
p(s) ds ≥ y′(t) – y′(v) +

∫ t

v
p(s)y(s) ds

≥ μ

∫ t

v

∫ +∞

s

(
Kq(u) – p′(u)

)
du ds.

Integrating from t5 to t on both sides of the above inequality, we obtain

y(t) ≤ y(t5) + y(t3)
∫ t

t5

∫ t

v
p(s) ds dv – μ

∫ t

t3

∫ t

v

∫ +∞

s

(
Kq(u) – p′(u)

)
du ds dv. (3.8)

Combining (3.1) and (3.8), we know y(t) < 0 for sufficiently large t, which leads to a con-
tradiction with y(t) > 0.

We now prove for the case n ≥ 2. Then we know y(n)(t) < 0, y(t) > 0 for t ≥ t1 and
limt→+∞ y(t) 	= 0. By Lemma 2.5, we know there exist λ1 > 0 and t6 ≥ t1 such that 0 <
y(n–1)(t) < λ1 < y(t), y(g(t)) > λ1 for t ≥ t6.

By equation (1.1), we deduce that, for t ≥ s ≥ t6,

y(n+1)(s) + p(s)y(n–1)(s) = y(n+1)(t) + p(t)y(n–1)(t)

+
∫ t

s

(
y
(
g(u)

)
q(u)

f (y(g(u)))
y(g(u))

– p′(u)y(n–1)(u)
)

du

≥ λ1

∫ t

s

(
Kq(u) – p′(u)

)
du,

i.e., for t ≥ v ≥ t6, we know

y(n+1)(s) + p(s)y(n–1)(s) ≥ λ1

∫ +∞

s

(
Kq(u) – p′(u)

)
du. (3.9)

Integrating from v to t on both sides of (3.9), we obtain

–y(n)(v) + y(n–1)(v)
∫ t

v
p(s) ds ≥ y(n)(t) – y(n)(v) +

∫ t

v
p(s)y(n–1)(s) ds

≥ λ1

∫ t

v

∫ +∞

s

(
Kq(u) – p′(u)

)
du ds.
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We integrate from t6 to t on both sides of the above inequality to get

y(n–1)(t) ≤ y(n–1)(t6) + y(n–1)(t6)
∫ t

t6

∫ t

v
p(s) ds dv

– λ1

∫ t

t6

∫ t

v

∫ +∞

s

(
Kq(u) – p′(u)

)
du ds dv. (3.10)

Combining (3.1) and (3.10), we deduce that y(n–1)(t) < 0 for sufficiently large t, which also
leads to a contradiction.

If y(n+1)(t) does not change sign, then y(n+1)(t) will not be eventually positive or eventually
negative, which contradicts with y(n)(t) < 0.

In the following, we prove Theorem 3.1 under condition (3.2). Then we know y(n)(t) < 0
for t ≥ t1. First we consider the case n = 1. By Lemma 2.5, we know μ2 > 0 and there exists
t7 ≥ t1 such that y(g(t)) > y(t) > μ2 for t > t7.

We integrate from t7 to t on both sides of equation (1.1) to get

0 = y′′(t) – y′′(t7) + p(t)y(t) – p(t7)y(t7)

–
∫ t

t7

p′(u)y(u) du +
∫ t

t7

q(u)f (y
(
g(u)

)
du.

Therefore we have

–y′′(t) + y′′(t7) – p(t)y(t) + p(t7)y(t7) =
∫ t

t7

y(u)
(

q(u)
f (y(g(u))

y(u)
– p′(u)

)
du

≥ μ2

∫ t

t7

(
q(u)

f (y(g(u))
y(g(u)

– p′(u)
)

du

≥ μ2

∫ t

t7

(
Kq(u) – p′(u)

)
du.

From the above inequality, we easily obtain

y′′(t) ≤ H1 – μ2

∫ t

t7

(
Kq(u) – p′(u)

)
du – p(t)y(t), (3.11)

where H1 is a constant. Combining (3.2) and (3.11), we conclude that y′′(t) is eventually
negative.

