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1 Introduction
Variational inequalities describe a lot of phenomena in the real world and have a wide
range of applications in physics, mechanics, engineering etc.; see, for example, [1–3, 5–7,
9, 10, 12–14, 18]. This paper is concerned with a kind of variational inequalities in R

N , the
aim is to prove the existence of infinite radial solutions under suitable conditions.

Let H1
O(N)(R

N ) be the Sobolev space of O(N) invariant functions (see the definition in
Sect. 3), and B be a closed convex set in H1

O(N)(R
N ) with 0 ∈ B. Our problem, denoted by

(Q), is to find u ∈ B such that
(

a + b
∫
RN

(|∇u|2 + u2)dx
)(∫

RN
∇u · ∇(v – u) dx

+
∫
RN

u(v – u) dx
)

–
∫
RN

g(x, u)(v – u) dx ≥ 0, for all v ∈ B,

where a, b > 0, N ≥ 2 and g ∈ C(RN ×R,R).
This problem is related to the obstacle problems, extensively studied due to the physical

applications (see [15, 17]).
It is well known that the variational inequality is discussed in different ways in the case

of regional bounded and unbounded. In [4], on the bounded interval (0, 1), a class of varia-
tional inequalities of Kirchhoff-type is discussed by applying the non-smooth critical point
theory based on Szulkin functionals [16]. In [11], the authors study a kind of variational
inequality defined on (0,∞). Motivated by the above work, in this paper we want to study
the radial solutions of the problem (Q) by using two kinds of theorem in [16]. Our research
scope is an extension of some problems studied by [4] and [11]. Since the domain is un-
bounded and the continuous embedding H1(RN ) → Lp(RN ) is not compact. We consider
the symmetric method of the action of a group, similar to [8], to overcome this difficulty.
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Meanwhile, suppose the function g satisfies:
(g1) lim|u|→0

g(x,u)
|u| = 0 uniformly for x ∈R

N .
(g2) For 1 < p < 2∗ – 1 and there exists c > 0 such that

∣∣g(x, u)
∣∣ ≤ c

(
1 + |u|p), for all (x, u) ∈R

N ×R,

where

2∗ – 1 =

⎧⎨
⎩

N+2
N–2 , N ≥ 3,

+∞, N = 1, 2.

(g3) There is a constant μ > 4 such that

ug(x, u) ≥ μG(x, u) =
∫ u

0
g(x, s) ds, for all x ∈R

N , and u ∈R
N .

(g4) lim|u|→+∞ G(x,u)
u4 → +∞ uniformly for all x ∈R

N .
(g5) g(x, u) = g(zx, u) for any z ∈ O(N) and (x, u) ∈ R

N ×R.
(g6) g(x, u) = –g(x, –u) for any (x, u) ∈R

N ×R.
We state the main result of this paper.

Theorem 1.1 If assumptions (g1)–(g5) hold, then the problem (Q) has a nontrivial radial
solution in B. Furthermore, if the condition (g6) holds, then the problem (Q) has infinitely
many pairs of nontrivial radial solutions in B.

The structure of the paper is as follows. In Sect. 2, we review some preliminaries. Sec-
tion 3 gives the proof of our main result.

2 Szulkin-type functionals
Let X be a real Banach space and denote by X∗ its dual. Let T = Φ + ψ with Φ ∈ C1(X,R)
and let ψ : X →R∪{+∞} be convex, lower semicontinuous. Then T = Φ +ψ is a Szulkin-
type functional. A point u ∈ X is called critical if ψ(u) 
= +∞ and

Φ ′(u)(v – u) + ψ(v) – ψ(u) ≥ 0 for all v ∈ X,

or equivalently

0 ∈ Φ ′(u) + ∂ψ(u) in X∗,

where ∂ψ(u) is called the subdifferential of ψ at u.

Definition 2.1 ([16]) The functional T = Φ + ψ fulfills the (PS) condition at level c ∈ R;
it can be written as (PSZ)c if every sequence {un} ⊂ X such that limn→∞ T(un) = c and

〈
Φ ′(un), (v – un)

〉
X + ψ(v) – ψ(un) ≥ εn‖v – un‖ for all v ∈ X,

where εn → 0, possesses a convergent subsequence.
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Lemma 2.2 ([16], Mountain pass theorem) Suppose that T = Φ + ψ : X → R ∪ {+∞} be
a Szulkin-type functional and that

(i) T(0) = 0 and there exist α,ρ > 0 such that T(u) ≥ α for all ‖u‖ = ρ ;
(ii) T(e) ≤ 0 for some e ∈ X with ‖e‖ > ρ .
If T satisfies the (PSZ)c-condition, then T has a critical value c ≥ α which may be char-

acterized by

c = inf
γ∈Γ

sup
t∈[0,1]

T
(
γ (t)

)
,

where Γ = {γ ∈ c([0, 1], X) : γ (0) = 0,γ (1) = e}.

