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Abstract
In this paper we introduce a new self-adaptive iterative algorithm for solving the
variational inequalities in real Hilbert spaces, denoted by VI(C, F). Here C ⊆ H is a
nonempty, closed and convex set and F : C →H is boundedly Lipschitz continuous
(i.e., Lipschitz continuous on any bounded subset of C) and strongly monotone
operator. One of the advantages of our algorithm is that it does not require the
knowledge of the Lipschitz constant of F on any bounded subset of C or the strong
monotonicity coefficient a priori. Moreover, the proposed self-adaptive step size rule
only adds a small amount of computational effort and hence guarantees fast
convergence rate. Strong convergence of the method is proved and a posteriori error
estimate of the convergence rate is obtained.
Primary numerical results illustrate the behavior of our proposed scheme and also

suggest that the convergence rate of the method is comparable with the classical
gradient projection method for solving variational inequalities.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, and let C be
a nonempty, closed and convex subset of H. Let F : C → H be a nonlinear operator. The
classical variational inequality problem VI(C, F) consists of finding a point x∗ ∈ C such
that

〈
Fx∗, x – x∗〉 ≥ 0, ∀ x ∈ C. (1.1)

The variational inequality problem (VIP) was introduced and studied by Fichera [9, 10]
(see also [22]). Since then VIPs have been studied and applied in a wide variety of problems
arising in different fields, for example, engineering science, structural analysis, economics,
optimization, operations research, see [1, 2, 6–11, 14, 16–20, 22, 24–26] and the references
therein.
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It is easy to verify that, for some x∗ ∈ C, x∗ solves the VI(C, F) if and only if x∗ satisfies
the fixed point equation:

x∗ = PC(I – λF)x∗, (1.2)

where I is the identity operator on H, PC : H → C is the metric projection operator and λ

is an arbitrary positive constant. Furthermore, if F is η-strongly monotone and L-Lipschitz
continuous, i.e., there exist two positive constants η and L such that

〈Fx – Fy, x – y〉 ≥ η‖x – y‖2, ∀ x, y ∈ C, (1.3)

and

‖Fx – Fy‖ ≤ L‖x – y‖, ∀ x, y ∈ C, (1.4)

respectively, then PC(I – λF) : C → C is a strict contraction with the constant√
1 – λ(2η – λL2) for any λ ∈ (0, 2η

L2 ) (see, for example, Theorem 5 in [4]). Therefore, by
(1.2) and Banach’s fixed point theorem, VI(C, F) has a unique solution and the sequence
{xn}∞n=0 generated by the gradient projection method (GPM), namely

x0 ∈ C, xn+1 = PC(I – λF)xn, n ≥ 0, (1.5)

converges strongly to the unique solution of VI(C, F). The implementation of the gradient
projection method (1.5) depends on the “simplicity” of the set C, so that the projection op-
erator PC can be easily computed, and on the fact that the strong monotonicity coefficient
η, the Lipschitz constant L, and hence λ are all known in advance. In general, this is not the
case and therefore many strategies have been developed in the literature to overcome this
obstacle; for example, Gibali et al. [13] proposed a relaxed projection method inspired by
the work of Fukushima [11]. In away to deal with the second difficulty related to not know-
ing the parameters, η, L and λ, one can adopt the variable parameter gradient projection
method (VPGPM), which approximates λ in (1.5) by a sequence {λn}∞n=0 satisfying

lim
n→∞λn = 0 and

∞∑

n=0

λn = ∞. (1.6)

The above aspects attract much attention and have been studied intensively; for some
direct extensions of Fukushima’s method, the readers are refereed to the works of Cen-
sor and Gibali [5], Cegielski et al. [3] and Gibali et al. [12]. Related results with Lipschitz
continuous and strongly monotone VIPs in real Hilbert spaces, see the relaxed projection
methods of He and Yang [19] and He and Tian [17]. For Lipschitz continuous and mono-
tone VIPs in real Hilbert spaces, see [13], which has been extended recently by Cai et al.
[2] to Banach spaces.

