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Abstract
In this paper, a new method is proposed for low-rank matrix completion which is
based on the least squares approximating to the known elements in the manifold
formed by the singular vectors of the partial singular value decomposition
alternatively. The method can achieve a reduction of the rank of the manifold by
gradually reducing the number of the singular value of the thresholding and get the
optimal low-rank matrix. It is proven that the manifold-alternative approximating
method is convergent under some conditions. Furthermore, compared with the
augmented Lagrange multiplier and the orthogonal rank-one matrix pursuit
algorithms by random experiments, it is more effective as regards the CPU time and
the low-rank property.
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1 Introduction
Matrix completion, proposed by Candès and Recht [7] in 2009, is a challenging problem.
There has been a lot of study (see [1–8, 11–19, 23–28, 30, 33–35]) both in theoretical and
algorithmic aspects on this problem. Explicitly seeking the lowest-rank matrix consistent
with the known entries is mathematically expressed as

min
X∈Rn×n

rank(X)

subject to Xij = Mij, (i, j) ∈ Ω , (1.1)

where the matrix M ∈ R
n×n is the unknown matrix, Ω is a random subset of indices for

the known entries. The problem occurs in many areas of engineering and applied science,
such as model reduction [20], machine learning [1, 2], control [22], pattern recognition
[10], imaging inpainting [3] and computer vision [29].

As is well known, Candés and Rechat [7] replaced the rank objective in (1.1) with its con-
vex relaxation, and they showed that the lowest-rank matrices could be recovered exactly
from most sufficiently large sets of sampled entries by computing the matrix of minimum
nuclear norm that agreed with the provided entries, i.e., the exact matrix completion via
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convex optimization, as follows:

min
X∈Rn×n

‖X‖∗

subject to Xij = Mij, (i, j) ∈ Ω , (1.2)

where the functional ‖X‖∗ is the nuclear norm of the matrix X, the unknown matrix M ∈
R

n×n of r-rank is square, and one has available m sampled entries {Mij : (i, j) ∈ Ω} with Ω

a random subset of cardinality m.
There have been many algorithms which were designed to attempt to solve the global

minimum of (1.2) directly. For example, the hard thresholding algorithms [4, 15, 17, 26],
the singular value theresholding (SVT) method [6], the accelerated singular values thresh-
olding method (ASVT [14]), the proximal forward–backward splitting [9], the augmented
Lagrange multiplier (ALM [19]) method, the interior point methods [7, 28], and the new
gradient projection (NGP [34]) method.

Based on the bi-linear decomposition of an r-rank matrix, some algorithms have been
presented to solve (1.1) under the r-rank that is known or can be estimated [20, 21]. We
mention the Riemannian geometry method [30] and the Riemannian trust-region method
[5, 23], the alternating minimization method [16] and the alternating steepest descent
method [26]. The rank of many completion matrices, however, is unknown, so that one has
to estimate it ahead of time or approximate it from a lower rank, which causes the difficulty
of solving the matrix completion problem. Wen et al. [33] presented the two-stage iteration
algorithms for the unknown-rank problem. To decrease the computational cost, based on
extending the orthogonal matching pursuit (OMP) procedure from the vector to matrix
level, Wang et al. [31] presented an orthogonal rank-one matrix pursuit (OR1MP) method,
in which only the top singular vector pair was calculated at each iteration step and an
ε-feasible solution can be obtained in only O(log( 1

ε
)) iterations with less computational

cost. However, the method converges to a feasible point rather than the optimal one with
minimization rank such that the accuracy is poor and cannot be improved if the rank is
reached. In this study, we come up with a manifold-alternative approximating method for
solving the problem (1.2) motivated by the above. In an outer iteration, the approximated
process can be done in the left-singular vector subspace and the approximation will be
alternatively carried out in the right-singular vector subspace in an inner iteration. In a
whole iteration, the reduction of the rank results in an alternating optimization, while the
completed matrix satisfies Mij = (UV T )ij, for (i, j) ∈ Ω .

