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Abstract
Let BH,K = {BH,K (t), t ≥ 0} be a d-dimensional bifractional Brownian motion with Hurst
parameters H ∈ (0, 1) and K ∈ (0, 1]. Assuming d ≥ 2, we prove that the renormalized
self-intersection local time

∫ T

0

∫ t

0
δ(BH,K (t) – BH,K (s))ds dt –E

(∫ T

0

∫ t

0
δ(BH,K (t) – BH,K (s))ds dt

)

exists in L2 if and only if HKd < 3/2, where δ denotes the Dirac delta function. Our
work generalizes the result of the renormalized self-intersection local time for
fractional Brownian motion.

MSC: 60F05; 60G15; 60G18

Keywords: Bifractional Brownian motion; Self-intersection local time;
Renormalization; Existence

1 Introduction
Fractional Brownian motion has received much attention in recent years due to its long-
range dependence, stationarity increments, and self-similarity. It has been widely applied
in turbulence, image processing, mathematics finance, and so on for small increments.
However, it is inadequate to large increments. So, it is very natural to explore the exten-
sion of fractional Brownian motion which keeps some properties of fractional Brownian
motion (gaussianity, stationarity of small increments, self-similarity), and then bifractional
Brownian motion as a generalization of fractional Brownian motion has been investigated
by many authors, see [5, 13, 15] and the references therein for more details.

Let us briefly recall some related definitions of bifractional Brownian motion as follows.
Set BH,K

0 = {BH,K
0 (t), t ≥ 0} be a bifractional Brownian motion in R with Hurst parameters

H ∈ (0, 1) and K ∈ (0, 1], i.e., a centered, real-valued Gaussian process with zero mean and
covariance function given by

E
[
BH,K

0 (s)BH,K
0 (t)

]
=

1
2K

[(
t2H + s2H)K – |t – s|2HK ]

, s, t ≥ 0. (1.1)

This process is HK-self similar and satisfies the following estimates:

2–K |t – s|2HK ≤ E
[(

BH,K
0 (t) – BH,K

0 (s)
)2] ≤ 21–K |t – s|2HK (1.2)
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for each T > 0 and s, t ∈ [0, T]. Moreover, we can easily check that it is Hölder continuous
of order δ for any δ < HK from the Kolmogorov criterium. In particular, if K = 1, BH,1

0 (t) is
a fractional Brownian motion with Hurst parameter H ∈ (0, 1).

We associate with BH,K
0 a Gaussian process BH,K = {BH,K (t), t ≥ 0} in R

d by

BH,K (t) =
(
BH,K

1 (t), . . . , BH,K
d (t)

)
, (1.3)

where BH,K
1 , . . . , BH,K

d are independent copies of BH,K
0 . BH,K is called a d-dimensional bifrac-

tional Brownian motion with Hurst parameters H ∈ (0, 1) and K ∈ (0, 1].
On the other hand, since the work of Varadhan [16], self-intersection local time, as an

important topic of probability theory, has been widely considered and studied in recent
years. Especially, when it comes to Brownian motion and fractional Brownian motion, it
has been extensively studied, see [1, 2, 4, 6, 10, 11, 17] and the references therein.

Recently, the self-intersection local time of bifractional Brownian motion has already
been researched by few scholars. Jiang and Wang [9] studied the existence and smooth-
ness of the self-intersection local time of bifractional Brownian motions. Chen et al. [3]
considered the existence and smoothness of self-intersection local times for a large class
of Gaussian random fields, including fractional Brownian motion, fractional Brownian
sheets, and bifractional Brownian motion. For more on the local time of bifractional Brow-
nian motion, we can see [14, 18] and so on.

We know that the non-renormalized self-intersection local time of fractional Brown-
ian motion exists in L2 for Hd < 1 by the results of Jiang and Wang [9] and Chen et al.
[3]. But for the case of renormalization, Hu and Nualart [7] obtained that the renormal-
ized self-intersection local time of fractional Brownian motion exists in L2 for Hd < 3/2.
Therefore, the existence is different between renormalization and non-renormalization
of self-intersection local time. In this paper, we consider the existence of renormalized
self-intersection local time for bifractional Brownian motion. Our conclusions generalize
the result of fractional Brownian motion in Hu and Nualart [7] to bifractional Brownian
motions.

In this paper, the following local times of bifractional Brownian motion will be involved,
including the local time �

H,K
T (x) and the self-intersection local time I(H , K , T) of bifrac-

tional Brownian motion BH,K (t). Formally, they are defined respectively as follows: for
T > 0,

�
H,K
T (x) =

∫ T

0
δ
(
BH,K (t) – x

)
dt (1.4)

and

L(H , K , T) =
∫ T

0

∫ t

0
δ
(
BH,K (t) – BH,K (s)

)
ds dt, (1.5)

where δ(x) is the Dirac delta function for x ∈R
d .

The Dirac delta function is formally

δ(x) = lim
ε→0

pε(x) = (2π )–d
∫
Rd

exp
{

i〈ξ , x〉}dξ , (1.6)
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where

pε(x) = (2πε)– d
2 exp

{
–

|x|2
2ε

}
= (2π )–d

∫
Rd

exp

{
i〈ξ , x〉 –

1
2
ε|ξ |2

}
dξ . (1.7)

By (1.6), we define the approximated self-intersection local time of bifractional Brown-
ian motion by

Lε(H , K , T) =
∫ T

0

∫ t

0
pε

(
BH,K (t) – BH,K (s)

)
ds dt. (1.8)

We will consider the following two questions:
(1) We consider the existence in L2 and a sharp upper bound of second moment of local

time �
H,K
T (x) for bifractional Brownian motion. Although the existence of the local

time for anisotropic Gaussian random fields is obtained in Theorem 2.6 by Chen et
al. [3], which contains the result of bifractional Brownian motion, a sharp upper
bound of second moment of the local time for anisotropic Gaussian random fields is
not got. It is not enough to research the local time for Gaussian random fields. So, in
order to fill this vacancy for bifractional Brownian motion, we give the following
Theorem 1.1.