We point out that most of the algorithms mentioned above use variable parameter se-
quences satisfying (1.6), this might be essential when the feasible set C is more complex
and thus the relaxation projection technique has to be used. On the other hand, when C
is easy to project onto and the constants η and L are unknown, the usage of the parame-
ter sequence {λn}∞n=0 satisfying (1.6) is not a good choice due to the computational effort



He et al. Journal of Inequalities and Applications        (2018) 2018:350 Page 3 of 12

of doing so. So, our main motivation of this paper is to propose a new simple and fast
converging iterative algorithm with self-adaptive parameter selection.

One of the main advantages of our new proposed method is that it does not require a pri-
ori the knowledge of the Lipschitz constant of F on any bounded subset of C or the strong
monotonicity coefficient. Moreover, the proposed self-adaptive step size rule only adds a
small amount of computational effort and hence guarantees fast convergence rate. Strong
convergence of the method is proved and a posteriori error estimate of the convergence
rate is obtained. Primary numerical results demonstrate the applicability and efficiency of
the algorithm.

As used in our VIP, we present next an example of a nonlinear operator which is strongly
monotone and boundedly Lipschitz continuous. Consider the operator F : C → R

2 de-
fined by

F(x, y) =
(
x + y + x3, –x + y + y5)
,

where C = {(x, y)
 ∈ R
2 | x, y ≥ 0}. For any (x, y)
, (u, v)
 ∈ C, by the mean value theorem,

we deduce that

〈
F(x, y) – F(u, v), (x, y)
 – (u, v)


〉

=
[
(x – u)2 + (y – v)2] +

(
x3 – u3)(x – u) +

(
y5 – v5)(y – v)

≥ [
(x – u)2 + (y – v)2]

=
∥∥(x, y)
 – (u, v)


∥∥2.

This means that F is 1-strongly monotone on C. Set f (x, y) = (x + y, –x + y)
, g(x, y) =
(x3, y5)
, and Bσ := {(x, y)
 | 0 ≤ x, y ≤ σ } for any σ ≥ 1. We have

∥∥f (x, y) – f (u, v)
∥∥ =

√
2
∥∥(x, y)
 – (u, v)


∥∥, ∀ (x, y)
, (u, v)
 ∈ C. (1.7)

Using again the mean value theorem, we easily obtain

∥∥g(x, y) – g(u, v)
∥∥ =

√(
x3 – u3

)2 +
(
y5 – v5

)2

≤ 5σ 4∥∥(x, y)
 – (u, v)

∥∥, ∀ (x, y)
, (u, v)
 ∈ Bσ . (1.8)

Combining (1.7) and (1.8) leads to

∥∥F(x, y) – F(u, v)
∥∥ ≤ (√

2 + 5σ 4)∥∥(x, y)
 – (u, v)

∥∥, ∀ (x, y)
, (u, v)
 ∈ Bσ ,

which implies that F is boundedly Lipschitz continuous on C. However, F is not Lipschitz
continuous on C. Indeed, it is very easy to see that

‖F(x, 0) – F(0, 0)‖
‖(x, 0)
 – (0, 0)
‖ ≥ x3 –

√
2x

x
= x2 –

√
2 → +∞,

as x → +∞.
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The outline of the paper is as follows. In Sect. 2, we recall some basic definitions and
results which are useful for our analysis. Our self-adaptive iterative algorithm is presented
and analyzed in Sect. 3. Then, in Sect. 4, three numerical experiments which demonstrate
and compare our algorithm’s performance with two related methods are presented. Final
conclusions are given in Sect. 5.

2 Preliminaries
In this section, we list some concepts and tools that will be used in the proofs of our main
results. In the rest of this paper, we always denote by H a real Hilbert space and denote by
I the identity operator on H. Also, we will use the following notations:

(i) → denotes strong convergence.
(ii) ⇀ denotes weak convergence.