Lemma 2.3 ([16], Corollary 4.8) Suppose that T = Φ + ψ : E → R ∪ {+∞} is an even
Szulkin-type functional and satisfies the (PSZ)c-condition with T(0) = 0. If E = X ⊕ Y ,
where X is a finite dimensional, and assume also that

(A1) there are constants α,ρ > 0 such that T |∂Fρ∩Y ≥ α;
(A2) for any positive integer k, there is k-dimensional subspace Ek ⊂ E, such that T(u) →

–∞ as ‖u‖ → +∞, u ∈ Ek .
Then T has infinitely many pairs of nontrivial critical points, where Fρ = {u ∈ E : ‖u‖ <

ρ}.

3 The proof of the main result
Let

H := H1(
R

N)
=

{
u ∈ L2(

R
N)

: ∇u ∈ L2(
R

N)}

be the Sobolev space with inner product and corresponding norm

〈u, v〉 :=
∫
RN

(∇u∇v + uv) dx, ‖u‖ =
(∫

RN

(|∇u|2 + u2)dx
) 1

2
.

Denote by ‖ · ‖p the norm of Lp(RN ), i.e. ‖u‖p = (
∫
RN |u|p dx)

1
p .

Let O(N) is an orthogonal transformation group on R
N . We have that

E = H1
O(N)

(
R

N)
:=

{
u ∈ H | zu(x) := u

(
z–1x

)
= u(x),∀z ∈ O(N)

}

is a subspace of H1(RN ), and it is invariant. We note that the embedding E ↪→ Ls(RN ) is
compact when s ∈ (2, 2∗) by Corollary 1.26 of [19]. Define the functional Φ : E →R by

Φ(u) =
1
2

a‖u‖2 +
1
4

b‖u‖4 – Ψ (u), (3.1)

where Ψ (u) :=
∫
RN G(x, u) dx, and the indicator function of the set B as follows:

ψB(u) :=

⎧⎨
⎩

0, if u ∈ B,

+∞, otherwise.

The function ψB(u) is convex, proper, even, and lower semicontinuous. In order to show
that T = Φ + ψB is a Szulkin-type functional, we need the following proposition.
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Proposition 3.1 Every critical point u ∈ E of T = Φ + ψB is a solution of (Q).

Proof Since u ∈ E of T = Φ + ψB is a critical point, we have

Φ ′(u)(v – u) + ψB(v) – ψB(u) ≥ 0 for all v ∈ E.

It is clear that u belongs to B. If not, we get ψB = +∞, and in the inequality above, setting
v = 0 ∈ B we get a contradiction. We fix v ∈ B. Since

Φ ′(u)(v – u) =
(
a + b‖u‖2)(∫

RN
∇u∇(v – u) dx +

∫
RN

u(v – u) dx
)

–
∫
RN

g
(
x, u(x)

)
(v – u) dx ≥ 0,

u is a solution of (Q). �

Proposition 3.2 Suppose that g satisfies the conditions (g1) and (g2) and 〈Ψ ′(u), v〉 =∫
RN g(x, u)v dx, then Φ ∈ C1(E,R),

〈
Φ ′(u), v

〉
=

(
a + b

∫
RN

(|∇u|2 + u2)dx
)∫

RN
(∇u∇v + uv) dx –

〈
Ψ ′(u), v

〉
.

Proof By (3.1), we only need to prove that

Ψ ∈ C1(H ,R),
〈
Ψ ′(u), v

〉
=

∫
RN

g(x, u)v dx, ∀u, v ∈ H .

Thus, we divide the whole proof into the following two steps.
Step 1. We verify that Ψ is a Gateaux derivative.
For small enough ε > 0, using (g1) and (g2), there is a positive constant c depend on ε

such that

∣∣g(x, u)
∣∣ ≤ ε|u| + c(ε)|u|p (3.2)

for every (x, u) ∈R
N ×R. For any u(x), v(x) ∈ H and 0 < |t| < 1, according to (3.2) and using

the mean value theorem, there exists θ ∈ (0, 1) such that

|G(x, u + tv) – G(x, u)|
|t| =

∣∣g(x, u + θ tv)v
∣∣

≤ ε|u||v| + ε|v|2 + c(ε)
(|u + θ tv|)p|v|

≤ ε|u||v| + ε|v|2 + 2pc(ε)
(|u|p|v| + |v|p+1).

By the Hölder inequality, it follows that

h := ε|u||v| + ε|v|2 + 2pc(ε)
(|u|p|v| + |v|p+1) ∈ L1(RN)

.