Consider the case that n ≥ 2. By Lemma 2.5, there exist λ2 > 0 and t8 ≥ t1 such that
0 < y(n–1)(t) < λ2 < y(t) and y(g(t)) > λ2 for t ≥ t8.

We integrate from t8 to t on both sides of equation (1.1) to get

y(n+1)(t8) + p(t8)y(n–1)(t8)

= y(n+1)(t) + p(t)y(n–1)(t) +
∫ t

t8

(y
(

g(u)q(u)
f (y(g(u))

y(g(u)
– p′(u)y(n–1)(u)

)
du

≥ y(n+1)(t) +
∫ t

t8

(y
(

g(u)q(u)
f (y(g(u))

y(g(u)
– p′(u)y(n–1)(u)

)
du

≥ y(n+1)(t) + λ2

∫ t

t8

(
Kq(u) – p′(u)

)
du, (3.12)
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i.e.,

y(n+1)(t) ≤ H2 – λ2

∫ t

t8

(
Kq(u) – p′(u)

)
du, (3.13)

where H2 is another constant. Combining (3.2) and (3.13), we know y(n+1)(t) is even-
tually negative. Noting that y(n)(t) < 0 for t ≥ t1, we use Lemma 2.4 to conclude that
limt→+∞ y(n–1)(t) = –∞. Similarly, we can use the induction method to obtain
limt→+∞ y(t) = –∞. This is a contradiction and we finish the proof of Theorem 3.1.

In the following, we prove a new asymptotic dichotomy for equation (1.1) under the
so-called Philos-type integral averaging conditions. Following the literature [19], we first
introduce a class of functions �. We define two sets D0 = {(t, s) : t > s ≥ T} and D = {(t, s) :
t ≥ s ≥ T}.

If a function H ∈ C(D,R) satisfies
(i) H(t, t) = 0 for t ≥ T and H(t, s) > 0 for (t, s) ∈ D0;

(ii) H has a continuous and non-positive partial derivative on D0 with respect to the
second variable such that – ∂H(t,s)

∂s = h(t, s) 2√H(t, s) for (t, s) ∈ D0;
then H is said to belong to �. �

Theorem 3.2 Suppose that equation (2.1) is non-oscillatory and condition (3.1) or (3.2)
holds. We further suppose that there exist two functions H ∈ � and 0 < ρ ∈ C1([T ,∞))
satisfying

lim sup
t→+∞

1
H(t, T)

∫ t

T

(
KH(t, s)ρ(s)q(s) –

Q2(t, s)
4W (s)H(t, s)

)
ds = +∞, (3.14)

where

Q(t, s) = h(t, s) – 2
√

H(t, s)γ (s), (3.15)

γ (t) =
ρ ′(t)
ρ(t)

– p(t)
(
t – g(t)

)
, (3.16)

W (t) =
gn(t)g ′(t)
2nn!ρ(t)

. (3.17)

For the case n ≥ 2, we further assume p′(t) ≥ 0 for t ∈ [a, +∞). Then any solution y(t) of
equation (1.1) is oscillatory or y(t) → 0 as t → +∞.

Proof Suppose that y(t) is a non-oscillatory solution of equation (1.1) on the interval
[T , +∞), where T ≥ a. Without loss of generality we may assume y(t) > 0 and y(g(t)) > 0
for t ≥ t0 ≥ T . By Lemma 2.1, we deduce that y(n)(t) > 0 or y(n)(t) < 0 for t ≥ t1 ≥ t0.