(iii) ωw(xn) = {x | ∃ {xnk }∞k=1 ⊂ {xn}∞n=1 such that xnk ⇀ x} denotes the weak ω-limit set
of {xn}∞n=1.

(iv) S(x, r) denotes the closed ball with center x ∈H and radius r > 0.
Let C be a nonempty closed convex subset of a real Hilbert spaceH. Then, for any x ∈H,

there is a unique point z ∈ C such that ‖z – x‖ ≤ ‖y – x‖ for all y ∈ C, this vector z, denoted
by PCx, is called the metric projection of x onto C and the operator PC : H → C is called
the metric projection operator onto C. It is well known that the projection operator PC is
non-expansive; namely,

‖PCx – PCy‖ ≤ ‖x – y‖, ∀ x, y ∈H.

In fact, PC is also a firmly nonexpansive mapping, i.e.,

‖PCx – PCy‖2 ≤ ‖x – y‖2 –
∥∥(x – PCx) – (y – PCy)

∥∥2, ∀ x, y ∈H. (2.1)

It is well known that PCx is characterized [15, Sect. 3] by the inequality (for x ∈ H)

〈x – PCx, y – PCx〉 ≤ 0, ∀ y ∈ C. (2.2)

Lemma 2.1 The following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀ x, y ∈H. (2.3)

Lemma 2.2 ([21]) Let T : C → C be a nonexpansive mapping. Then I – T is demiclosed
at 0 in the sense that if {xn}∞n=1 is a sequence in C such that xn ⇀ x and ‖xn – Txn‖ → 0 as
n → ∞, it follows that x – Tx = 0, i.e., x ∈ Fix(T). Here Fix(T) = {x ∈ H | Tx = x} is the set
of fixed points of T .

Definition 2.3 A mapping F : C → H is said to be boundedly Lipschitz continuous, if F
is Lipschitz continuous on any bounded subset B of C, i.e., there exists some LB > 0 (LB is
relevant with subset B) such that

‖Fx – Fy‖ ≤ LB‖x – y‖, ∀ x, y ∈ B. (2.4)
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Lemma 2.4 ([23]) Assume {an}∞n=0 is a sequence of nonnegative real numbers such that

an+1 ≤ (1 – γn)an + γnσn, n ≥ 0, (2.5)

where {γn}∞n=0 is a sequence in (0, 1) and {σn}∞n=0 is a sequence of real numbers such that
(i)

∑∞
n=0 γn = ∞,

(ii)
∑∞

n=1 |γnσn| = ∞, or lim supn→∞ σn ≤ 0.
Then limn→∞ an = 0.

Theorem 2.5 ([18]) Let C be a nonempty closed convex subset of a real Hilbert space H. If
F : C → H is a strongly monotone and boundedly Lipschitz continuous operator, then the
variational inequality VI(C, F) has a unique solution.

3 The self-adaptive iterative algorithm
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖·‖, and let C be a
nonempty closed convex subset of H. Let F : C →H be a strongly monotone and bound-
edly Lipschitz continuous operator. Throughout this section, we always assume that we
do not need to know or to estimate its strong monotonicity coefficient η and the Lipschitz
constant LB on any bounded subset B of C. Also, we always assume that the projection op-
erator PC is easy to calculate. Using Theorem 2.5, VI(C, F) has a unique solution, denoted
by x∗.

Now we are ready to present our self-adaptive iterative algorithm for solving VI(C, F).

Algorithm 3.1 (Self-adaptive iterative algorithm)
Step 1. Choose x0 ∈ C arbitrarily and set n := 1. Calculate x1 by

x1 = PC
(
x0 – F(x0)

)
.

If x1 = x0, then x0 is the unique solution of VI(C, F) and stop the algorithm.
Otherwise, set

η0 =
〈F(x1) – F(x0), x1 – x0〉

‖x1 – x0‖2 , L0 =
‖F(x1) – F(x0)‖

‖x1 – x0‖ , and μ0 =
η0

L2
0

.