So, by the Lebesgue dominated convergence theorem, we have

〈
Ψ ′(u), v

〉
=

∫
RN

g(x, u)v dx.
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Step 2. We show that Ψ ′(·) : H → H∗ is continuous.
Suppose that un → u in H . Since the imbedding H ↪→ Ls(RN )(2 ≤ s ≤ 2∗) is continuous,

we see that, for each s ∈ [2, 2∗], there is a constant ηs > 0 such that

‖w‖s ≤ ηs‖w‖, ∀w ∈ H1(
R

N)
, un → u in Ls(

R
N)

.

Note that

∥∥Ψ ′(un) – Ψ ′(u)
∥∥ = sup

‖v‖≤1

∣∣∣∣
∫
RN

(
g(x, un) – g(x, u)

)
v dx

∣∣∣∣
≤ sup

‖v‖≤1

∫
RN

∣∣(g(x, un) – g(x, u)
)∣∣|v|dx.

According to the Hölder inequality, and Theorem A.4 in [19], we have

sup
‖v‖≤1

∫
RN

∣∣(g(x, un) – g(x, u)
)∣∣|v|dx → 0

as n → ∞. So, we obtain ‖Ψ ′(un) – Ψ ′(u)‖ → 0, and thus the claim is proven. Conse-
quently, T = Φ + ψB is a Szulkin-type functional. �

It follows from (g5) that T is O(N)-invariant, i.e. for all (z, u) ∈ O(N) × H , T(u) = T(zu),
and the action of the group O(N) on H is isometric, i.e. for all (z, u) ∈ O(N) × H , ‖u‖ =
‖zu‖. Furthermore, because of Lemma 2.2 and Theorem 1.28 of [19], we notice that u is a
critical point of T |E if and only if u is a critical point of T in H . We will use the symmetric
mountain pass theorem to obtain the critical points of the functional T |E .

Proposition 3.3 If the continuous function f fulfills (g3) and (g4), then T = Φ + ψB fulfills
(PSZ)c-condition for every c ∈R.

Proof Fix c ∈R. Set {un} ⊂ E such that

T(un) = Φ(un) + ψB(un) → c, (3.3)

Φ ′(un)(v – un) + ψB(v) – ψB(un) ≥ –εn‖v – un‖, ∀v ∈ E, (3.4)

where εn → 0 in [0,∞). According to (3.3), obviously, we notice that the sequence
{un} ⊂ B. Setting v = 2un in (3.4) we have

Φ ′(un)(un) ≥ –εn‖un‖.

Thus

a‖un‖2 + b‖un‖4 –
∫
RN

g
(
x, un(x)

)
un(x) dx ≥ –εn‖un‖. (3.5)

On the basis of (3.3), for large enough n ∈ N , we get

c + 1 ≥ 1
2

a‖un‖2 +
1
4

b‖un‖4 –
∫
RN

G(x, un) dx. (3.6)
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Multiply both sides of inequality (3.5) by μ–1, adding it to another inequality (3.6), and
applying the condition (g3). When n ∈ N is sufficiently large, we have

c + 1 +
1
μ

‖un‖

≥ a
(

1
2

–
1
μ

)
‖un‖2 + b

(
1
4

–
1
μ

)
‖un‖4

–
∫
RN

(
G

(
x, un(x)

)
–

1
μ

g
(
x, un(x)

)
un(x)

)
dx

= a
(

1
2

–
1
μ

)
‖un‖2 + b

(
1
4

–
1
μ

)
‖un‖4

–
1
μ

∫
RN

(
μG

(
x, un(x)

)
– g

(
x, un(x)

)
un(x)

)
dx

≥ a
(

1
2

–
1
μ

)
‖un‖2 + b

(
1
4

–
1
μ

)
‖un‖4.

Since μ > 4, the sequence {un} is bounded in B. Then there exists a subsequence converg-
ing weakly in E. According to the compactness embedding E ↪→↪→ Ls(RN ). Without loss
of generality, assume

un ⇀ u in E; (3.7)

un → u in Ls(
R

N)
, s ∈ (

2, 2∗). (3.8)

By observing that B is weakly closed, we get u ∈ B. Let again v = u in (3.4), we have

(
a + b‖un‖2)〈un, u – un〉E +

∫
RN

g
(
x, un(x)

)(
un(x) – u(x)

)
dx ≥ –εn‖u – un‖. (3.9)

We use

(
a + b‖un‖2)‖u – un‖2 =

(
a + b‖un‖2)〈u – un, u – un〉E . (3.10)