Theorem 1.1 Assume that HKd < 1. Then the local time �
H,K
T (x) of the d-dimension bifrac-

tional Brownian motion is square integrable, and for any x ∈ R
d , we have the sharp upper

bound

E
[
�

H,K
T (x)

]2 ≤ 2Γ 2(1 – HKd)

(2π )dk
2
d Γ (3 – HKd)

T2–2HKd,

where k is a constant depending on H and K .

(2) The latter problem is to generalize the result of Hu and Nualart [7] to bifractional
Brownian motion. That is, we will consider the existence of the renormalized
self-intersection local time of bifractional Brownian motion in L2. We get the
following Theorem 1.2.

Theorem 1.2 Let BH,K = {BH,K (t), t ≥ 0} be a d-dimensional bifractional Brownian motion
with Hurst parameters H ∈ (0, 1) and K ∈ (0, 1]. Then, for every T > 0, the renormalized
self-intersection local time Lε(H , K , T) – E[Lε(H , K , T)] of BH,K converges in L2 as ε tends
to zero if and only if HKd < 3

2 .

The paper is organized as follows. In Sect. 2, we study the square-integrable of the local
time of d-dimensional bifractional Brownian motion. We prove the existence of the self-
intersection local time of d-dimensional bifractional Brownian motion in Sect. 3.

For simplicity, we will use k to denote unspecified positive finite constants which may
be different in each appearance throughout this paper.

2 Square integrable of the local time
In this section, the local time of the d-dimension bifractional Brownian motion will be
discussed. We firstly give the following lemma which plays an important role in proving
the existence of the local time and Theorem 1.1.
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Lemma 2.1 ([15], Proposition 2.1) For all constants 0 < a < b, BH,K
0 (t) is strongly locally

ϕ-nondeterministic on I = [a, b] with ϕ(r) = r2HK . That is, there exist positive constants k
and r0 such that, for all t ∈ I and all 0 < r ≤ min{t, r0},

Var
(
BH,K

0 (t) | BH,K
0 (s) : s ∈ I, r ≤ |s – t| ≤ r0

) ≥ kϕ(r). (2.1)

By (2.1), we have that: if 0 ≤ t1 < t2 < · · · < tn < T , then there is a constant k > 0 such that

Var

( n∑
m=2

um
(
BH,K

0 (tm) – BH,K
0 (tm–1)

)) ≥ k
n∑

m=2

u2
m|tm – tm–1|2HK (2.2)

for any um ∈R, m = 2, . . . , n.

Now, we prove Theorem 1.1, which is an extension of Theorem 5.1 in [8] to bifractional
Brownian motion.

Proof of Theorem 1.1 From the expression of �
H,K
T (x) and (1.6), we can get

E
[
�

H,K
T (x)

]2

= E

[∫
[0,T]2

δ
(
BH,K (t) – x

)
δ
(
BH,K (s) – x

)
ds dt

]

=
1

(2π )2d

∫
[0,T]2

∫
R2d

E
[
exp

{
i
[〈(

BH,K (t) – x
)
, ξ

〉
+

〈(
BH,K (s) – x

)
,η

〉]}]
dξ dη ds dt

=
1

(2π )2d

∫
[0,T]2

∫
R2d

E

[
exp

{
i

d∑
m=1

[(
BH,K

m (t) – xm
)
ξm

+
(
BH,K

m (s) – xm
)
ηm

]}]
dξ dη ds dt

≤ 2
(2π )2d

∫
0≤s<t≤T

∫
R2d

d∏
m=1

exp

{
–

1
2

Var(
[(

BH,K
m (t)ξm

+ BH,K
m (s)ηm

])}
dξ dη ds dt, (2.3)

where we used the fact that E[eiX] = exp{– 1
2 Var(X)} for any Gaussian random variable X.

By the local nondeterminism (2.2) of bifractional Brownian motion and Var(BH,K (t)) =
t2HK , we have that, for 0 ≤ s < t ≤ T , there is a positive constant k > 0 such that

Var
(
BH,K

m (t)ξm + BH,K
m (s)ηm

)
= Var

((
BH,K

m (t) – BH,K
m (s)

)
ξm

)
+ Var

(
BH,K

m (s)(ξm + ηm)
)

≥ k
[|ξm|2|t – s|2HK + |ξm + ηm|2s2HK ]

.

Therefore, we get that the last integral of (2.3) is bounded by the following expression:

2
(2π )2d

∫
0≤s<t≤T

∫
R2d

d∏
m=1

exp

{
–

k
2
[|ξm|2|t – s|2HK + |ξm + ηm|2s2HK ]}

dξ dη dt ds. (2.4)
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By integrating with respect to ξ and η, respectively, and changing the variable s = tu for
s, we obtain that expression (2.4) is equal to

2

(2π )dk d
2

∫
0≤s<t≤T

1
sHKd|t – s|HKd ds dt

=
2

(2π )dk d
2

∫ T

0
dt

∫ t

0
s–HKd(t – s)–HKd ds

=
2

(2π )dk d
2

∫ T

0
t(1–2HKd) dt

∫ 1

0
u–HKd(1 – u)–HKd du

=
2

(2π )dk d
2

B(1 – HKd, 1 – HKd)
∫ T

0
t(1–2HKd) dt

=
2Γ 2(1 – HKd)

(2π )dk
2
d Γ (3 – HKd)

T2–2HKd. (2.5)

This completes the proof. �

Remark this proposition implies that the local time of bifractional Brownian motion exists
in L2 if HKd < 1. This is consistent with Theorem 2.6 in [3] and Theorem 1 in [12].

