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Abstract
For t ∈ [0, 1/2] and s ≥ 1, we consider the two-parameter family of means

Qt,s(a,b) = Gs(ta + (1 – t)b, (1 – t)a + tb)A1–s(a,b),

where A and G denote the arithmetic and geometric means. Sharp bounds for the
identric mean in terms of Qt,s are obtained. Our results generalize and extend bounds
due to Chu et al. (Abstr. Appl. Anal. 2011:657935, 2011) and to Wang et al. (Appl. Math.
Lett. 25:471–475, 2012).
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1 Introduction
The study of inequalities involving means has become very popular in recent years be-
cause of their applications in various kinds of areas of mathematics. Finding sharp bounds
for inequalities is an important task in order to have more accurate results in the afore-
mentioned areas.

Let us fix some notation in order to describe our results. For distinct positive real num-
bers a and b, we recall that the arithmetic mean A(a, b), the geometric mean G(a, b), the
harmonic mean H(a, b), and the identric mean I(a, b) are respectively defined by

A(a, b) =
a + b

2
, G(a, b) =

√
ab, H(a, b) =

2ab
a + b

, I(a, b) =
1
e

(
aa

bb

)1/(a–b)

.

Inequalities relating means in two variables have attracted and continue to attract the at-
tention of mathematicians. Many articles studying the properties of means of two variables
have been published, and there is a large body of mathematical literature about compar-
ing pairs of means. The interested reader may consult [1–3, 5–7, 9–11] and the references
therein.

For example, Alzer and Qui considered in [3] the following inequality relating the iden-
tric, geometric, and arithmetic means:

αA(a, b) + (1 – α)G(a, b) < I(a, b) < βA(a, b) + (1 – β)G(a, b).
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They proved that it holds, for every distinct positive numbers a and b, if and only if α ≤ 2/3
and β ≥ 2/e.

This was later complemented by Trif [12] who proved that, for p ≥ 2 and every distinct
positive number a and b, we have

αAp(a, b) + (1 – α)Gp(a, b) < Ip(a, b) < βAp(a, b) + (1 – β)Gp(a, b)

if and only if α ≤ (2/e)p and β ≥ 2/3.
Similarly, it is proved in [5] that the inequality

Ip(a, b) <
2
3

Ap(a, b) +
1
3

Gp(a, b)

holds true for every distinct positive number a and b if and only if p ≥ ln( 3
2 )/ ln( e

2 ) ≈
1.3214, and that the reverse inequality holds true for every distinct positive number a
and b if and only if p ≤ 6/5 = 1.2, this generalizes the results of [8] and [12].

In this paper we continue the search for nontrivial bounds for the identric mean by
studying a new family of two parameter means of two variables. The article is organized
as follows. In Sect. 2 we present and discuss the main results. Section 3 is devoted to the
proof of several technical lemmas that will be useful for the proof of the main theorems,
and in Sect. 4 the main results are discussed and proved.

2 Results and discussion
Motivated by the works [4] and [13], we consider the two parameter family of means
Qt,s(a, b) defined for s ≥ 1, t ∈ [0, 1/2], and any positive real numbers a and b by

Qt,s(a, b) = Gs(ta + (1 – t)b, tb + (1 – t)a
)
A1–s(a, b). (1)

Indeed, the authors in [4, 13] compare the identric mean to

Qt,2(a, b) = H
(
ta + (1 – t)b, tb + (1 – t)a

)
,

see [4, Theorem 1.1], and to

Qt,1(a, b) = G
(
ta + (1 – t)b, tb + (1 – t)a

)
,

see [13, Theorem 1.1].
The aim of this work is to produce a general result comparing the identric mean to

members of the family (Qt,s)t∈[0,1/2]×[1,+∞), which generalizes the results of [4] and [13].
Indeed, in Corollary 3.1 we prove that, for distinct positive real numbers a and b and

given s ≥ 1, the function t �→ Qt,s(a, b) is continuous and increasing. Further, for s ≥ 1 and
every distinct positive number a and b, we have

Q0,s(a, b) ≤ Q0,1(a, b) = G(a, b) < I(a, b) < A(a, b) = Q1/2,s(a, b).