Step 2. Given the current iterate xn, compute

ηn =

⎧
⎨

⎩
min{ηn–1, 〈F(xn)–F(xn–1),xn–xn–1〉

‖xn–xn–1‖2 , 〈F(xn)–F(x0),xn–x0〉
‖xn–x0‖2 }, if xn �= x0,

min{ηn–1, 〈F(xn)–F(xn–1),xn–xn–1〉
‖xn–xn–1‖2 }, if xn = x0,

Ln =

⎧
⎨

⎩
max{Ln–1, ‖F(xn)–F(xn–1)‖

‖xn–xn–1‖ , ‖F(xn)–F(x0)‖
‖xn–x0‖ }, if xn �= x0,

max{Ln–1, ‖F(xn)–F(xn–1)‖
‖xn–xn–1‖ }, if xn = x0,

and

μn =
ηn

L2
n

.
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Step 3. Update the next iterate as

xn+1 = PC
(
xn – μnF(xn)

)
, n ≥ 1. (3.1)

If xn+1 = xn, STOP, xn is the unique solution of VI(C, F).
Otherwise, set n := n + 1 and return to Step 2.

Remark 3.2 We make the following observations for Algorithm 3.1.
(1) It is easy to see by a simple induction that the sequences {ηn}∞n=0, {Ln}∞n=0, and

{μn}∞n=0 are well defined. Also the calculations of ηn, Ln, and μn only add a small
amount of computational load. Indeed, for any n ≥ 1, the values of {F(xk)}n

k=0 have
been obtained in the previous calculations.

(2) Let η be the strong monotonicity coefficient of F . Then the following properties
directly follow from the definitions of ηn, Ln and μn:

(i) {ηn}∞n=0 is monotone nonincreasing and ηn ≥ η for all n ≥ 0.
(ii) {Ln}∞n=0 is monotone nondecreasing and Ln ≥ ηn holds for all n ≥ 0. Particularly,

if F is L-Lipschitz continuous, then Ln ≤ L holds for all n ≥ 0.
(iii) {μn}∞n=0 is monotone nonincreasing and μn = ηn

L2
n

≤ 1
ηn

≤ 1
η

holds for all n ≥ 0. In
particular, if F is L-Lipschitz continuous, then μn ≥ η

L2 holds for all n ≥ 0.

Next we present a strong convergence theorem of Algorithm 3.1.

Theorem 3.3 Assume that F is boundedly Lipschitz continuous and strongly monotone on
the feasible set, then any sequence {xn}∞n=0 generated by Algorithm 3.1 converges strongly to
the unique solution x∗ of problem VI(C, F).

Proof First, we verify that {xn}∞n=0 is bounded. For any n ≥ 1, put yn = PC(x0 –μnF(x0)) and
recall the definitions of ηn, Ln and μn. We have from (3.1) that

‖xn+1 – yn‖2 =
∥∥PC

(
xn – μnF(xn)

)
– PC

(
x0 – μnF(x0)

)∥∥2

≤ ∥∥(xn – x0) – μn
(
F(xn) – F(x0)

)∥∥2

= ‖xn – x0‖2 – 2μn
〈
F(xn) – F(x0), xn – x0

〉
+ μ2

n
∥∥F(xn) – F(x0)

∥∥

≤ ‖xn – x0‖2 – 2μnηn‖xn – x0‖2 + μ2
nL2

n‖xn – x0‖2

=
(

1 –
η2

n
L2

n

)
‖xn – x0‖2

≤
(

1 –
1
2

η2
n

L2
n

)2

‖xn – x0‖2.