3 The existence of the renormalized self-intersection local time
In this section, we will prove the existence of the renormalized self-intersection local time
of bifractional Brownian motion, which extends the result of Hu and Nualart [7] to bifrac-
tional Brownian motion. For more on the existence of the self-intersection local time of
bifractional Brownian motion, we can refer to Jiang and Wang [9] and Chen et al. [3].

According to the definition for the self-intersection local time of bifractional Brownian
motion and (1.7), we get

Lε(H , K , T)

=
∫ T

0

∫ t

0
pε

(
BH,K (t) – BH,K (s)

)
ds dt

=
1

(2π )d

∫ T

0

∫ t

0

∫
Rd

exp

{
i
〈
ξ , BH,K (t) – BH,K (s)

〉
–

1
2
ε|ξ |2

}
dξ ds dt. (3.1)

Then, by the independence of BH,K
1 , . . . , BH,K

d , we obtain the mean of the self-intersection
local time

E
[
Lε(H , K , T)

]

=
1

(2π )d

∫ T

0

∫ t

0

∫
Rd

E exp

{
i

d∑
m=1

(
BH,K

m (t) – BH,K
m (s)

)
ξm

}
exp

{
–

1
2
ε|ξ |2

}
dξ ds dt

=
1

(2π )d

∫ T

0

∫ t

0

∫
Rd

d∏
m=1

exp

{
–

1
2

Var
((

BH,K
m (t)

– BH,K
m (s)

)
ξm

)}
exp

{
–

1
2
ε|ξ |2

}
dξ ds dt
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=
1

(2π )d

∫ T

0

∫ t

0

∫
Rd

d∏
m=1

exp

{
–

1
2
|ξm|2(Var

(
BH,K

m (t) – BH,K
m (s)

)
+ ε

)}
dξ ds dt

=
1

(2π ) d
2

∫ T

0

∫ t

0

(
Var

(
BH,K

1 (t) – BH,K
1 (s)

)
+ ε

)– d
2 ds dt, (3.2)

and the second moment of the self-intersection local time

E
[
L2

ε(H , K , T)
]

= E

[∫ T

0

∫ t

0

∫ T

0

∫ t′

0
pε

(
BH,K (t) – BH,K (s)

)
pε

(
BH,K(

t′) – BH,K(
s′))ds′ dt′ ds dt

]

=
1

(2π )2d E

[∫
T

∫
R2d

exp

{
i
〈
ξ , BH,K (t) – BH,K (s)

〉
–

1
2
ε|ξ |2

}

× exp

{
i
〈
η, BH,K(

t′) – BH,K(
s′)〉 –

1
2
ε|η|2

}
dξdη dτ

]

=
1

(2π )2d

∫
T

∫
R2d

exp

{
–

1
2
ε
(|ξ |2 + |η|2)

}
E exp

{
i

d∑
m=1

[(
BH,K

m (t) – BH,K
m (s)

)
ξm

+
(
BH,K

m
(
t′) – BH,K

m
(
s′))ηm

]}
dξdη dτ

=
1

(2π )2d

∫
T

∫
R2d

exp

{
–

1
2
ε
(|ξ |2 + |η|2)

} d∏
m=1

exp

{
–

1
2

Var
[(

BH,K
m (t) – BH,K

m (s)
)
ξm

+
(
BH,K

m
(
t′) – BH,K

m
(
s′))ηm

]}
dξdη dτ ,

where T = {(s, t, s′, t′) | 0 ≤ s < t ≤ T , 0 ≤ s′ < t′ ≤ T} and τ = (s, t, s′, t′).
Notice that

Var
[(

BH,K
m (t) – BH,K

m (s)
)
ξm +

(
BH,K

m
(
t′) – BH,K

m
(
s′))ηm

]

= E
[(

BH,K
m (t) – BH,K

m (s)
)
ξm +

(
BH,K

m
(
t′) – BH,K

m
(
s′))ηm

]2

= E
[(

BH,K
m (t) – BH,K

m (s)
)2

ξ 2
m +

(
BH,K

m
(
t′) – BH,K

m
(
s′))2

η2
m

+ 2ξmηm
(
BH,K

m (t) – BH,K
m (s)

)(
BH,K

m
(
t′) – BH,K

m
(
s′))]

= |ξm|2λ + |ηm|2ρ + 2ξmηmμ,

where BH,K
1 (t) denotes a one-dimensional bifractional Brownian motion with Hurst pa-

rameters H and K , λ is the variance of BH,K
1 (t) – BH,K

1 (s), ρ is the variance of BH,K
1 (t′) –

BH,K
1 (s′), and μ is the covariance of BH,K

1 (t) – BH,K
1 (s) and BH,K

1 (t′) – BH,K
1 (s′).

Then the second moment of the random variable Lε(H , K , T) is

E
[
L2

ε(H , K , T)
]

=
1

(2π )2d

∫
T

∫
R2d

d∏
m=1

exp

{
–

1
2
[|ξm|2λ + |ηm|2ρ + 2ξmηmμ

]}
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× exp

{
–

1
2
ε
(|ξ |2 + |η|2)

}
dξdη dτ

=
1

(2π )2d

∫
T

∫
R2d

exp

{
–

1
2
(|ξ |2λ + |η|2ρ + 2〈ξ ,η〉μ)}

× exp

{
–

1
2
ε
(|ξ |2 + |η|2)

}
dξdη dτ

=
1

(2π )d

∫
T

[
(λ + ε)(ρ + ε) – μ2]– d

2 dτ . (3.3)

Based on E[Lε(H , K , T)] and E[L2
ε(H , K , T)], it follows that

E
(
Lε1 (H , K , T) – E

[
Lε1 (H , K , T)

])(
Lε2 (H , K , T) – E

[
Lε2 (H , K , T)

])

= E
(
Lε1 (H , K , T)Lε2 (H , K , T)

)
–

(
E

[
Lε1 (H , K , T)

]
E

[
Lε2 (H , K , T)

])

=
1

(2π )d

∫
T

[[
(λ + ε1)(ρ + ε2) – μ2]– d

2 – (λ + ε1)– d
2 (ρ + ε2)– d

2
]

dτ . (3.4)

By equality (3.4), we have

lim
ε1,ε2→0

E
(
Lε1 (H , K , T) – E

[
Lε1 (H , K , T)

])(
Lε2 (H , K , T) – E

[
Lε2 (H , K , T)

])

= lim
ε1,ε2→0

1
(2π )d

∫
T

[[
(λ + ε1)(ρ + ε2) – μ2]– d

2 – (λ + ε1)– d
2 (ρ + ε2)– d

2
]

dτ

=
1

(2π )d

∫
T

[(
λρ – μ2)– d

2 – (λρ)– d
2
]

dτ .