If y(n)(t) > 0 for t ≥ t1, then by Lemma 2.2, we know y(n+1)(t) > 0.
We define ω(t) as in (3.4), i.e.,

ω(t) = ρ(t)
y(n+1)(t)
y(g(t))

for t ≥ t1. It is easy to see that ω(t) > 0. Using equation (1.1), we get y(n+2)(t) < 0 for t ≥ t1.
Note that y(t) > 0, y(n)(t) > 0, y(n+1)(t) > 0, and y(n+2)(t) < 0 for t ≥ t1. We replace n with n + 2
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and use Lemma 2.3 to conclude that l = n + 1. Since limt→+∞ g(t) = +∞, then we may find
t2 ≥ t1 such that g(t) ≥ t1 for t ≥ t2. Therefore a relation similar to (3.5) holds for t ≥ t2,
i.e.,

y(n)(t) ≥ y(n)(t) – y(n)(g(t)
) ≥ y(n+1)(t)

(
t – g(t)

)
.

Combining (1.1), (3.4), the above inequality, and Lemma 2.3, it follows that

ω′(t) = ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)

y(g(t))
{

p(t)y(n)(t) + q(t)f
(
y
(
g(t)

))}
– ω(t)

y′(g(t))g ′(t)
y(g(t))

≤ –Kρ(t)q(t) + ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)p(t)y(n)(t)

y(g(t))
– ω(t)

gn(t)y(n+1)(t)g ′(t)
2ny(g(t))n!

≤ –Kρ(t)q(t) + ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)p(t)y(n)(t)

y(g(t))
– ω2(t)

gn(t)g ′(t)
2nn!ρ(t)

≤ –Kρ(t)q(t) + ω(t)
ρ ′(t)
ρ(t)

–
ρ(t)p(t)y(n+1)(t)(t – g(t))

y(g(t))
– ω2(t)

gn(t)g ′(t)
2nn!ρ(t)

≤ –Kρ(t)q(t) + ω(t)
(

ρ ′(t)
ρ(t)

– p(t)
(
t – g(t)

))
– ω2(t)

gn(t)g ′(t)
2nn!ρ(t)

= –Kρ(t)q(t) – {ω2(t)
{(

gn(t)g ′(t)
2nn!ρ(t)

)
–ω(t)

(
ρ ′(t)
ρ(t)

– p(t)
(
t – g(t)

)
)}

. (3.18)

Since

γ (t) =
ρ ′(t)
ρ(t)

– p(t)
(
t – g(t)

)

and

W (t) =
gn(t)g ′(t)
2nn!ρ(t)

,

we carry out the estimates of inequality (3.18) and obtain

∫ t

t2

KH(t, s)ρ(s)q(s) ds

≤
∫ t

t2

H(t, s)
[
–ω′(s) + γ (s)ω(s) – W (s)ω2(s)

]
ds

= –H(t, s)ω(s)|tt2 +
∫ t

t2

{
∂H(t, s)

∂s
ω(s) + H(t, s)

[
γ (s)ω(s) – W (s)ω2(s)

]}
ds

= H(t, t2)ω(t2) –
∫ t

t2

{
ω2(s)W (s)H(t, s)

+ ω(s)
(
h(t, s) 2

√
H(t, s) – H(t, s)γ (s)

)}
ds

= H(t, t2)ω(t2) –
∫ t

t2

W (s)H(t, s)
{
ω2(s)

+ ω(s)
(h(t, s) 2√H(t, s) – H(t, s)γ (s))

W (s)H(t, s)

}
ds
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= H(t, t2)ω(t2) –
∫ t

t2

W (s)H(t, s)
(

ω(s) +
∫ t

t2

(h(t, s) – 2√H(t, s)γ (s))2

4W (s)
ds

+
(h(t, s) 2√H(t, s) – H(t, s)γ (s))

2W (s)H(t, s)

)2

ds.