Here are some notations and preliminaries. Let Ω ⊂ {1, 2, . . . , n} × {1, 2, . . . , n} denote
the indices of the observed entries of the matrix X ∈ R

n×n, Ω̄ denote the indices of the
missing entries. ‖X‖∗ represents the nuclear norm (also called Schatten 1-norm) of X,
that is, the sum of the singular values of X, ‖X‖2,‖X‖F denote 2-norm and F-norm of X,
respectively. We denote by 〈X, Y 〉 = trace(X∗, Y ) the inner product between two matrices
(‖X‖2

F = 〈X, X〉). The Cauchy–Schwartz inequality gives 〈X, Y 〉 ≤ ‖X‖F · ‖Y‖F and it is well
known that 〈X, Y 〉 ≤ ‖X‖2 · ‖Y‖∗ [7, 32].

For a matrix A ∈R
n×n, vec(A) = (aT

1 , aT
2 , . . . , aT

n )T denotes a vector reshaped from matrix
A by concatenating all its column vectors, dim(A) is always used to represent the dimen-
sions of A and r(A) stands for the rank of A.

The rest of the paper is organized as follows. After we provide a brief review of the ALM
and the OR1MP methods, a manifold-alternative approximating method is proposed in
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Sect. 2. The convergence results of the new method are discussed in Sect. 3. Finally, nu-
merical experiments are shown with comparison to other methods in Sect. 4. We end the
paper with a concluding remark in Sect. 5.

2 Methods
2.1 The method of augmented Lagrange multipliers
The method of augmented Lagrange multipliers (ALMs) was proposed in [19] for solving
a convex optimization (1.2). It should be described subsequently.

Since the matrix completion problem is closely connected to the robust principal com-
ponent analysis (RPCA) problem, it can be formulated in the same way as RPCA, an equiv-
alent problem of (1.2) can be considered as follows.

As E will compensate for the unknown entries of M, the unknown entries of M are
simply set as zeros. Suppose that the given data are arranged as the columns of a large
matrix M ∈R

m×n. The mathematical model for estimating the low-dimensional subspace
is to find a low-rank matrix X ∈ R

m×n, such that the discrepancy between X and M is
minimized, leading to the following constrained optimization:

min
X,E∈Rm×n

‖X‖∗

subject to X + E = M, πΩ (E) = 0, (2.1)

where πΩ : Rm×n → R
m×n is a linear operator that keeps the entries in Ω unchanged and

sets those outside Ω (say, in Ω) zeros. Then the partial augmented Lagrange function is

L(X, E, Y ,μ) = ‖X‖∗ + 〈Y , M – X – E〉 +
μ

2
‖M – X – E‖2

F .

The augmented Lagrange multipliers method is summarized in the following:

Method 2.1 (Algorithm 6 of [19])
Input: Observation samples Mij, (i, j) ∈ Ω , of matrix M ∈R

m×n.
1. Y0 = 0; E0 = 0; μ0 > 0; ρ > 1; k = 0.
2. while not converged do
3. // Lines 4–5 solve Ak+1 = arg minX L(X, Ek , Yk ,μk).
4. (U , S, V ) = svd(M – Ek – μ–1

k Yk);
5. Ak+1 = USμ–1

k
[S]V T .

6. // Line 7 solves Ek+1 = arg minπΩ (E)=0 L(Ak+1, E, Yk ,μk).
7. Ek+1 = πΩ (M – Xk+1 + μ–1

k Yk).
8. Yk+1 = Yk + μk(M – Xk+1 – Ek+1).
9. Update μk to μk+1.

10. k ← k + 1.
11. end while

Output: (Xk , Ek).

