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Abstract
Symplectic exponentially fitted RK and RKN methods have been extensively studied
by many researchers. Due to their good property, they have been applied to many
problems such as pendulum, Morse oscillator, harmonic oscillator, Lennard–Jones
oscillator, Kepler’s orbit problem, and so on. In this paper, we construct an implicit
symmetric and symplectic exponentially fitted modified Runge–Kutta–Nyström
(ISSEFMRKN) method. The new integrator integrates exactly differential systems
whose solutions can be expressed as linear combinations of functions from the set
{exp(λt), exp(–λt)}, λ ∈C, or equivalently {sin(ωt), cos(ωt)} when λ = iω, ω ∈ R.
When z = λh approaches zero, the ISSEFMRKN method reduces to the classical
symplectic, symmetric RKN integrator. Numerical experiments are accompanied to
show the efficiency and competence of the new method compared with some
efficient codes in the literature.
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1 Introduction
In plenty of applied sciences such as celestial mechanics, astrophysics, chemistry, elec-
tronics, molecular dynamics, and so forth, the following second-order ODEs initial value
problems (IVP) often arise:

y′′ = f (t, y), y(t0) = y0, y′(t0) = y′
0, t ∈ [0, tend], (1)

whose solutions exhibit an oscillatory character. Such problems are of great interest and
have been studied extensively. Roughly speaking, there are two categories of approaches
to numerical integration of the IVP (1): indirect and direct. In the first place, if a new
variable v is introduced to represent the first derivative y′, then (1) can be transformed
into a partitioned system of first-order equations

y′ = v, v′ = f (t, y), y(x0) = y0, v(t0) = y′
0.
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This new reformulated problem can be solved by the general Runge–Kutta (RK) methods,
partitioned Runge–Kutta (PRK) methods, or two-step methods (see Refs. [5, 6, 10, 19, 20,
25, 26, 29, 32, 33]). In the second place, the Runge–Kutta–Nyström (RKN) method, which
was introduced by Nyström in 1925, is designed to handle the second-order problem (1)
directly. The detailed information can be seen in [4]. From then on, there have been many
researchers focused on the RKN method. Subsequently, a lot of variations of RKN methods
were given, such as [27, 28, 31, 34] and others. The research on RK, RKN is tremendous,
but it mainly focuses on explicit methods due to easier coding and less time consuming in
comparison to implicit methods. The implicit methods are more suitable for solving stiff
ODEs than the explicit methods. There are some researchers who work on the implicit
RKN methods, such as [16–18, 22, 24].

If the solutions of ODEs satisfy a conservation law, such as dynamical systems for which
total energy is conserved, the symplectic methods [8, 9, 30] should be considered. The
term symplectic essentially means area preserving in a phase space. Approximate solutions
generated by symplectic methods are conservative even at finite resolution, in contrast
with numerical methods that generate approximate solutions that are conservative only
in the limit as the time step size approaches zero. Symplectic methods have been applied to
many problems such as pendulum, Morse oscillator, harmonic oscillator, Lennard–Jones
oscillator, Kepler’s orbit problem, and so on. As pointed out in Chap. V and Chap. XI
of [13], symmetric methods show a better long time behavior than non-symmetric ones
when solving the reversible differential system. So, some symmetric and symplectic RKN
methods are proposed such as [24, 34].

During the last thirty years, many researchers have been working on exponentially fit-
ted RK or RKN methods. This technique was first analyzed in theory by Gautschi [12]
and Lyche [21]. Exponentially fitted methods which intend to integrate exactly differ-
ential systems whose solutions can be expressed as linear combinations of functions
from {exp(λt), exp(–λt),λ ∈C}, or equivalently, from {sin(ωt), cos(ωt),ω ∈R} with λ = iω,
i2 = –1, share better behaviors when applied to oscillatory problems than non-symplectic
methods. Therefore, it has become an indispensable tool for solving oscillatory problems.
The construction of exponentially fitted RK(N) methods is originally due to Paternoster
[23], and a detailed exposition of exponentially fitted methods with an extensive bibliog-
raphy on this subject can be found in Ixaru and Vanden Berghe [15].