Hence

‖xn+1 – yn‖ ≤
(

1 –
1
2

η2
n

L2
n

)
‖xn – x0‖. (3.2)

Also, we have

‖xn+1 – x0‖ ≤ ‖xn+1 – yn‖ + ‖yn – x0‖
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≤
(

1 –
1
2

η2
n

L2
n

)
‖xn – x0‖ +

∥∥PC
(
x0 – μnF(x0)

)
– PCx0

∥∥

≤
(

1 –
1
2

η2
n

L2
n

)
‖xn – x0‖ + μn

∥∥F(x0)
∥∥

=
(

1 –
1
2

η2
n

L2
n

)
‖xn – x0‖ +

η2
n

2L2
n

2
ηn

∥∥F(x0)
∥∥

≤ max

{
‖xn – x0‖,

2
ηn

∥∥F(x0)
∥∥
}

≤ max

{
‖xn – x0‖,

2
η

∥∥F(x0)
∥∥
}

.

By induction, we obtain

‖xn+1 – x0‖ ≤ max

{
‖x1 – x0‖,

2
η

∥∥F(x0)
∥∥
}

, ∀ n ≥ 1,

which means that {xn}∞n=0 is bounded. So is {F(xn)}∞n=0 due to the fact that F is boundedly
Lipschitz continuous.

Second, we show that {xn}∞n=0 is a Cauchy sequence. In fact, for any n ≥ 2, we have from
(3.1) that

‖xn+1 – xn‖ =
∥∥PC

(
xn – μnF(xn)

)
– PC

(
xn–1 – μn–1F(xn–1)

)∥∥

≤ ∥∥(xn – xn–1) – μn
(
F(xn) – F(xn–1)

)
+ (μn–1 – μn)F(xn–1)

∥∥

≤ ∥∥(xn – xn–1) – μn
(
F(xn) – F(xn–1)

)∥∥ + (μn–1 – μn)
∥∥F(xn–1)

∥∥.

Noting the definitions of ηn, Ln and μn again, an argument very similar to getting (3.2)
yields

∥∥(xn – xn–1) – μn
(
F(xn) – F(xn–1)

)∥∥ ≤
(

1 –
1
2

η2
n

L2
n

)
‖xn – xn–1‖.

Consequently,

‖xn+1 – xn‖ ≤
(

1 –
1
2

η2
n

L2
n

)
‖xn – xn–1‖ + (μn–1 – μn)

∥∥F(xn–1)
∥∥. (3.3)

We denote by B the closed convex hull of the sequence {xn}∞n=0 and by LB the Lipschitz
constant of F restricted to B, respectively. Noting ηn ≥ η and Ln ≤ LB (n ≥ 0), we obtain
from (3.3) that

‖xn+1 – xn‖ ≤
(

1 –
1
2

η2

L2
B

)
‖xn – xn–1‖ + (μn–1 – μn)M, (3.4)

where M = sup{‖F(xn)‖}∞n=0 < +∞. On the other hand,
∑∞

n=1 |μn–1 – μn| < +∞ holds since
{μn}∞n=0 is monotone nonincreasing. Using Lemma 2.4, it follows that ‖xn+1 – xn‖ → 0 as
n → ∞. For any integers n and m such that m > n ≥ 2, it follows from (3.4) that

η2

2L2
B

m–1∑

k=n

‖xk – xk+1‖ ≤
(

1 –
η2

2L2
B

)
‖xn–1 – xn‖ + (μn–1 – μm–1)M.
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Furthermore, we get

‖xn – xm‖ ≤ 2L2
B

η2

{(
1 –

η2

2L2
B

)
‖xn–1 – xn‖ + (μn–1 – μm–1)M

}
. (3.5)

From (3.5), it is easy to see that {xn}∞n=0 is a Cauchy sequence due to the fact that ‖xn+1 –
xn‖ → 0 and limn→∞ μn, denoted by μ∗, exists.

Finally, we prove xn → x∗ (n → ∞). Set limn→∞ xn = z. Using the relations

η

L2
B

≤ μn =
ηn

L2
n

≤ 1
η

, ∀ n ≥ 0,

we assert that μ∗ = limn→∞ μn ≥ η

L2
B

. Taking n → ∞ in (3.1), we obtain

z = PC
(
z – μ∗F(z)

)
.