Remark It is reported that the method of augmented Lagrange multipliers has been ap-
plied to the problem (1.2). It is of much better numerical behavior, and it is also of much
higher accuracy. However, the method has the disadvantage of the penalty function: the
matrix sequences {Xk} generated by the method are not feasible. Hence, the accepted so-
lutions are not feasible.
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2.2 The method of the orthogonal rank-one matrix pursuit (OR1MP)
We proceed based on the expression of the matrix X ∈ R

m×n,

X = M(θ ) =
∑

i∈Λ

θiMi, (2.2)

where {Mi : i ∈ Λ} is the set of all m × n rank-one matrices with unit Frobenius norm.
The original low-rank matrix approximation problem aims to minimize the zero-norm

of the vector θ = (θi)i∈Λ subject to the equality constraint

min
θ

‖θ‖0

subject to PΩ

(
M(θ )

)
= PΩ (Y ), (2.3)

where ‖θ‖0 represents the number of nonzero elements of the vector θ , and PΩ is the
orthogonal projector onto the span of matrices vanishing outside of Ω .

The authors in [31] reformulate further the problem as

min
∥∥PΩ

(
M(θ )

)
– PΩ (Y )

∥∥2
F

subject to ‖θ‖0 ≤ r, (2.4)

they could solve it by an orthogonal matching pursuit (OMP) type algorithm using rank-
one matrices as the basis. It is implemented by two steps alternatively: one is to pursue the
basis Mk , and the other is to learn the weight of the basis θk .

Method 2.2 (Algorithm 1 of [31])
Input: YΩ and stopping criterion.
Initialize: Set X0 = 0; θ0 = 0 and k = 1.
repeat
Step 1: Find a pair of top left- and right-singular vectors (uk , vk) of the observed residual

matrix Rk = YΩ – Xk–1 and set Mk = ukvT
k .

Step 2: Compute the weight vector θ k using the closed form least squares solution θ k =
(M̄T

k M̄k)–1M̄T
k ẏ.

Step 3: Set Xk =
∑k

i=1 θ k
i (Mi)Ω and k ← k + 1.

until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

∑k
i=1 θ k

i Mi.

Remark To decrease the computational cost, based on extending the orthogonal match-
ing pursuit (OMP) procedure from the vector to matrix level, Wang et al. [31] presented
an orthogonal rank-one matrix pursuit (OR1MP) method, in which only the top singular
vector pair was calculated at each iteration step and an ε-feasible solution can be obtained
in only O(log( 1

ε
)) iterations with less computational cost. However, the method converges

to a feasible point rather than the optimal one with minimization rank such that the ac-
curacy is poor and cannot be improved if the rank is reached.
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2.3 The method of a manifold-alternative approximating (MAA)
For convenience, [Uk ,Σk , Vk]τk = lansvd(Yk) denotes the top-τk singular pairs of the matrix
Yk by using the Lanczos method, where Uk = (u1, u2, . . . , uτk ), Vk = (v1, v2, . . . , vτk ) and Σk =
diag(σ1k ,σ2k , . . . ,στk ,k),σ1k ≥ σ2k ≥ · · · ≥ στk ,k > 0.

Let

Mk =
{

X ∈R
n×m : rank(X) = k

}

denote the manifold of fixed-rank matrices. Using the SVD, one has the equivalent char-
acterization

Mk =
{

UΣV T : U ∈ Stm
k , V ∈ Stn

k ,Σ = diag(σi),σ1 ≥ · · · ≥ σk > 0
}

, (2.5)

where Stm
k is the Stiefel manifold of m × k real, orthogonal matrices, and diag(σi) denotes

a diagonal matrix with σi, i = 1, 2, . . . , k on the diagonal.

Method 2.3 (MAA)
Input: D = PΩ (M), vec(D) = D(i, j), (i, j) ∈ Ω , τ0 > 0 (τk ∈ N+), 0 < c1, c2 < 1, a tolerance

ε > 0.
Initialize: Set Y0 = D and k = 0.
repeat
Step 1: Compute the partial SVD of the matrix Yk : [Uk ,Σk , Vk]τk = lansvd(Yk).
Step 2: Solve the following optimization models, min‖vec(D) – vec(PΩ (UkXk))‖F , set

Yk+1 = UkXk .
Step 3: When ‖Yk+1–Yk‖F

‖D‖F
< ε, stop; otherwise, go to the next step.