Recently, the authors [35] have given a two-stage implicit symmetric and symplectic
exponentially fitted Runge–Kutta–Nyström method (ISSEFRKN). It shows a good behav-
ior compared with some existing methods. Exactly, this method is not a complete expo-
nential fitting method. It can be seen from the process of derivation that there are two
different expressions of b1. So the authors make them as close as possible by choosing a
parameter θ = ±

√
3

6 . To avoid this happening, we investigate the construction of two-stage
implicit symmetric and symplectic exponentially fitted modified Runge–Kutta–Nyström
(ISSEFMRKN). Compared with the ISSEFRKN method, we add modified parameters for
the term h in the internal stages. Consequently, we can obtain unique expression of every
coefficient which is not true for ISSEFRKN. The new method ISSEFMRKN also reduces
to the classical symplectic, symmetric RKN integrator when the parameter z approaches
zero.

This paper is organized as follows: In Sect. 2 we present the notations and definitions
to be used in the rest of the paper as well as some previous results on symmetric and
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symplectic methods. In Sect. 3 we make a study of the local truncation error, obtaining
the order conditions (up to fifth order) for this class of methods. In Sect. 4, we derive
the new two-stage implicit symplectic and symmetric EFMRKN integrator based on the
former conditions. In Sect. 5, we devote to some numerical experiments. The numerical
results show that the new method is more accurate and efficient compared with some
other implicit RKN integrators. Finally, Sect. 6 involves in some conclusions.

2 Conditions for symmetry, symplecticity, exponential fitting of modified RKN
methods

In this paper, we deduce a class of exponentially fitted RKN methods which integrate
exactly second-order differential systems whose solutions can be expressed as linear
combinations of the set of functions {exp(λt), exp(–λt),λ ∈ C}, or equivalently, from
{sin(ωt), cos(ωt),ω ∈ R} with λ = iω, i2 = –1. This means that the internal stage and the
final stage have to integrate exactly these sets of functions. In order to do so, we must in-
troduce some modifications to the ordinary RKN scheme. Here we consider the following
s-stage modified implicit RKN method for the second-order ODEs (1):

⎧
⎪⎪⎨

⎪⎪⎩

Yi = y0 + ciγihy′
0 + h2 ∑s

j=1 aijf (t0 + cjh, Yj), i = 1, . . . , s,

y1 = y0 + hy′
0 + h2 ∑s

i=1 b̄if (t0 + cih, Yi),

y′
1 = y′

0 + h
∑s

i=1 bif (t0 + cih, Yi),

(2)

which can be expressed in the Butcher tableau as follows:

c e γ A

1 1 b̄T

1 bT

=

c1 1 γ1 a11 · · · a1s
...

...
...

...
. . .

...
cs 1 γs as1 · · · ass

1 1 b̄1 · · · b̄s

1 b1 · · · bs

.

It should be noted that scheme (2) coincides with the classical s-stage RKN formula when
the coefficients γi = 1, i = 1, . . . , s, and the remaining coefficients are constant.

Now, we set out to derive the three corner stones to construct our method. In the
following subsections, we denote a one-step method for second-order ODEs (1) as Φh :
(y0, y′

0)T �→ (y1, y′
1)T. Here, from y0 to y1, the variable goes forward with a step h.

2.1 Symmetry conditions
The key to understanding symmetry is the concept of the adjoint method.

Definition 2.1 The adjoint method Φ∗
h of Φh is the inverse map of the original method

with reversed time step –h, i.e., Φ∗
h := Φ–1

–h . In other words, y1 = Φ∗
h (y0) is implicitly defined

by Φ–h(y1) = y0. A method for which Φ∗
h = Φh is called symmetric.

In this paper we consider scheme (2) whose coefficients are functions of z, as we do
for exponentially fitted type methods [32, 33]. Then the conditions for methods (2) to be
symmetric are given by the following lemma.
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Lemma 1 The modified RKN method (2) is symmetric if its coefficients satisfy the following
conditions:

ci(z) = 1 – cs+1–i(z),

ci(z)γi(z) = 1 – cs+1–i(z)γs+1–i(z),

b̄i(z) = bs+1–i(z) – b̄s+1–i(z), (3)

bi(z) = bs+1–i(z),

aij(z) = as+1–i,s+1–j(z) – cs+1–iγs+1–i(z)bs+1–j(z) + bs+1–j(z) – b̄s+1–j(z),

where z = iωh, ω is the principal frequency of the problem.