This implies that z ∈ C is a solution of VI(C, F). Using the uniqueness of the solution of
the VI(C, F), we assert that z = x∗, and this completes the proof. �

To present a complete convergence analysis of Algorithm 3.1, the next theorem estab-
lishes the algorithm’s convergence rate.

Theorem 3.4 Assume that F is boundedly Lipschitz continuous and strongly monotone on
the feasible set and the sequence {xn}∞n=0 is generated by Algorithm 3.1. Then the following
a posteriori error estimate holds:

∥∥xn – x∗∥∥ ≤ 2L2
B

η2

{(
1 –

η2

2L2
B

)
‖xn–1 – xn‖ +

(
μn–1 – μ∗)M

}
, ∀ n ≥ 2, (3.6)

where η is the strong monotonicity coefficient of F , and the constants LB, μ∗ and M are the
same as above.

Proof Observe that this estimate can be easily obtained by letting m → ∞ in (3.5). �

Since a Lipschitz continuous operator is obviously boundedly Lipschitz continuous, the
following results are straightforward.

Corollary 3.5 Assume that F is Lipschitz continuous and strongly monotone on the feasible
set, then the sequence {xn}∞n=0 generated by Algorithm 3.1 converges strongly to the unique
solution x∗ of problem VI(C, F).

Corollary 3.6 Assume that F is Lipschitz continuous and strongly monotone on the feasible
set and the sequence {xn}∞n=0 is generated by Algorithm 3.1. Then the following a posteriori
error estimate holds:

∥∥xn – x∗∥∥ ≤ 2L2

η2

{(
1 –

η2

2L2

)
‖xn–1 – xn‖ +

(
μn–1 – μ∗)M

}
, ∀ n ≥ 2, (3.7)

where the constants μ∗ and M are the same as above, and L and η is the Lipschitz constant
and strong monotonicity coefficient of F , respectively.
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4 Numerical results
In this section, we present three numerical examples which demonstrate the performance
of the self-adaptive iterative algorithm (Algorithm 3.1). All implementations and testing
are preformed with Matlab R2014b on an HP Pavilion notebook with Intel(R) Core(TM)
i5-3230M CPU@2.60 GHz and 4 GB RAM running on Windows 10 Home Premium op-
erating system.

Example 1 Consider the variational inequality problem VI(C, F) (1.1) with the set C :=
{(x, y) | x2 + y2 ≤ 1} and F : C → R2 defined by F(x, y) = (2x + 2y + sin(x), –2x + 2y + sin(y))
,
∀ (x, y)
 ∈ C.

One can easily verify that F is strongly monotone and Lipschitz continuous with strong
monotonicity coefficient η = 1 and Lipschitz constant L = 1 +

√
8, respectively, and

VI(C, F) has the unique solution x∗ = (0, 0)
. Now we compare the numerical performance
of Algorithm 3.1, GPM (with the known constant λ = η

L2 ) and VPGPM (with the variable
parameter sequence {λn}∞n=0 = { 1

n+1 }∞n=0). Since the exact solution of the VI(C, F) is known,
we naturally use

En :=
∥∥xn – x∗∥∥ (4.1)

to measure the error of the nth iterate xn. The numerical results of Algorithm 3.1, GPM
and VPGPM with the same initial guess x0 = (1, 0)
 for solving Example 1 are listed in
Table 1, where “Iter.” denotes the number of iterations.

Next, in Fig. 1 we graphically present the numerical performance of the above three
algorithms.

From Table 1 and Fig. 1, we conclude that the VPGPM performs the worst, regardless
of the number of iterations or the computing time, and Algorithm 3.1 and the GPM are
roughly the same since Algorithm 3.1 needs the least number of iterations, while the GPM
needs the shortest computing time. Although Algorithm 3.1 requires a little longer com-
puting time than GPM due to parameter self-adaptive selection, Algorithm 3.1 still shows
obvious superiority, not only because it requires the least number of iterations, but also
because it does not need to know the constants L and η.