Step 4: For k > 0, if ‖vec(D)–vec(PΩ (Yk+1))‖F < c2‖vec(D)–vec(PΩ (Yk))‖F , τk+1 = [c1τk]
go to the next step; otherwise, do

(1): Set Zk = D + PΩ (Yk+1), compute the partial SVD of the matrix Zk :
[Uk ,Σk , Vk]τk = lansvd(Zk). Let
WK = UkΣkV T

k ,αk = ‖vec(D) – vec(PΩ (Wk))‖F .
Set Zk+ 1

2
= D + PΩ (Wk).

(2): Do SVD:

[Uk+ 1
2

,Σk+ 1
2

, Vk+ 1
2

]τk = lansvd(Zk+ 1
2

).

Then Wk+ 1
2

= Uk+ 1
2
Σk+ 1

2
V T

k+ 1
2

.
(3): Solve the following minimum problems, yielding Yk+ 1

2
and αk+ 1

2
,

min‖vec(D) – vec(PΩ (Xk+ 1
2

V T
k+ 1

2
))‖F , set Yk+ 1

2
= Xk+ 1

2
V T

k+ 1
2

,
αk+ 1

2
= ‖vec(D) – vec(PΩ (Yk+ 1

2
))‖F .

Set Zk+1 = D + PΩ (Yk+ 1
2

).
(4): If αk+ 1

2
≤ c2αk , τk+1 = τk – 1; if αk+ 1

2
≥ αk , τk+1 = τk + 1, go to Step 1.

Otherwise, if c2αk ≤ αk+ 1
2

< αk , τk+1 = τk , go to the next step.
Step 5: k := k + 1, go to Step 2.

until stopping criterion is satisfied
Output: Constructed matrix Yk .
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3 Convergence analysis
Now, the convergence theory will be discussed in the following.

Lemma 3.1 Let Y ∗ be the optimal solution of (1.1). Then there exists a nonnegative number
ε0 such that

∥∥Y – Y ∗∥∥
F ≥ ε0

if and only if for any matrix Y , r(Y ) < r(Y ∗).

Proof From the discretional nature of the rank, there exists Yε that satisfies

r(Yε) ≤ r(Y ) – 1, ∀ε > 0,

and

∥∥Yε – Y ∗∥∥
F < ε.

Hence, Yε → Y∗ if ε → 0.
This is in contrast to r(Y ∗) ≤ r(Y ∗) – 1. �

Lemma 3.2 Assume that the manifolds Wk+ 1
2

, Wk satisfy

r(Wk+ 1
2

) ≥ r(Wk),

then

αk+ 1
2

< αk .

Furthermore, αk+ 1
2

≤ cαk if there exists a number c (0 < c < 1) that satisfies

∥∥PΩ̄ (Yk+ 1
2

– Wk+ 1
2

)
∥∥

F ≥ (1 – c)‖Yk+ 1
2

– Wk+ 1
2
‖F .

Proof From Method 2.3, we can see that

αk+ 1
2

≤ ∥∥vec(D) – vec
(
PΩ (Wk+ 1

2
)
)∥∥

F =
∥∥vec

(
PΩ (Yk+ 1

2
)
)

– vec
(
PΩ (Wk+ 1

2
)
)∥∥

F

= ‖Yk+ 1
2

– Wk+ 1
2
‖F –

∥∥PΩ̄ (Yk+ 1
2

– Wk+ 1
2

)
∥∥

F .

When

∥∥PΩ̄ (Yk+ 1
2

– Wk+ 1
2

)
∥∥

F ≥ (1 – c)‖Yk+ 1
2

– Wk+ 1
2
‖F ,

we have

αk+ 1
2

≤ c‖Yk+ 1
2

– Wk+ 1
2
‖F ≤ c‖Yk+ 1

2
– Wk‖F

= c
∥∥PΩ (Yk) – PΩ (Wk)

∥∥
F = c

∥∥vec(D) – vec
(
PΩ (Wk)

)∥∥
F = cαk .
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If c = 1,

∥∥PΩ̄ (Yk+ 1
2

– Wk+ 1
2

)
∥∥

F ≥ 0

holds true.
Thus,

αk+ 1
2

< αk

is true. �

Lemma 3.3 Assume that {Yk} is the feasible matrix sequence generated by Method 2.3,
{Wk} is the low-dimensional matrix sequence formed by partial singular pairs, then

lim
k→∞

‖Yk – Wk‖F = 0

if the following conditions are satisfied:

r(Wk) = r and
∥∥PΩ̄ (Yk – Wk)

∥∥
F ≥ (1 – c)‖Yk – Wk‖F .