Therefore
∫ t

t2

KH(t, s)ρ(s)q(s) ds ≤ H(t, t2)ω(t2) +
∫ t

t2

Q2(t, s)
4W (s)

ds, (3.19)

where Q(t, s) = h(t, s) – 2√H(t, s)γ (s).
From inequality (3.19), we deduce that

1
H(t, t2)

∫ t

t2

(
KH(t, s)ρ(s)q(s) –

Q2(t, s)
4W (s)

)
ds ≤ ω(t2), (3.20)

which contradicts with (3.14). The remaining proof is similar to the proof of Theorem 3.1,
and we omit the details here. Therefore we have completed the proof of Theorem 3.2. �

Theorem 3.3 Suppose that equation (2.1) is non-oscillatory and condition (3.1) or (3.2)
holds. Assume further that there exist two functions H ∈ � and 0 < ρ ∈ C1([T ,∞)) such
that

0 < inf
s≥T

[
lim

t→+∞ inf
H(t, s)
H(t, T)

]
≤ +∞ (3.21)

and

lim sup
t→+∞

1
H(t, T)

∫ t

T

Q2(t, s)
W (s)

ds < +∞ (3.22)

hold for all T , where W (t) is defined as (3.17) in Theorem 3.2. In addition, there exists
Ψ ∈ C([a,∞),R) such that

lim sup
t→+∞

∫ t

T
Ψ 2

+ (s)W (s) ds = +∞ (3.23)

and

lim sup
t→+∞

1
H(t, T)

∫ t

T

[
Kρ(s)H(t, s)q(s) –

Q2(t, s)
4W (s)

]
ds ≥ sup

t≥T
Ψ (t), (3.24)

where Ψ+(t) = max{Ψ (t), 0}.
Then any solution y(t) of equation (1.1) is oscillatory or satisfies y(t) → 0 as t → +∞.

Proof Suppose that y(t) is a non-oscillatory solution of equation (1.1) on the interval
[T , +∞), where T ≥ a. Without loss of generality, we may assume that y(t) > 0 and
y(g(t)) > 0 hold for t ≥ t0 ≥ T . By Lemma 2.1, we deduce that y(n)(t) > 0 or y(n)(t) < 0 for
t ≥ t1 ≥ t0.

If y(n)(t) > 0 for t ≥ t1. From Lemma 2.2, we know y(n+1)(t) > 0. We define ω(t), Q(t, s),
γ (t), and W (t) as in (3.4), (3.15), (3.16), and (3.17), respectively. The same as in the proof
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of (3.18) in Theorem 3.2, we know that inequality (3.18) remains true here. By (3.18), we
know that

∫ t

t1

Kρ(s)H(t, s)q(s) ds

≤ H(t, t1)ω(t1)

–
∫ t

t1

{
ω2(s)W (s)H(t, s) + ω(s)

(
h(t, s) 2

√
H(t, s) – H(t, s)γ (s)

)}
ds. (3.25)

From inequality (3.25), it follows that

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[
KH(t, s)ρ(s)q(s) –

Q2(t, s)
4W (s)

]
ds

≤ ω(t1) – lim
t→+∞ inf

1
H(t, t1)

∫ t

t1

[
2
√

H(t, s)W (s)ω(s) +
Q(t, s)

2 2√W (s)

]2

ds

= H(t, t1)ω(t1) –
∫ t

t1

{(
ω(s) 2

√
W (s)H(t, s)

)2

+ 2
√

H(t, s)ω(s)
(
h(t, s) – 2

√
H(t, s)γ (s)

)}
ds

= H(t, t1)ω(t1) –
∫ t

t1

{(
ω(s) 2

√
W (s)H(t, s) +

1
2

h(t, s) – 2√H(t, s)γ (s)
2√W (s)

)2

–
(h(t, s) – 2√H(t, s)γ (s))2

4W (s)

}
ds

= H(t, t1)ω(t1) –
∫ t

t1

(
ω(s) 2

√
W (s)H(t, s) +

1
2

h(t, s) – 2√H(t, s)γ (s)
2√W (s)

)2

ds

+
∫ t

t1

(h(t, s) – 2√H(t, s)γ (s))2

4W (s)
ds

≤ H(t, t1)ω(t1) –
∫ t

t1

[
2
√

H(t, s)W (s)ω(s) +
1
2

Q(t, s)
2√W (s)

]2

ds +
∫ t

t1

Q2(t, s)
4W (s)

ds. (3.26)