Therefore, the limit of

E
(
Lε1 (H , K , T) – E

[
Lε1 (H , K , T)

])(
Lε2 (H , K , T) – E

[
Lε2 (H , K , T)

])
, (3.5)

as ε1, ε2 tend to 0, exists if and only if
∫
T [(λρ – μ2)– d

2 – (λρ)– d
2 ] dτ .

By Loève’s criterion of mean-square convergence, we know that a necessary and suffi-
cient condition for the convergence of Lε(H , K , T) –E[Lε(H , K , T)] in L2 is the existence of
finite limit of (3.5) as ε1, ε2 tend to 0. Consequently, a necessary and sufficient condition
for the convergence of Lε(H , K , T) – E[Lε(H , K , T)] in L2 is that

ΞT :=
∫
T

[(
λρ – μ2)– d

2 – (λρ)– d
2
]

dτ < +∞. (3.6)

For notation and simplicity along the paper, we will denote δ = λρ – μ2 and Θ = δ– d
2 –

(λρ)– d
2 , then the last inequality is rewritten as

ΞT =
∫
T

Θ dτ < +∞. (3.7)

For simplicity, we give some symbols. The region T = {(s, t, s′, t′) | 0 ≤ s < t ≤ T , 0 ≤ s′ <
t′ ≤ T} is decomposed as follows:

T ∩ {
s < s′} = T1 ∪ T2 ∪ T3,
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where

T1 =
{(

s, t, s′, t′) | 0 ≤ s < s′ < t < t′ ≤ T
}

,

T2 =
{(

s, t, s′, t′) | 0 ≤ s < s′ < t′ < t ≤ T
}

,

T3 =
{(

s, t, s′, t′) | 0 ≤ s < t < s′ < t′ ≤ T
}

.

Then, for (s, t, s′, t′) ∈ T , we can consider the following three cases:
(i) If (s, t, s′, t′) ∈ T1, denoting a = s′ – s, b = t – s′, c = t′ – t, and e = s, we have

λ = λ1 := (a + b)2HK , ρ = ρ1 := (b + c)2HK ,

μ = μ1 :=
1

2K

[[
(e + a + b)2H + (e + a + b + c)2H]K –

[
(e + a + b)2H + (e + a)2H]K

–
[
e2H + (e + a + b + c)2H]K +

[
e2H + (e + a)2H]K ]

+
1

2K

[
b2HK – c2HK – a2HK + (a + b + c)2HK ]

.

(ii) If (s, t, s′, t′) ∈ T2, denoting a = s′ – s, b = t′ – s′, c = t – t′, and e = s, we have

λ = λ2 := (a + b + c)2HK , ρ = ρ2 := b2HK ,

μ = μ2 :=
1

2K

[[
(e + a + b + c)2H + (e + a + b)2H]K

–
[
(e + a + b + c)2H + (e + a)2H]K

–
[
e2H + (e + a + b)2H]K +

[
e2H + (e + a)2H]K ]

+
1

2K

[
(b + c)2HK – c2HK – a2HK + (a + b)2HK]

.

(iii) If (s, t, s′, t′) ∈ T3, denoting a = t – s, b = s′ – t, c = t′ – s′, and e = s, we have

λ = λ3 := a2HK , ρ = ρ3 := c2HK ,

μ = μ3 :=
1

2K

[[
(e + a)2H + (e + a + b + c)2H]K –

[
(e + a)2H + (e + a + b)2H]K

–
[
e2H + (e + a + b + c)2H]K +

[
e2H + (e + a + b)2H]K ]

+
1

2K

[|a + b + c|2HK – |a + b|2HK – |b + c|2HK + b2HK ]
.

Meanwhile, we set δi = λiρi – μ2
i and Θi = δ

– d
2

i – (λiρi)– d
2 for i = 1, 2, 3.

For μ3, we can get the following upper bounded by the basic inequalities.

Lemma 3.1 For μ3 defined in case (iii), there exists a constant k such that

μ3 ≤ kb2HK–2ac. (3.8)

Proof For the convenience of calculation, we set μ3 := �3,1 + �3,2, where

�3,1 :=
1

2K

[|a + b + c|2HK – |a + b|2HK – |b + c|2HK + |b|2HK ]
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and

�3,2 :=
1

2K

[[
(e + a)2H + (e + a + b + c)2H]K –

[
(e + a)2H + (e + a + b)2H]K

–
[
e2H + (e + a + b + c)2H]K +

[
e2H + (e + a + b)2H]K ]

.

For the term �3,1, we easily get �3,1 ≤ kacb2HK–2.
Now, we consider the term �3,2. Let f (t) = [t2H + (e + a + b + c)2H]K – [t2H + (e + a + b)2H]K .

Then we have

df (t)
dt

= 2HKt2H–1{[t2H + (e + a + b + c)2H]K–1 –
[
t2H + (e + a + b)2H]K–1}.