Proof From

‖Yk – Wk‖F ≤ ‖Yk – Wk–1‖F

=
∥∥PΩ (Yk – Wk–1)

∥∥
F

≤ c‖Yk–1 – Wk–1‖F

≤ · · ·
≤ ck‖Y0 – W0‖F .

Therefore,

lim
k→∞

‖Yk – Wk‖F = 0

holds true. �

Theorem 3.1 Assume that there exists a positive number c (0 < c < 1) such that the feasible
matrices Yk satisfy the following inequality:

∥∥PΩ̄ (Yk – Wk)
∥∥

F ≥ (1 – c)‖Yk – Wk‖F , (3.1)

then the iteration matrices sequence {Yk} generated by Method 2.3 converges to the optimal
solution Y ∗ of (1.2) when the terminated rule ε → 0 is satisfied.

Proof From the Method 2.3, we can see the following:
Case I. τk+1 = [c1τk] if

∥∥vec(D) – vec
(
PΩ (Yk+1)

)∥∥
F ≤ c2

∥∥vec(D) – vec
(
PΩ (Yk)

)∥∥
F (3.2)
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holds true. That is,

dim(Wk+1) < dim(Wk),

where Wk+1 = Uk+1Σk+1V T
k+1.

Therefore, there exists an index k0 such that r(Wk0 ) < r(Y ∗).
From Lemma 3.1, the inequality (3.1) holds true.
At that time, the procedure can be transferred into Step 4 of Method 2.3, and then τk0+1 =

τk0 + 1; repeat it, there exists an index k1 such that r(Wk1 ) = r(Y ∗).
Because of the assumption (3.1) and Lemma 3.2,

lim
αk→0

∥∥D – PΩ (Yk)
∥∥

F = 0

is true under the restricted condition r(Wk) = r(Y ∗), k > k1.
From Lemma 3.3, we have

lim
k→∞

‖Wk – Yk‖F = 0.

Hence,

lim
k→∞

Yk = lim
k→∞

Wk = Y ∗.

Case II. We assume that there exists an index k2 such that the inequality (3.1) holds false
but r(Wk2 ) > r(Y ∗), and then the procedure can be transferred into the Step 4 of Method
2.3. Because of the assumption (3.1) and Lemma 3.2, we know that there exists an index
k3 such that the following holds true:

αk3+ 1
2

< min{α1,α2, . . . ,αk3}.

At that time, τk3+1 = τk3 – 1, say, the number of dimensionality is decreasing. Repeat the
above again and again until there exists an index k4 such that r(Wk4 ) = r(Y ∗).

That is, we always have the following:

lim
k→∞

Yk = lim
k→∞

Wk = Y ∗.

The theorem has been proved. �

4 Numerical experiments
It is well known that the OR1MP methd is the most simple and efficient for solving prob-
lem (1.1) and the ALM method is one of the most popular and efficient methods for solving
problem (1.2). In this section we test several experiments to analyze the performance of
our Method 2.3, and compare with the ALM and OR1MP methods.

We compare the methods using general matrix completion problem. In the experiments,
p = m/n2 denotes the observation ratio, where m is the number of observed entries. Here,
p = 0.1, 0.2, 0.3, 0.5 are the different choices of the above ratio. The relative error is RES =
‖Yk –D‖F

‖D‖F
. The values of the parameters are: τ0 = 100, c1 = 0.8, c2 = 0.9 and ε = 5e–6.
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The results of the experiments are presented in Tables 1–4. From Tables 1–4 we can
see that Method 2.3 takes much fewer iterations (denoted by “IT”)) and requires much
less computational time (denoted by CPU) than the ALM and OR1MP methods. Thus,
Method 2.3 is much more efficient than the other two methods.