Example 2 Consider the variational inequality problem VI(C, F) (1.1) with the set C :=
{(x, y) | x ≥ 0, y ≥ 0} and F : C → R2 defined by F(x, y) = (2x + 2y + exp(x), –2x + 2y +
exp(y))
, ∀ (x, y)
 ∈ C.

Table 1 Comparison of Algorithm 3.1 with GPM and VPGPM

En Iter. CPU (in s)

VPGPM GPM Algorithm 3.1 VPGPM GPM Algorithm 3.1

1 · 10–1 7 11 5 0.000064 0.000488 0.001099
1 · 10–2 15 22 9 0.000126 0.000554 0.001709
1 · 10–3 31 33 13 0.000213 0.000621 0.002412
1 · 10–4 66 44 17 0.000420 0.000684 0.003223
1 · 10–5 141 54 21 0.000855 0.000746 0.003691
1 · 10–6 302 65 25 0.001784 0.000820 0.004325
1 · 10–7 649 76 29 0.003787 0.000900 0.004826
1 · 10–8 1398 87 33 0.008293 0.001003 0.005116
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Figure 1 Illustrations and comparison of three algorithms for Example 1

Table 2 Numerical results of Algorithm 3.1

En Iter. CPU (in s)

1 · 10–1 3 0.000094
1 · 10–2 11 0.000282
1 · 10–3 19 0.000479
1 · 10–4 28 0.000686
1 · 10–5 36 0.000867
1 · 10–6 45 0.001082
1 · 10–7 54 0.001207
1 · 10–8 62 0.001425

It is easy to see that F is strongly monotone and boundedly Lipschitz continuous on C
and x∗ = (0, 0)
 is the unique solution. Since F is not Lipschitz continuous on C, so GPM
and VPGPM are not applicable for this example. Choosing the starting point x0 = (1, 1)


and using Algorithm 3.1 to solve this example, we find that the exact solution x∗ = (0, 0)


can be obtained by only one iteration.

Example 3 Consider the variational inequality problem VI(C, F) (1.1) with the set C :=
{(x, y) | x ≥ 0} and F : C → R2 defined by F(x, y) = (2x + 2y + exp(x), –2x + 2y + exp(y))
,
∀ (x, y)
 ∈ C.

Similar to Example 2, F is also strongly monotone and boundedly Lipschitz continuous
on C, and GPM and VPGPM are not applicable for this example. On the other hand, we
define

En := ‖xn – xn–1‖ (4.2)

for this example to measure the error of the nth iterate xn since the exact solution of this
VI(C, F) problem is unknown. The numerical results generated by implementing Algo-
rithm 3.1 with the initial guess x0 = (2, 1)
 for solving Example 3 are listed in Table 2,
where “Iter.” also denotes the number of iterations.

The numerical results in Tables 1 and 2 show that the convergence rate of Algorithm 3.1
for solving boundedly Lipschitz continuous variational inequalities is almost the same as
that of GPM for solving Lipschitz continuous variational inequalities.
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5 Conclusions
In this paper, in the setting of Hilbert spaces, a new self-adaptive iterative algorithm is
proposed for solving VI(C, F) governed by boundedly Lipschitz continuous and strongly
monotone operator F : C → H under the assumption that PC has a closed-form formula.
The advantages of our algorithm are not only having no need to know or estimate the
strong monotonicity coefficient and Lipschitz constant on any bounded subset of the fea-
sible set, but also having a fast convergence rate because the parameter self-adaptive se-
lection process only adds a small amount of computational effort. Currently, as far as we
know, such algorithms for solving strongly monotone and boundedly Lipschitz continu-
ous variational inequalities have not been considered before.
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