Combining (3.24) and (3.26), we deduce that

ω(t1) ≥ Ψ (t1) + lim
t→+∞ inf

1
H(t, t1)

∫ t

t1

[
2
√

H(t, s)W (s)ω(s) +
Q(t, s)

2√2W (s)

]2

ds,

i.e.,

0 ≤ lim inf
t→+∞

1
H(t, t1)

∫ t

t1

[
2
√

H(t, s)W (s)ω(s) +
Q(t, s)

2√2W (s)

]2

ds

≤ ω(t1) – Ψ (t1) < ∞.

(3.27)

We define two functions u and v as follows:

u(t) =
1

H(t, t1)

∫ t

t1

H(t, s)W (s)ω2(s) ds (3.28)
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and

v(t) =
1

H(t, t1)

∫ t

t1

2
√

H(t, s)Q(t, s)ω(s) ds. (3.29)

Combining (3.22) and (3.27), we deduce that

lim
t→+∞ inf

[
u(t) + v(t)

]
< ∞. (3.30)

Using (3.30), we claim and prove the following inequality:

∫ ∞

t1

W (s)ω2(s) ds < ∞. (3.31)

We prove it by using a contradiction argument. If (3.31) were not true, then

∫ ∞

t1

W (s)ω2(s) ds = ∞. (3.32)

By (3.21), there exists a positive constant χ such that

inf
s≥T

[
lim

t→+∞ inf
H(t, s)
H(t, T)

]
> χ . (3.33)

Let δ be an arbitrary positive number. By (3.32), we know that there exists t2 ≥ t1 such
that, for t ≥ t2,

∫ t

t1

W (s)ω2(s) ds ≥ δ

χ
. (3.34)

By (3.28), we know that, for t ≥ t2,

u(t) =
1

H(t, t1)

∫ t

t1

H(t, s)
d
ds

[∫ s

t1

W (u)ω2(u) du
]

ds

=
1

H(t, t1)

∫ t

t1

–
∂H(t, s)

∂s

[∫ s

t1

W (u)ω2(u) du
]

ds

≥ 1
H(t, t1)

∫ t

t2

–
∂H(t, s)

∂s

[∫ s

t1

W (u)ω2(u) du
]

ds

≥ δ

χ

1
H(t, t1)

∫ t

t2

–
∂H(t, s)

∂s
ds

=
δ

χ

H(t, t2)
H(t, t1)

. (3.35)

By (3.21), we know that there exists t3 ≥ t2 such that, for t ≥ t3,

H(t, t2)
H(t, t1)

≥ χ . (3.36)
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Combining (3.35) and (3.36), we know u(t) ≥ δ for t ≥ t3. From the arbitrariness of δ, we
conclude that

lim
t→+∞ u(t) = ∞, (3.37)

which is a contradiction with (3.30), and we have proved claim (3.31).
From (3.30), we can choose a sequence {tn}∞n=1 ⊂ (t0,∞) satisfying limn→+∞ tn = +∞

such that

u(tn) + v(tn) ≤ M for n = 1, 2, 3, . . . , (3.38)

for some positive number M.
Combining (3.28) and (3.32), we obtain

lim
n→+∞ u(tn) = +∞. (3.39)

Combining (3.38) and (3.39), we get

lim
n→+∞ v(tn) = –∞. (3.40)

By (3.38) and (3.39), we know there exists a positive integer N such that, for n ≥ N ,

1 +
v(tn)
u(tn)

≤ M
u(tn)

<
1
2

or
v(tn)
u(tn)

< –
1
2

. (3.41)

Combining (3.39), (3.40), and (3.41), we obtain the following:

lim
n→+∞

v2(tn)
u(tn)

= +∞. (3.42)

On the other hand, by using the Schwarz inequality, we obtain

v2(tn) =
[

1
H(tn, t1)

∫ tn

t1

2
√

H(tn, s)Q(tn, s)ω(s) ds
]2

≤ 1
H2(tn, t1)