Table 1 Comparison results of three methods for p = 0.1

Size r(Y0) Method RES IT CPU

2000× 2000 20 MAA 6.3989e–05 19 61.0538
ALM 1.3289e–05 147 814.4656
OR1MP 1.5920e–02 100 80.2022

3000× 3000 30 MAA 2.4436e–04 15 113.8439
ALM 1.2810e–05 155 3448.8579
OR1MP 1.5641e–02 100 177.3123

4000× 4000 40 MAA 1.2204e–04 13 163.4071
ALM 1.1951e–05 166 9876.8939
OR1MP 1.8042e–02 100 318.5400

5000× 5000 50 MAA 5.3731e–05 11 210.7015
ALM 9.6254e–06 173 22,641.7724
OR1MP 2.0254e–02 100 505.3112

Table 2 Comparison results of three methods for p = 0.2

Size r(Y0) Method RES IT CPU

2000× 2000 20 MAA 2.4308e–04 10 54.8639
ALM 9.2238e–06 70 237.4327
OR1MP 4.3432e–03 100 95.9820

3000× 3000 30 MAA 5.0593e–05 8 94.3904
ALM 5.6067e–05 72 863.4068
OR1MP 5.9270e–02 100 213.9196

4000× 4000 40 MAA 1.3172e–04 8 166.8769
ALM 5.4632e–06 72 2336.2629
OR1MP 8.5351e–03 100 382.8628

5000× 5000 50 MAA 9.1096e–06 8 248.6944
ALM 1.0802e–05 64 5141.8507
OR1MP 1.1188e–02 100 603.1532

Table 3 Comparison results of three methods for p = 0.3

Size r(Y0) Method RES IT CPU

2000× 2000 20 MAA 6.3561e–05 7 53.9095
ALM 6.8401e–06 44 74.5572
OR1MP 2.0841e–03 100 112.3723

3000× 3000 30 MAA 6.8760e–06 7 112.3313
ALM 7.8787e–06 46 157.1458
OR1MP 3.3314e–03 100 251.2893

4000× 4000 40 MAA 1.4268e–05 6 170.5440
ALM 8.7585e–06 45 258.4726
OR1MP 5.5726e–03 100 447.9783

5000× 5000 50 MAA 1.2876e–05 6 279.8556
ALM 8.7935e–06 43 420.4459
OR1MP 8.0070e–03 100 724.6392
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Table 4 Comparison results of three methods for p = 0.5

Size r(Y0) Method RES IT CPU

2000× 2000 20 MAA 1.2636e–05 5 65.7244
ALM 8.7149e–06 25 44.0239
OR1MP 7.3980e–04 100 163.9605

3000× 3000 30 MAA 7.1438e–06 5 149.9019
ALM 2.7670e–06 24 95.7395
OR1MP 1.4161e–03 100 338.6274

4000× 4000 40 MAA 5.7499e–06 5 285.8564
ALM 3.6098e–06 25 205.6450
OR1MP 3.1864e–03 100 601.8650

5000× 5000 50 MAA 5.1190e–06 5 443.8769
ALM 8.8482e–06 25 245.6650
OR1MP 4.9806e–03 100 938.3361

Figure 1 Comparison of completion performance of the MAA, ALM, OR1MP methods with different
percentages of observations: the figures correspond to the results on three 3000× 3000 randommatrices of
rank 10 (top figure), rank 30 (middle figure), rank 50 (bottom figure)

In order to display the effectiveness of our method further, we conduct an experiment
on a 3000 × 3000 matrix with three different ranks 10, 30, 50 for three methods with the
observation ratios ranging from 0.1 to 0.9, as shown in Fig. 1.

5 Concluding remark
Based on the least squares approximation to the known elements, we proposed a manifold-
alternative approximating method for the low matrix completion problem. Compared
with the ALM and OR1MP methods, shown in Tables 1–4, our method performs bet-
ter as regards the computing time and the low-rank property. The method can achieve a
reduction of the rank of the manifold by gradually reducing the number of the singular
value of the thresholding and get the optimal low-rank matrix each iteration step.
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