Thus, for given s ≥ 1, it is natural to consider the sets

Ls =
{

t ∈ [0, 1/2] : for all positive a, b with a 
= b, Qt,s(a, b) < I(a, b)
}

,
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Us =
{

t ∈ [0, 1/2] : for all positive a, b with a 
= b, I(a, b) < Qt,s(a, b)
}

.

Because t �→ Qt,s(a, b) is increasing, it is clear that Ls and Us are both intervals. In Theo-
rem 4.1 we prove that, for s ≥ 1, Ls = [0, ps], and Us = [qs, 1/2], where

ps =
1
2

–
1
2

√
1 –

(
2
e

)2/s

and qs =
1
2

–
1

2
√

3s
.

This extends the results of Chu et al. [4] and Wang et al. [13].

3 Preliminaries
The following lemmas pave the way to the main theorem. In Lemma 3.1 we study a family
of functions using simple methods from classical analysis.

Lemma 3.1 For s ≥ 1 and u ∈ [0, 1], we consider the real function fu,s defined on [0, 1) by

fu,s(x) = 1 –
1

2x
ln

(
1 + x
1 – x

)
–

1
2

ln
(
1 – x2) +

s
2

ln
(
1 – ux2). (2)

(a) The necessary and sufficient condition to have fu,s(x) > 0 for x ∈ (0, 1) is that 3su ≤ 1.
(b) The necessary and sufficient condition to have fu,s(x) < 0 for x ∈ (0, 1) is that

u + (2/e)2/s ≥ 1.

Proof We consider only the case u ∈ (0, 1], since f0,s is independent of s and positive on
(0, 1). It is straightforward to see that f ′

u,s(x) = hu,s(x)/x2, where

hu,s(x) = –x +
1
2

ln

(
1 + x
1 – x

)
–

sux3

1 – ux2 ,

and that

h′
u,s(x) =

x2

(1 – x2)(1 – ux2)2 Tu,s
(
x2),

where Tu,s is the trinomial defined by

Tu,s(X) = (1 – s)u2X2 – (2 – 3s – su)uX + (1 – 3su).

Noting that Tu,s(1) = (1 – u)2 ≥ 0 and Tu,s(0) = 1 – 3su, we see that we have two cases:
• First, Tu,s(0) ≥ 0, or equivalently 3su ≤ 1. Again, we distinguish two cases:

◦ If s = 1, then clearly the zero of Tu,1 does not belong to (0, 1) and Tu,s has a positive
sign on (0, 1).

◦ If s > 1, then the coefficient of X2 in Tu,s is negative, and the fact that both Tu,s(0)
and Tu,s(1) are nonnegative implies that the zeros z0 < z1 of Tu,s satisfy the in-
equality z0 ≤ 0 < 1 ≤ z1. Hence, Tu,s has a positive sign on (0, 1) in this case also.

It follows that in this case hu,s is increasing on [0, 1). But hu,s(0) = 0, so hu,s is positive
on (0, 1). Therefore fu,s is increasing on (0, 1). Finally, the fact that limx→0+ fu,s(x) = 0
implies that fu,s(x) > 0 for every x ∈ (0, 1) in this case.
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• Second, Tu,s(0) < 0, or equivalently 3su > 1. This means that Tu,s has a unique zero z0

in the interval (0, 1] (because deg(Tu,s) ≤ 2).
◦ If u = 1, then z0 = 1 and h1,s is decreasing on [0, 1]. But h1,s(0) = 0, so h1,s is

negative on (0, 1). This shows that f1,s is decreasing on (0, 1). Finally, we have
limx→0+ f1,s(x) = 0, and consequently f1,s(x) < 0 for every x ∈ (0, 1).

◦ If u < 1, then z0 ∈ (0, 1). So hu,s is decreasing on [0, z0] and increasing on [z0, 1].
But hu,s(0) = 0 so hu,s(z0) < 0. On the other hand limx→1– hu,s(x) = +∞. So there
exists a unique real number y0 ∈ (z0, 1) such that hu,s(y0) = 0. Thus hu,s(x) < 0
for x ∈ (0, y0) and hu,s(x) > 0 for x ∈ (y0, 1). This implies that fu,s is decreas-
ing on (0, y0) and increasing on (y0, 1). Finally we have limx→0+ fu,s(x) = 0 and
limx→1– fu,s(x) = ln(e(1 – u)s/2/2).