So, by the mean theorem, there exist ξ ∈ (e, e + a) and η ∈ (e + a + b, e + a + b + c) such that

�3,2 =
1

2K

∫ e+a

e
2HKt2H–1{[t2H + (e + a + b + c)2H]K–1 –

[
t2H + (e + a + b)2H]K–1}dt

≤ 1
2K

∣∣2HKaξ 2H–1{[ξ 2H + (e + a + b + c)2H]K–1 –
[
ξ 2H + (e + a + b)2H]K–1}∣∣

=
1

2K

∣∣4H2K(K – 1)
∣∣ξ 2H–1η2H–1[ξ 2H + η2H]K–2ac

= kacη2HK–2 ≤ kac(e + a + b)2HK–2

≤ kacb2HK–2, (3.9)

where we used the fact that ξ 2H + η2H ≥ ξ 2Hαη2Hη , α = 1–2H
2H(K–2) ,β = 1 – 1–2H

2H(K–2) . Further,

ξ 2H–1η2H–1[ξ 2H + η2H]K–2 ≤ ξ 2H–1η2H–1[ξ 2Hαη2Hη
]K–2 ≤ η2HK–2.

Combining the upper bounds of �3,1 and �3,2, we get that μ3 ≤ kb2HK–2ac. �

The following lemma provides some useful inequalities for the proof of Theorem 1.2.

Lemma 3.2 Following the decomposition of the region T , there exists a constant k such
that

(i)

δ1 ≥ k
[
(a + b)2HK c2HK + (b + c)2HK a2HK ]

, (3.10)

(ii) for i = 2, 3,

δi ≥ kλiρi. (3.11)

Proof For case (i), we denote ā = Var(BH,K
1 (s′) – BH,K

1 (s)), b̄ = Var(BH,K
1 (t) – BH,K

1 (s′)), c̄ =
Var(BH,K

1 (t′) – BH,K
1 (t)). On the one hand, by the local nondeterminism (2.2), we have, for
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all u and v,

Var
(
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′)))

= Var
(
u
(
BH,K

1
(
s′) – BH,K

1 (s)
)

+ (u + v)
(
BH,K

1 (t) – BH,K
1

(
s′))

+ v
(
BH,K

1
(
t′) – BH,K

1 (t)
))

≥ k
[
āu2 + b̄(u + v)2 + c̄v2]. (3.12)

On the other hand, by using inequality (1.2), we get

Var
(
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′)))

= E
[
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′))]2

= u2
E

(
BH,K

1 (t) – BH,K
1 (s)

)2 + v2
E

(
BH,K

1
(
t′) – BH,K

1
(
s′))2

+ 2uvE
[(

BH,K
1 (t) – BH,K

1 (s)
)(

BH,K
1

(
t′) – BH,K

1
(
s′))]

= λ1u2 + ρ1v2 + 2μ1uv. (3.13)

Thus, through combining (3.12) with (3.13), it is easy to get

λ1u2 + ρ1v2 + 2μ1uv ≥ k
[
āu2 + b̄(u + v)2 + c̄v2].

This implies that

(λ1 – kā – kb̄)u2 + 2(μ1 – kb̄)uv + (ρ1 – kb̄ – kc̄)v2 ≥ 0.

Therefore, (λ1 – kā – kb̄)(ρ1 – kb̄ – kc̄) – (μ1 – kb̄)2 ≥ 0.
By calculating, we have

δ1 = λ1ρ1 – μ2
1

≥ λ1k(b̄ + c̄) + kρ1(ā + b̄) – 2kμ1b̄ – k2(āb̄ + b̄c̄ + āc̄).

According to the inequality μ2
1 ≤ λ1ρ1, it is easy to get μ1 ≤ √

λ1ρ1 ≤ 1
2 (λ1 + ρ1). Fur-

thermore, we get that δ1 has the lower bound as follows:

δ1 ≥ k(λ1c̄ + ρ1ā) – k2(āb̄ + b̄c̄ + āc̄).

Meanwhile, based on Cr-inequality and the denotes ā, b̄, c̄, we know that λ1 ≤ 2(ā + b̄) =
2(a2HK + b2HK ), ρ1 ≤ 2(b̄ + c̄) = 2(b2HK + c2HK ), then

λ1c̄ + ρ1ā ≤ 2(ā + b̄)c̄ + 2(b̄ + c̄)ā ≤ 4(āb̄ + b̄c̄ + āc̄).

Furthermore, we can choose k ∈ (0, 4) satisfying inequality (2.2) such that the following



Chen et al. Journal of Inequalities and Applications        (2018) 2018:326 Page 11 of 20

inequality holds:

δ1 ≥
(

k –
k2

4

)
(λ1c̄ + ρ1ā)

=
(4 – k)k

4
(λ1c̄ + ρ1ā)

≥ k
[
(ā + b̄)c̄ + (b̄ + c̄)ā

]

≥ k
[(

a2HK + b2HK)
c2HK +

(
b2HK + c2HK)

a2HK ]

≥ k
[
(a + b)2HK c2HK + (b + c)2HK a2HK ]

,

where we used the fact (a + b)2HK ≤ k(a2HK + b2HK ).
Next, we prove case (ii). For i = 2, denote ā = Var(BH,K

1 (s′) – BH,K
1 (s)), b̄ = Var(BH,K

1 (t′) –
BH,K

1 (s′)), c̄ = Var(BH,K
1 (t) – BH,K

1 (t′)). By (2.2), we get that λ2 ≥ k(ā + b̄ + c̄), ρ2 ≥ kb̄, and for
all u and v, we have

Var
(
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′)))

= E
[
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′))]2

≥ k
(
b̄v2 + (ā + b̄ + c̄)u2). (3.14)

On the other hand,

Var
(
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′)))

= E
[
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′))]2

= u2
E

(
BH,K

1 (t) – BH,K
1 (s)

)2 + v2
E

(
BH,K

1
(
t′) – BH,K

1
(
s′))2

+ 2uvE
[(

BH,K
1 (t) – BH,K

1 (s)
)(

BH,K
1

(
t′) – BH,K

1
(
s′))]

= λ2u2 + ρ2v2 + 2μ2uv. (3.15)

Then, we have the following inequality by combining (3.14) with (3.15):

λ2u2 + 2μ2uv + ρ2v2 ≥ k
(
b̄v2 + (ā + b̄ + c̄)u2).