Proof Following the idea of Hairer et al. [14], we interchange h ↔ –h, z = iωh ↔ –z =
–iωh, t0 ↔ t0 + h, y0 ↔ y1, and y′

0 ↔ y′
1 in formula (2), then we obtain the following equa-

tions:

⎧
⎪⎪⎨

⎪⎪⎩

Yi = y1 – ciγi(z)hy′
1 + h2 ∑s

j=1 aij(z)f (t0 + (1 – cj)h, Yj), i = 1, . . . , s,

y0 = y1 – hy′
1 + h2 ∑s

i=1 b̄i(z)f (t0 + (1 – ci)h, Yi),

y′
0 = y′

1 – h
∑s

i=1 bi(z)f (t0 + (1 – ci)h, Yi).

(4)

Note that, we do not change z to –z, because we will derive exponentially fitted methods
for which its coefficients are even functions of z. From equation (4), one can easily obtain

y′
1 = y′

0 + h
s∑

i=1

bi(z)f
(
t0 + (1 – ci)h, Yi

)

= y′
0 + h

s∑

i=1

bs+1–i(z)f
(
t0 + (1 – cs+1–i)h, Ys+1–i

)
, (5)

y1 = y0 + hy′
1 – h2

s∑

i=1

b̄i(z)f
(
t0 + (1 – ci)h, Yi

)

= y0 + hy′
1 – h2

s∑

i=1

b̄s+1–i(z)f
(
t0 + (1 – cs+1–i)h, Ys+1–i

)

= y0 + h

(

y′
0 + h

s∑

i=1

bs+1–i(z)f
(
t0 + (1 – cs+1–i)h, Ys+1–i

)
)

– h2
s∑

i=1

b̄s+1–i(z)f
(
t0 + (1 – cs+1–i)h, Ys+1–i

)

= y0 + hy′
0 + h2

s∑

i=1

(
bs+1–i(z) – b̄s+1–i(z)

)
f
(
t0 + (1 – cs+1–i)h, Ys+1–i

)
. (6)

Inserting equations (5) and (6) into Ys+1–i, we have

Ys+1–i = y1 – cs+1–iγs+1–i(z)hy′
1
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+ h2
s∑

j=1

as+1–i,s+1–j(z)f
(
t0 + (1 – cs+1–j)h, Ys+1–j

)

= y0 + hy′
0 + h2

s∑

j=1

(
bs+1–j(z) – b̄s+1–j(z)

)
f
(
t0 + (1 – cs+1–j)h, Ys+1–j

)

– cs+1–iγs+1–i(z)h

(

y′
0 + h

s∑

j=1

bs+1–j(z)f
(
t0 + (1 – cs+1–j)h, Ys+1–j

)
)

+ h2
s∑

j=1

as+1–i,s+1–j(z)f
(
t0 + (1 – cs+1–j)h, Ys+1–j

)

= y0 +
(
1 – cs+1–iγs+1–i(z)

)
hy′

0

+ h2
s∑

j=1

(
as+1–i,s+1–j(z) – cs+1–iγs+1–i(z)bs+1–j(z)

+ bs+1–j(z) – b̄s+1–j(z)
)
f
(
t0 + (1 – cs+1–j)h, Ys+1–j

)
. (7)

Comparing equations (7), (6), (5) with the counterpart in (2) respectively, we can obtain
the symmetric conditions (3). �

Omitting the variable z, i.e., all the coefficients are constants, they reduce to symmetric
conditions for the traditional RKN methods.

2.2 Symplecticity conditions
Now, we turn to the symplecticity conditions for scheme (2). Symplecticity is defined for a
Hamiltonian system. On many occasions, the problem under consideration takes the form
of a Hamiltonian system

ṗ = –
∂

∂q
U(t, q), q̇ = M–1p

with the Hamiltonian

H(t, p, q) =
1
2

pTM–1p + U(t, q),

where M is a symmetric positive definite constant matrix. This system is equivalent to the
second-order equation (1) with f (t, q) = –M–1 ∂

∂q U(t, q). To the end of obtaining the sym-
plectic conditions for (2), the following definition, which can be found in [14], is essential.