This shows that the necessary and sufficient condition for fu,s to be negative on (0, 1)
is that either u = 1 or u < 1 and ln(e(1 – u)s/2/2) ≤ 0 which is equivalent to the
condition 1 ≤ u + (2/e)2/s.

This achieves the proof of Lemma 3.1. �

Next we introduce the set D defined as follows:

D =
{

(a, b) ∈ R
2 : a > b > 0

}
.

It is sufficient to consider couples (a, b) from D, since the considered means are symmetric
functions of their arguments. Lemma 3.2 explains why the family of functions studied in
Lemma 3.1 is important to our study.

Lemma 3.2 Consider (a, b) ∈D and let v = a–b
a+b .

(a) For s ≥ 1 and t ∈ [0, 1/2], we have

ln

(
Qt,s(a, b)
A(a, b)

)
=

s
2

ln
(
1 – (1 – 2t)2v2).

(b) Also, for the identric mean, we have

ln

(
I(a, b)
A(a, b)

)
= –1 +

1
2

ln
(
1 – v2) +

1
2v

ln

(
1 + v
1 – v

)
.

Proof Indeed, (a) follows from the simple fact that

G
(
ta + (1 – t)b, tb + (1 – t)a

)
= A(a, b)

√
1 – (1 – 2t)2

(
a – b
a + b

)2

.

To see (b), we note that

I(a, b)
A(a, b)

=
1
e

2
a + b

aa/(a–b)b–b/(a–b) =
1
e

(
2a

a + b

) a
a–b

(
2b

a + b

) –b
a–b

=
1
e

(
1 +

a – b
a + b

) 1
2 + a+b

2(a–b)
(

1 –
a – b
a + b

) 1
2 – a+b

2(a–b)
=

1
e

(1 + v)
1+v
2v (1 – v)

v–1
2v .

This concludes the proof of Lemma 3.2. �
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The next corollary is an immediate consequence of part (a) of Lemma 3.2.

Corollary 3.1 For distinct positive real numbers a and b, and for given s ≥ 1, the function
t �→ Qt,s(a, b) is continuous and increasing on the interval [0, 1/2].

Remark 3.1 Combining (a) and (b) from Lemma 3.2, we see immediately that if fu,s is the
function defined in Lemma 3.1 then, for every (a, b) ∈D, we have

ln

(
Qt,s(a, b)

I(a, b)

)
= f(1–2t)2,s

(
a – b
a + b

)
.

This explains the importance of the family of functions in Lemma 3.1 to our study.

4 The main theorem
In this section we prove our main result which states that, for s ≥ 1 and u, v ∈ [0, 1/2], the
double inequality Qu,s(a, b) < I(a, b) < Qv,s(a, b) holds for all distinct positive real numbers
a and b if and only if

u ≤ 1
2

–
1
2

√
1 –

(
2
e

)2/s

and v ≥ 1
2

–
1

2
√

3s
.

Further, this result is used to obtain in Corollary 4.1 an upper bound counterpart of the
inequality due to Seiffert [11] about the ratio A(a, b)/I(a, b).

Theorem 4.1 Let s be a real number such that s ≥ 1, and define the sets

Ls =
{

t ∈ [0, 1/2] : ∀(a, b) ∈D, Qt,s(a, b) < I(a, b)
}

,

Us =
{

t ∈ [0, 1/2] : ∀(a, b) ∈D, I(a, b) < Qt,s(a, b)
}

.

Then

Ls =
[

0,
1
2

–
1
2

√
1 –

(
2
e

)2/s]
and Us =

[
1
2

–
1

2
√

3s
,

1
2

]
.

Proof First note that

{
a – b
a + b

: (a, b) ∈D
}

= (0, 1).

So, using Corollary 3.1, we see that t ∈ Ls if and only if f(1–2t)2,s(x) < 0 for every x ∈
(0, 1). However, according to Lemma 3.1, this is equivalent to (1 – 2t)2 + (2/e)2/s ≥ 1 or
(1 –

√
1 – (2/e)2/s)/2 ≥ t. This proves that

Ls =
[

0,
1
2

–
1
2

√
1 –

(
2
e

)2/s]
.