Thus, it is easy to see

[
λ2 – k(ā + b̄ + c̄)

]
(ρ2 – kb̄) – μ2

2 ≥ 0.

Furthermore, according to the definition of δ, we can get

δ2 = λ2ρ2 – μ2
2

≥ kλ2b̄ + kρ2(ā + b̄ + c̄) – k2(ā + b̄ + c̄)b̄

≥ kλ2ρ2.
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For i = 3, denote ā = Var(BH,K
1 (t) – BH,K

1 (s)), b̄ = Var(BH,K
1 (s′) – BH,K

1 (t)), c̄ = Var(BH,K
1 (t′) –

BH,K
1 (s′)). It is easy to get λ3 = ā and ρ3 = c̄. Meanwhile, by the local nondeterminism (2.2),

for all u and v,

Var
(
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′))) ≥ k

(
āu2 + c̄v2) (3.16)

and

Var
(
u
(
BH,K

1 (t) – BH,K
1 (s)

)
+ v

(
BH,K

1
(
t′) – BH,K

1
(
s′))) = λ3u2 + ρ3v2 + 2μ3uv. (3.17)

Then, it follows from combining (3.16) with (3.17) that

λ3u2 + 2μ3uv + ρ3v2 ≥ k
(
āu2 + c̄v2).

Thus,

(λ3 – kā)(ρ3 – kc̄) – μ2
3 ≥ 0.

Therefore, we get

δ3 = λ3ρ3 – μ2
3 ≥ kλ3c̄ + kρ3ā – k2āc̄ ≥ kλ3ρ3.

Thus, the proof of Lemma 3.2 is completed. �

By Lemma 3.2 and δi, Θi, i = 1, 2, 3, defined above, we can get the following result.

Lemma 3.3 For i = 2, 3, there exists a constant k such that

Θi ≤ kμ2
i (λiρi)– d

2 –1 (3.18)

and

Θi ≤ k(λiρi)– d
2 . (3.19)

The proof of this lemma can be found in Hu and Nualart [7].
For proving Theorem 1.2, we will make use of the following elementary lemma.

Lemma 3.4 Let ΞT be defined by (3.7). Then ΞT < +∞ if and only if HKd < 3
2 .

Proof The proof will be done in two steps.
Step 1. We give the proof of the sufficient condition, that is, if HKd < 3

2 , we claim that

∫
[0,T]3

Θi da db dc < +∞, i = 1, 2, 3. (3.20)

We split the proof into three cases for the value of i.
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For i = 1, it is easy to get from (3.10)

δ1 ≥ k
[
(a + b)2HK c2HK + (b + c)2HK a2HK ]

≥ k(a + b)HK (b + c)HK aHK cHK

≥ k(abc)
4
3 HK (3.21)

and

λ1ρ1 ≥ k(a + b)2HK (b + c)2HK ≥ (abc)
4
3 HK . (3.22)

Thus, the result
∫

[0,T]3 Θ1 da db dc < +∞ can be obtained by combining the last two in-
equalities (3.21) and (3.22) for i = 1.

For i = 2, we decompose the region T2 as T2 = {b ≥ η1a} ∪ {b ≥ η2c} ∪ {b < η1a, b < η2c}
for some fixed but arbitrary η1 > 0 and η2 > 0.

When b < η1a and b < η2c, following the definition of μ2, we set

μ2 := �2,1 + �2,2,

where

�2,1 :=
1

2K

[[
(e + a + b + c)2H + (e + a + b)2H]K –

[
(e + a + b + c)2H + (e + a)2H]K

–
[
e2H + (e + a + b)2H]K +

[
e2H + (e + a)2H]K ]

and

�2,2 :=
1

2K

[
(b + c)2HK – c2HK – a2HK + (a + b)2HK ]

.

It is easy to get

�2,2 =
1

2K

[|a + b|2HK – |a|2HK + |b + c|2HK – c2HK ]

=
1

2K 2HK
∫ b

0
(a + x)2HK–1 + (c + x)2HK–1 dx

≤ k
(
a2HK–1 + c2HK–1)b.

Next, we consider �2,1. We know that �2,1 can be rewritten as follows:

�2,1 =
1

2K

[(
t2H + t′2H)K –

(
t2H + s′2H)K –

(
s2H + t′2H)K +

(
s2H + s′2H)K ]

.

Let f (t, x) = (t2H + x2H )K , by differential we get

d
dx

f (t, x) = K
(
t2H + x2H)K–12Hx2H–1 ≤ Kx2HK–2Hx2H–1 = Kx2HK–1.
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By the mean theorem, there exists ξ ∈ (s′, t′) such that

(
t2H + t′2H)K –

(
t2H + s′2H)K ≤ K

(
t2H + ξ 2H)K–12Hξ 2H–1(t′ – s′)

≤ Kξ 2HK–1(t′ – s′). (3.23)

If 2HK –1 ≤ 0, by a ≤ e+a = s′ ≤ ξ ≤ t′ = (e+a+b), the last inequality of (3.23) is bounded
by

K(e + a)2HK–1b ≤ Ka2HK–1b ≤ K
(
a2HK–1 + c2HK–1)b.

Then there exists a constant k such that

�2,1 =
1

2K

[(
t2H + t′2H)K –

(
t2H + s′2H)K –

(
s2H + t′2H)K +

(
s2H + s′2H)K ]

≤ k
[(

t2H + t′2H)K –
(
t2H + s′2H)K ]

≤ k
(
a2HK–1 + c2HK–1)b.