So, for large enough n and any ε > 0, it follows from (3.9) and (3.10) that

(
a + b‖un‖2)‖u – un‖2

≤ (
a + b‖un‖2)〈u, u – un〉E +

∫
RN

g(x, un)(un – u) dx + εn‖u – un‖

≤ (
a + b‖un‖2)〈u, u – un〉E +

∫
RN

(
ε|un| + c(ε)|un|p

)|u – un|dx + εn‖u – un‖

≤ (
a + b‖un‖2)〈u, u – un〉E + εc1 + c(ε)‖un – u‖p+1‖un‖p

p+1 + εn‖u – un‖
≤ (

a + b‖un‖2)〈u, u – un〉E + εc1 + c2c(ε)‖un – u‖p+1 + εn‖u – un‖,

where the constants c1 and c2 are independent of n and ε. By (3.7) and the fact that {un}
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is bounded in E, we obtain

lim
n

(
a + b‖un‖2)〈u, u – un〉E = 0.

Taking into account (3.8), ‖un – u‖p+1 → 0. Setting εn → 0+, then we have proved that

(
a + b‖un‖2)‖u – un‖2 → 0.

Consequently, we get un → u in E. This means that the proof of this conclusion has been
completed. �

Now we give the proof of Theorem 1.1.

Proof By (3.2), for any 0 < ε < a
η2

2
(η2 is continuous imbedding constant E ↪→ L2(RN )), we

obtain

∣∣G(x, u)
∣∣ ≤

∫ 1

0

∣∣g(x, tu)u
∣∣dt ≤ ε

2
|u|2 +

c(ε)
p + 1

|u|p+1, for all (x, u) ∈ R
N ×R.

The condition (g4) implies p > 4. Therefore, for small enough ρ > 0, we have

T(u) ≥ 1
2

a‖u‖2 +
1
4

b‖u‖4 –
ε

2
‖u‖2

2 –
c(ε)
p + 1

‖u‖p+1
p+1

≥ 1
2
(
a – η2

2ε
)‖u‖2 +

1
4

b‖u‖4 –
c(ε)
p + 1

cp+1
p+1‖u‖p+1

≥ 1
4
(
a – η2

2ε
)‖u‖2 +

1
4

b‖u‖4,

for all u ∈ Fρ . Thus,

T |∂Fρ ≥ 1
4
(
a – η2

2ε
)
ρ2 +

1
4

bρ4 := α > 0.

Let {ei} be a complete normal orthogonal basis of E. Take X = span{e1, e2, . . . , en} and Y =
X⊥. Then E = X ⊕ Y . Thus,

T |∂Fρ∩Y ≥ α > 0.

For every finite dimensional subspace Ẽ ⊂ E, there exists k ∈ N+ such that Ẽ ⊂ Ek . Due to
the equivalence of all norms in a finite dimensional space, for some positive constant c4

we have

‖u‖4 ≥ c4‖u‖, for all u ∈ Ek .

According to the conditions (g1), (g2), and (g4), we note that, for D > b
4c4

4
, there exists a

positive constant C(D) such that

G(x, u) ≥ D|u|4 – C(D)|u|2, for all (x, u) ∈R
N ×R.
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So, fixing u0 ∈ B\{0} ⊂ Ek , and taking u = su0(s > 0), we get

T(su0) ≤ 1
2

as2‖u0‖2 +
1
4

bs4‖u0‖4 – Ds4‖u0‖4
4 + C(D)s2‖u0‖2

2

≤ 1
2

as2‖u0‖2 –
(

Dc4
4s4 –

1
4

bs4
)

‖u0‖4 + C(D)η2
2s2‖u0‖2.

Obviously, we have T(su0) → –∞ as s → +∞. Therefore, we take s (e = su0) large enough
such that ‖e‖ > ρ and T(e) < 0.

By Proposition 3.3, we know that T satisfies the (PSZ)c-condition(c ∈ R), and T(0) =
0. So T has a critical value according to Lemma 2.2. We remark that the critical point
u1 ∈ E associated to the critical value η is nontrivial due to T(u1) = η > 0 = T(0). From
Proposition 3.1, we notice that u1 ∈ B and it is a radial solution of (Q).

If the condition (g6) holds, then T is even. Similar to the previous discussion, we see that
all conditions of Lemma 2.3 are satisfied. Therefore, the second conclusion of Theorem 1.1
is obtained. �

Example 3.4 For n = 1, 2, 3, . . . , considering g(x, u) = u2n+1|u| 2n+1
2 , it is satisfied with all as-

sumptions of Theorem 1.1.

4 Conclusion
In this article, the existence of nontrivial radial solutions to problem (Q) is established
by using the variational methods under suitable conditions. We consider a variational in-
equality of Kirchhoff-type in R

N , which improves the previous results. In order to over-
come new difficulties, we need to adopt symmetric method of the action of a group in our
paper.
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