Similarly, using Corollary 3.1, we see that t ∈ Us if and only if f(1–2t)2,s(x) > 0 for every
x ∈ (0, 1). Again, by Lemma 3.1, this is equivalent to 3s(1 – 2t)2 ≤ 1 or (1 – 1/

√
3s)/2 ≤ t.
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This proves

Us =
[

1
2

–
1

2
√

3s
,

1
2

]
,

and achieves the proof of Theorem 4.1. �

When s = 2, the definition of Qt,s(a, b) given by (1) is reduced to the harmonic mean of
ta + (1 – t)b and (1 – t)a + tb. So Theorem 4.1 yields in this case the following theorem
from [4].

Theorem 4.2 ([4]) The necessary and sufficient condition on p, q from [0, 1/2] to have

H
(
pa + (1 – p)b, pb + (1 – p)a

)
< I(a, b) < H

(
qa + (1 – q)b, qb + (1 – q)a

)

for every distinct positive number a and b is that

p ≤ 1 –
√

1 – 2/e
2

and q ≥ 6 –
√

6
12

.

Similarly, when s = 1, the definition of Qt,s(a, b) given by (1) is reduced to the geometric
mean of ta + (1 – t)b and (1 – t)a + tb. So Theorem 4.1 yields in this case the following
theorem from [13].

Theorem 4.3 ([13]) The necessary and sufficient condition on p, q from [0, 1/2] to have

G
(
pa + (1 – p)b, pb + (1 – p)a

)
< I(a, b) < G

(
qa + (1 – q)b, qb + (1 – q)a

)

for every distinct positive number a and b is that

p ≤ 1 –
√

1 – 4/e2

2
and q ≥ 3 –

√
3

6
.

In the next corollary, the lower bound is an inequality due to Seiffert [11], it appears also
in [10], while the upper bound is new and to be compared with the results of Sándor and
Trif in [10].

Corollary 4.1 For every positive number a and b, we have

exp

(
1
6

(
a – b
a + b

)2)
≤ A(a, b)

I(a, b)
≤ exp

((
ln

e
2

)(
a – b
a + b

)2)
.

Proof Indeed, for s ≥ 1, let

ps =
1
2

–
1
2

√
1 –

(
2
e

)2/s

and qs =
1
2

–
1

2
√

3s
.

Using Theorem 4.1, for every (a, b) ∈D, we have

Qps ,s(a, b) < I(a, b) < Qqs ,s(a, b).
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This can be written as

A(a, b)
Qqs ,s(a, b)

<
A(a, b)
I(a, b)

<
A(a, b)

Qps ,s(a, b)
.

Using Lemma 3.2, this is equivalent to

(
1 –

v2

3s

)–s/2

<
A(a, b)
I(a, b)

<
(

1 –
(

1 –
(

2
e

)2/s)
v2

)–s/2

,

where v = (a – b)/(a + b). Now, letting s tend to +∞, we obtain

ev2/6 ≤ A(a, b)
I(a, b)

≤ e(ln e
2 )v2

,

which is the conclusion of Corollary 4.1. �

In fact, because of the “limit argument” in the proof of Corollary 4.1, we lost the strict
inequalities for distinct positive real arguments. However, studying the family of functions
(gt)t∈(0,+∞) defined by

gt(x) = 1 –
1

2x
ln

(
1 + x
1 – x

)
–

1
2

ln
(
1 – x2) – tx2,

using similar arguments to those used in Lemma 3.1, we can prove the following exact
version of Corollary 4.1, which extends the results of Seiffert [11] and those of Sándor and
Trif [10].

Theorem 4.4 The necessary and sufficient condition on p, q from (0, +∞) to have

∀(a, b) ∈D, exp

(
p
(

a – b
a + b

)2)
<

A(a, b)
I(a, b)

< exp

(
q
(

a – b
a + b

)2)

is that p ≤ 1
6 and q ≥ ln( e

2 ).

5 Conclusion
In this work, we have considered a new two-parameter family of means, and we have com-
pared them to the identric mean giving sharp upper and lower bounds.
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