Definition 2.2 A one-step method is symplectic if, for every smooth Hamiltonian func-
tion H and for every step size h, the corresponding flow preserves the differential 2-form

dp ∧ dq =
n∑

i=1

dpi ∧ dqi,

where the one-forms dpi, respectively dqi, map a tangent vector ξ to its ith, respectively
(n + i)th, component. Here, we assume p and q all have n components. Furthermore, dpi ∧
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dqi is a bilinear map acting on a pair of vectors

dpi ∧ dqi(ξ1, ξ2) = det

(
dpi(ξ1) dpi(ξ2)
dqi(ξ1) dqi(ξ2)

)

= dpi(ξ1)dqi(ξ2) – dpi(ξ2)dqi(ξ1)

and satisfies Grassmann’s rules for exterior multiplication

dpi ∧ dpj = –dpj ∧ dpi, dpi ∧ dpi = 0. (8)

Hamiltonian systems have been seen to possess two remarkable properties:
(a) the solutions preserve the Hamiltonian H(p, q);
(b) the corresponding flow is symplectic, i.e., preserves the differential 2-form dp ∧ dq.

As is pointed out by Feng [7], “It is natural to look forward to those discrete systems
which preserve as much as possible the intrinsic properties of the continuous system.”
Based on this definition, we can easily obtain the symplectic conditions for RKN formula
(2).

Lemma 2 The modified RKN method (2) is symplectic if the following conditions are sat-
isfied:

⎧
⎨

⎩

b̄i(z) + (ciγi(z) – 1)bi(z) = 0, i = 1, . . . , s,

bi(z)(b̄j(z) – aij(z)) = bj(b̄i(z) – aji(z)), i, j = 1, . . . , s.
(9)

Proof Accordingly, the symplecticity of method (2) is equivalent to

dy1 ∧ dy′
1 = dy0 ∧ dy′

0. (10)

For the left-hand side of this equation, we have

dy1 ∧ dy′
1 = dy0 ∧ dy′

0 + h
s∑

i=1

bi(z) dy0 ∧ df (Yi)

+ hdy′
0 ∧ dy′

0 + h2
s∑

i=1

bi(z)dy′
0 ∧ df (Yi)

+ h2
s∑

i=1

b̄i(z)df (Yi) ∧ dy′
0 + h3

s∑

i,j=1

b̄j(z)bi(z)df (Yj) ∧ df (Yi).

Inserting y0 in (2) to the second term of this equation, we obtain

dy1 ∧ dy′
1 = dy0 ∧ dy′

0 + h2
s∑

i=1

(
bi(z) – bi(z)ciγi(z) – b̄i(z)

)
dy′

0 ∧ df (Yi)

+
1
2

h3
s∑

i,j=1

(
b̄j(z)bi(z) – bi(z)aij(z)

)
df (Yj) ∧ df (Yi)

+
1
2

h3
s∑

i,j=1

(
b̄i(z)bj(z) – bj(z)aji(z)

)
df (Yi) ∧ df (Yj).
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Therefore, considering property (8), we can obtain that (10) holds if conditions (9) are
satisfied. �

2.3 Exponential fitting conditions
Following Albrecht’s approach [2, 3], each stage of scheme (2) can be viewed as a linear
multi-step method on a non-equidistant grid. With each stage one can associate a linear
function as follows:

• for the internal stages,

ϕi
[
y(t); h; a

]
= y(t + cih) – y(t) – ciγihy′(t) – h2

s∑

j=1

aijy′′(t + cjh), i = 1, 2, . . . , s;

• for the final stages,

⎧
⎨

⎩

ϕ[y(t); h; b̄] = y(t + h) – y(t) – hy′(t) – h2 ∑s
i=1 b̄iy′′(t + cih),

ϕ[y(t); h; b] = y′(t + h) – y′(t) – h
∑s

i=1 biy′′(t + cih).