∫ tn

t1

H(tn, s)W (s)ω2(s) ds
∫ tn

t1

Q2(tn,ϕ)
W (s)

dϕ

= u(tn)
1

H(tn, t1)

∫ tn

t1

Q2(tn, s)
W (s)

ds

for any arbitrary integer n. By the above inequality, we get

v2(tn)
u(tn)

≤ 1
H(tn, t1)

∫ tn

t1

Q2(tn, s)
W (s)

ds. (3.43)

Combining (3.42) and (3.43), we deduce that

lim
n→+∞

1
H(tn, t1)

∫ tn

t1

Q2(tn, s)
W (s)

ds → +∞. (3.44)
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By the arbitrariness of the sequence {tn}∞n=1, it is obvious that (3.44) contradicts condition
(3.22) in Theorem 3.3.

The case for y(n)(t) < 0 is similar to the proof of Theorem 3.1, and we omit the details
here. We thus have completed the proof of Theorem 3.3. �

4 Some applications of the asymptotic dichotomy
In this section, we give some examples to illustrate the applications of the asymptotic di-
chotomy proved in the previous section.

Example 4.1 Consider the fourth-order delay differential equation

y(4)(t) +
1

8t2 y′′(t) +
(

1 –
1

8t2

)
y(t – π ) = 0 for t > π + 1. (4.1)

Here, comparing with equation (1.1), we see p(t) = 1
8t2 , q(t) = 1 – 1

8t2 , f (u) = u with K = 1
and g(t) = t – π .

It is easy to verify that equation (4.1) satisfies condition (3.2) and that the equation z′′ +
1

8t2 z = 0 is non-oscillatory. We now take ρ = 1 and then obtain

lim sup
t→+∞

∫ t

T
Kρ(s)q(s) –

222!(ρ ′(s) – p(s)ρ(s)(s – g(s)))2

4g2(s)g ′(s)ρ(s)
ds

= lim sup
t→+∞

∫ t

1

{
1 –

1
8s2 –

2
(s – π )2

(
–

1
8s2 (π )

)2}
ds = +∞.

Hence condition (3.3) in Theorem 3.1 holds, and we can use Theorem 3.1 to conclude
that all the solutions of equation (4.1) are oscillatory or approaching to zero as t → +∞.
In fact, we can verify that y(t) = – cos t is a solution of equation (4.1) which is oscillatory.

Example 4.2 Consider the fifth-order delay differential equation in the following:

y(5)(t) + e–2t+2y′′′(t) +
1
e

y(t – 1)
(
1 + y2(t – 1)

)
= 0 for t > 3, (4.2)

where comparing with equation (1.1), we take p(t) = e–2t+2, q(t) = 1
e , f (u) = u(1 + u2) with

K = 1 and g(t) = t – 1.
It is easy to verify that equation (4.2) satisfies condition (3.2) and the equation z′′ +

e–2t+2z = 0 is non-oscillatory. We choose H(t, s) = ( (t–2)3

6 – (s–2)3

6 )2 and ρ = 1 and verify that

lim sup
t→+∞

1
H(t, T)

∫ t

T

(
KH(t, s)q(s) –

Q2(t, s)
4W (s)H(t, s)

)
ds

= lim sup
t→+∞

1
[ (t–2)3

6 ]2

∫ t

2

{[
(t – 2)3

6
–

(s – 2)3

6

]2(1
e

)

–
{6(s – 2)2 + [ (t–2)3

6 – (s–2)3

6 ]e–2s+2}2

(s–1)3

12 [ (t–2)3

6 – (s–2)3

6 ]2

}
ds = +∞.

Therefore condition (3.14) in Theorem 3.2 holds, and we use Theorem 3.2 to conclude
that all the solutions of equation (4.2) are oscillatory or approaching to zero as t → +∞. It
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is easy to verify that y(t) = e–t is a solution of equation (4.2) which is approaching to zero
as t → +∞.
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