By combining �2,1 with �2,2, we have μ2 ≤ k(a2HK–1 + c2HK–1)b.
If 2HK – 1 > 0, we have

�2,1 =
1

2K

[(
t2H + t′2H)K –

(
t2H + s′2H)K –

(
s2H + t′2H)K +

(
s2H + s′2H)K ]

≤ 1
2K 2HK

∫ t′

s′
x2H–1[(t2H + x2H)K–1 –

(
s2H + x2H)K–1]dx

≤ 1
2K 2HK

∫ T

0
x2H–1[(t2H + x2H)K–1 –

(
s2H + x2H)K–1]dx

< 0. (3.24)

It follows that μ2 ≤ k(a2HK–1 + c2HK–1)b.
Using (3.18) of Lemma 3.3, we have

ΞT =
∫

b<η1a,b<η2c
Θ2 da db dc

≤
∫

b<η1a,b<η2c
kμ2

2(λ2ρ2)– d
2 –1 da db dc

≤
∫

b<η1a,b<η2c
k
(
a2HK–1 + c2HK–1)2b2((a + b + c)2HK b2HK)– d

2 –1 da db dc

≤ k
∫

b<η1a,b<η2c

(
a4HK–2 + c4HK–2)(a + b + c)–HKd–2HK b2–HKd–2HK da db dc

≤ k
∫

b<η1a,b<η2c

(
a(2– d

3 )HK b
dHK

3 + c(2– d
3 )HK b

dHK
3

)
(a + b + c)–HKd–2HK b–HKd da db dc

≤ k
∫

[0,T]3
a(2– d

3 )HK b
dHK

3 (a + b + c)–HKd–2HK b–HKd da db dc

≤ k
∫

[0,T]3
a– 2dHK

3 b– 2dHK
3 c– 2dHK

3 da db dc < +∞.
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For the case b ≥ η2a, using inequality (3.19) of Lemma 3.3, it is easy to get

ΞT =
∫

b≥η2a
Θ2 da db dc

≤ k
∫

b≥η2a
(λ2ρ2)– d

2 da db dc

= k
∫

b≥η2a

[
b2HK (a + b + c)2HK ]– d

2 da db dc

= k
∫

b≥η2a

1
bHKd(a + b + c)HKd da db dc. (3.25)

If HKd < 1, the last integral of (3.25) is finite.
If HK d ≥ 1, the last integral of (3.25) is written by

ΞT ≤ k
∫

[0,T]2
(a + c)HKd da dc

∫ T

η2a

1
bHKd db

≤ k
∫

[0,T]2
a– 4dHK

3 +1c– 2dHK
3 da dc < +∞.

For i = 3, we also decompose the integral region as T3 = I1 + I2 + I3 + I4, where I1 = {a ≥
η1b, c ≥ η2b}, I2 = {a < η1b, c < η2b}, I3 = {a ≥ η1b, c < η2b}, and I4 = {a < η1b, c ≥ η2b}, for
some fixed but arbitrary η1 > 0 and η2 > 0.

Firstly, we consider in the region I1. By (3.19) of Lemma 3.3, it follows that

∫
I1

Θ3 da db dc ≤
∫

a≥η1b,c≥η2b
k(λiρi)– d

2 da db dc

= k
∫

a≥η1b,c≥η2b

(
a2HK c2HK)– d

2 da db dc

= k
∫ T

0
db

∫ T

η1b
a–dKH da

∫ T

η2b
c–dKH dc

≤ k
∫ T

0

db
b2(dHK–1) < +∞.

Secondly, in the region I2. By (3.8) and (3.18), we obtain that

Θ3 ≤ kμ2
3(λ3ρ3)– d

2 –1

≤ k
(
b2HK–2ac

)2(a2HK c2HK)– d
2 –1

≤ kb4HK–4a2–2HK–dHK c2–2HK–dHK

≤ ka– 2
3 dHK c– 2

3 dHK b– 2
3 dHK ,

where we have used the inequality – 2
3 dHK < 2 – 2HK – dHK . Therefore,

∫
a<η1b,c<η2b

Θ3 da db dc ≤ k
∫

a<η1b,c<η2b
a– 2

3 dHK c– 2
3 dHK b– 2

3 dHK da db dc < +∞.

Finally, we consider the case a ≥ η2b and c < η1b, the region I4 can be achieved similarly.
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If HKd > 1, then 2HK – 1 > 0. On the one hand, by inequality (3.9), for η ∈ (e + a + b, e +
a + b + c), we have

�3,2 ≤ kacη2HK–2 ≤ kac(e + a + b)2HK–2 ≤ kaca2HK–2 = ka2HK–1c.

On the other hand,

�3,1 ≤ 1
2K

(|a + b + c|2HK – |a + b|2HK)

=
1

2K 2HK
∫ c

0
(a + b + x)2HK–1 dx

≤ kc(a + b + c)2HK–1

≤ ka2HK–1c,

so,

μ3 ≤ ka2HK–1c,

it follows that

Θ3 ≤ ka4HK–2c2–dHK–2HK a–dHK–2HK = ka2HK–dHK–2c2–dHK–2HK .

Therefore, we get

∫
a≥η1b,c<η2b

Θ3 da db dc ≤
∫

a≥η1b,c<η2b
a2HK–dHK–2c2–dHK–2HK dc db da

≤ k
∫

a≥η1b
a2HK–dHK–2b3–dHK–2HK db da

≤ k
∫

e≤ηa
a2HK–dHK–2a4–dHK–2HK da

= k
∫ T

0
a2–2dHK da < +∞.

If HKd ≤ 1, we get that 2HK – 1 ≤ 0, then

Θ3 ≤ k(λ3ρ3)– d
2 ≤ k

(
a2HK c2HK)– d

2 ≤ ka–HK c–HK .