The exponentially fitted conditions can be obtained by requiring that these functions van-
ish for the functions from the set {exp(±λt)|λ ∈ R or λ ∈ iR}. The exponentially fitted
conditions are stated in the following lemma.

Lemma 3 The modified RKN method (2) is exponentially fitted if the following conditions
are satisfied:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑s
j=1 aij cosh(cjz) = cosh(ciz)–1

z2 ,
∑s

j=1 aij sinh(cjz) = sinh(ciz)–ciγiz
z2 , i = 1, . . . , s,

∑s
i=1 b̄i cosh(ciz) = cosh(z)–1

z2 ,
∑s

i=1 b̄i sinh(ciz) = sinh(z)–z
z2 ,

∑s
i=1 bi sinh(ciz) = cosh(z)–1

z ,
∑s

i=1 bi cosh(ciz) = sinh(z)
z .

(11)

Proof Requiring the internal stages vanishing when y(t) taken as eλt , e–λt respectively, we
have

⎧
⎨

⎩

e(λt+ciλh) – eλt – ciγiλheλt – (λh)2 ∑s
j=1 aije(λt+cjλh) = 0,

e(–λt–ciλh) – e–λt + ciγiλhe–λt – (λh)2 ∑s
j=1 aije(–λt–cjλh) = 0.

(12)

Denoting z = λh, (12) leads to

⎧
⎨

⎩

eciz – 1 – ciγiz – z2 ∑s
j=1 aijecjz = 0,

e–ciz – 1 + ciγiz – z2 ∑s
j=1 aije–cjz = 0.

(13)

By definitions of cosh(z) = (ez + e–z)/2 and sinh(z) = (ez – e–z)/2, equation (13) implies that

⎧
⎨

⎩

∑s
j=1 aij cosh(cjz) = cosh(ciz)–1

z2 ,
∑s

j=1 aij sinh(cjz) = sinh(ciz)–ciγiz
z2 , i = 1, . . . , s.

(14)
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Similarly, for the final stages, we have

⎧
⎨

⎩

e±z = 1 ± z + z2 ∑s
i=1 b̄i(z)e±ciz,

e±z = 1 ± z
∑s

i=1 bi(z)e±ciz.

It follows that
⎧
⎨

⎩

∑s
i=1 b̄i cosh(ciz) = cosh(z)–1

z2 ,
∑s

i=1 b̄i sinh(ciz) = sinh(z)–z
z2 ,

∑s
i=1 bi sinh(ciz) = cosh(z)–1

z ,
∑s

i=1 bi cosh(ciz) = sinh(z)
z .

(15)

Together with (14) and (15), we obtain the desired results. �

In this paper, we say method (2) satisfies the EF conditions (14) and (15) as an exponen-
tially fitted RKN (EFRKN) method.

3 Algebraic order conditions
As we all know, a numerical method having higher algebraic order will have higher accu-
racy. To the end of specifying the order of the new method, we will present algebraic order
conditions for exponentially fitted modified Runge–Kutta–Nystöm (EFMRKN) methods.
As it occurs in the case of a classical RKN method, for an EFMRKN method, the local trun-
cation errors in the approximations of the solution and its derivative can be expressed as

⎧
⎨

⎩

en+1 = y(t0 + h) – y1 =
∑p–1

j=1 hj+1 ∑kj
i=1 d(j+1)

i F (j)(y0) + O(hp+1),

e′
n+1 = y′(t0 + h) – y′

1 =
∑p

j=1 hj ∑kj
i=1 d′(j)

i F (j)(y0) + O(hp+1),

where F (j)(y0) denotes an elementary differential and the terms d(j+1)
i and d′(j)

i depend on
the coefficients of the EFRKN method. Method (2) has order p if, for every sufficiently
smooth IVP (1) and for any small step size h, the local truncation errors of the numerical
solutions satisfy

⎧
⎨

⎩

e1 = y(t0 + h) – y1 = O(hp+1),

e′
1 = y′(t0 + h) – y′

1 = O(hp+1),

or equivalently,

⎧
⎨

⎩

d(j+1)
i = 0, i = 1, . . . , kj, j = 1, . . . , p – 1,

d′(j)
i = 0, i = 1, . . . , kj, j = 1, . . . , p.