Thus,

∫
a≥η1b,c<η2b

Θ3 da db dc ≤ k
∫

a≥η1b,c<η2b
a–HK c–HK dc db da

≤ k
∫

[0,T]3
a–HK c–HK dc db da

< +∞.
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Step 2. We give the proof of the necessary condition. Assume that dHK = 3
2 , then we

claim that ΞT = +∞. It suffices to show that

∫
T

μ2(λρ)– d
2 –1 ds dt ds′ dt′ = +∞. (3.26)

In order to get this result, we just prove the result for i = 3. Because μ3 = �3,1 + �3,2, then

∫
T

μ2
3(λ3ρ3)– d

2 –1 ds dt ds′ dt′

=
∫
T

�2
3,1(λ3ρ3)– d

2 –1 ds dt ds′ dt′ +
∫
T

�2
3,2(λ3ρ3)– d

2 –1 ds dt ds′ dt′

+ 2
∫
T

�3,1�3,2(λ3ρ3)– d
2 –1 ds dt ds′ dt′

:= A1 + A2 + A3, (3.27)

where

A1 :=
∫
T

�2
3,1(λ3ρ3)– d

2 –1 ds dt ds′ dt′, A2 :=
∫
T

�2
3,2(λ3ρ3)– d

2 –1 ds dt ds′ dt′,

and

A3 := 2
∫
T

�3,1�3,2(λ3ρ3)– d
2 –1 ds dt ds′ dt′.

When 2HK – 1 > 0, for the term A1, by Lemma 11 of Hu [7], it is easy to get

A1 = +∞. (3.28)

Now, we consider the term A2. Because 2HK – 1 > 0, we have 2H – 1 > 0, d = 2, and
HK = 3

4 . It is easy to get from (3.9) that there exists a constant k > 0 such that

�3,2 ≥ kξ 2H–1η2H–1[ξ 2H + η2H]K–2ac

≥ kξ 2H–1η2HK–2H–1ac

≥ ke2H–1(a + b + c + e)2HK–2H–1ac. (3.29)

Then we have that, for a, b, c, e > 0,

A2 =
∫

0<a+b+c+e<T
�2

3,2(λ3ρ3)– d
2 –1 da db dc de

≥ k
∫

[0,ε]4
e4H–2(a + b + c + e)2(2HK–2H–1)(ac)2–HKd–2HK da db dc de

≥ k
∫

[0,ε]4
e4H–2(ac)–1 da db dc de

= +∞. (3.30)
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Next, for the term A3, following the inequalities

�3,1 =
1

2K

[
(a + b + c)2HK – (a + b)2HK – (b + c)2HK + (b)2HK]

=
1

2K · 2HK · (2HK – 1)ac
∫ 1

0

∫ 1

0
(b + va + ua)2HK–2 du dv

≥ k(a + b + c)2HK–2ac (3.31)

and (3.29), we get

2�3,1�3,2

(λρ) d
2 +1

≥ k(a + b + c)2HK–2d2H–1(a + b + c + e)2HK–2H–1(ac)2–2HK–HKd

= k(a + b + c)– 1
2 e2H–1(a + b + c + e)

1
2 –2H(ac)–1 ≥ ka–1c–1e2H–1.

So,

A3

2
=

∫
0<a+b+c+e<T

�3,1�3,2(λ3ρ3)– d
2 –1 da db dc de

≥
∫

[0,ε]
a–1c–1e2H–1 da db dc de = +∞. (3.32)

By combining inequalities (3.28), (3.30) with (3.32), we get that ΞT = +∞.
When 2HK – 1 ≤ 0, we have d ≥ 3 and 2 – HKd – 2HK = 1

2 – 3
d > –1. In order to check

(3.26), we use a similar way of the proof of Lemma 11 in Hu [7]. For convenience, we give
shortly the proof. Notice that

μ2
3 = (�3,1 + �3,2)2 ≥ �2

3,1 ≥ k(a + b + c)4HK–4a2c2.

It follows that
∫
T

μ2
3(λ3ρ3)– d

2 –1 ds dt ds′ dt′

≥ k
∫
T

(a + b + c)4HK–4a2c2((ac)2HK)– d
2 –1 da db dc

≥ k
∫

[0,ε]3
(a + b + c)4HK–4(ac)2–HKd–2HK da db dc

=
k

3 – 4HK

∫
[0,ε]2

[
(a + c)4HK–3 – (a + c + ε)4HK–3](ac)2–HKd–2HK da dc

and
∫

0<a<c<ε

(a + c)4HK–3(ac)2–HKd–2HK da dc ≥ k
∫

0<a<c<ε

a2–HKd–2HK c2HK–HKd–1 da dc

≥ k
∫ ε

0
a2–2HKd da = +∞,

where 2HK – HKd – 1 < –1. This completes the proof of this lemma. �
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Now, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 By (3.4), we have

lim
ε1→0,ε2→0

E
(
Lε1 (H , K , T) – E

[
Lε1 (H , K , T)

])(
Lε2 (H , K , T) – E

[
Lε2 (H , K , T)

])

= ΞT . (3.33)

And it follows from Lemma 3.4 that

ΞT =
∫
T

[(
λρ – μ2)– d

2 – (λρ)– d
2
]

dτ < +∞ if and only if HKd <
3
2

.

These imply that the renormalized self-intersection local time Lε(H , K , T)–E[Lε(H , K , T)]
of BH,K converges in L2 as ε tends to zero if and only if HKd < 3

2 . This completes the proof
of Theorem 1.2. �

4 Conclusions
In this paper, we considered that the local time and the renormalized self-intersection
local time of d-dimensional bifractional Brownian motion with Hurst parameters H ∈
(0, 1) and K ∈ (0, 1] exist in L2 for d ≥ 2. Our work generalizes the results of the local
time of fractional Brownian motion in Hu and Øksendal [8] and the renormalized self-
intersection local time of fractional Brownian motion in Hu and Nualart [7], respectively.
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