For the EFRKN method, the coefficients are dependent on z. Specifically, they are even
functions of z. Thus, we use the following Taylor expansions:

b̄i(h) = b̄(0)
i + b̄(2)

i h2 + b̄(4)
i h4 + · · · , bi(z) = b(0)

i + b(2)
i h2 + b(4)

i h4 + · · · ,

γi(z) = 1 + γ
(2)
i h2 + γ

(4)
i h4 + · · · , aij(z) = a(0)

ij + a(2)
ij h2 + a(4)

ij h4 + · · · .
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Using these assumptions and following the way given in [14] (pp. 143–148), we obtain the
terms of the local truncation error. Roughly speaking, comparing the Taylor expansions
of y1, y′

1 in (2) with and the Taylor expansions of y(t0 + h), y′(t0 + h) at t0, the order k
condition can be obtained by making the coefficients of hi, i = 1, . . . , k, equal. Following
this procedure, the order conditions (up to the fifth order) for the EFMRKN methods
considered in this paper can be obtained.

Order 1 requires:

d′(1)
1 :=

∑

i

b(0)
i – 1 = 0.

Order 2 requires in addition:

d′(2)
1 :=

∑

i

b(0)
i ci –

1
2

= 0, d(2)
1 :=

∑

i

b̄(0)
i –

1
2

= 0.

Order 3 requires in addition:

d′(3)
1 :=

∑

i

b(0)
i c2

i –
1
3

= 0, d′(3)
2 :=

∑

i

b(0)
i

∑

k

a(0)
ik –

1
6

= 0,

d′(3)
3 :=

∑

i

b(2)
i = 0, d(3)

1 :=
∑

i

b̄(0)
i ci –

1
6

= 0.

Order 4 requires in addition:

d′(4)
1 :=

∑

i

b(0)
i c3

i –
1
4

= 0, d′(4)
2 :=

∑

i

b(0)
i

∑

k

cia(0)
ik –

1
8

= 0,

d′(3)
3 :=

∑

i

b(0)
i

∑

k

a(0)
ik ck –

1
24

= 0, d′(4)
4 :=

∑

i

b(0)
i ciγ

(2)
i = 0,

d′(4)
5 :=

∑

i

b(2)
i ci = 0, d(4)

1 :=
∑

i

b̄(0)
i c2

i –
1

12
= 0,

d(4)
2 :=

∑

i

b̄(0)
i

∑

k

a(0)
ik –

1
24

= 0, d(4)
3 :=

∑

i

b̄(2)
i = 0.

Order 5 requires in addition:

d′(5)
1 :=

∑

i

b(0)
i c4

i –
1
5

= 0, d′(5)
2 :=

∑

i

b(0)
i

∑

k

c2
i a(0)

ik –
1

10
= 0,

d′(5)
3 :=

∑

i

b(0)
i ci

∑

k

a(0)
ik ck –

1
30

= 0, d′(5)
4 :=

∑

i

b(0)
i

∑

k

a(0)
ik c2

k –
1

60
= 0,

d′(5)
5 :=

∑

i

b(2)
i c2

i = 0, d′(5)
6 :=

∑

i

b(0)
i

∑

k

a(2)
ik c2

k = 0,

d′(5)
7 :=

∑

i

b(4)
i = 0, d(5)

1 :=
∑

i

b̄(0)
i c3

i –
1

20
= 0,

d(5)
2 :=

∑

i

b̄(0)
i ci

∑

k

a(0)
ik –

1
10

= 0, d(5)
3 :=

∑

i

b̄(2)
i ci = 0,

d(5)
4 :=

∑

i

b̄(0)
i

∑

j

ā(0)
ij cj = 0.
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4 Construction of implicit symmetric and symplectic modified EFRKN methods
Based on the above conditions, in this section, we will construct an implicit EFMRKN
method under the symmetry, symplecticity, exponential fitting conditions obtained in the
previous two sections. We consider a brief case s = 2 in which there will not be so many
coefficients.

For s = 2, the symmetry conditions (3) and the symplecticity conditions (9) are specified
as

c1 + c2 = 1, b1 = b2, b̄1 + b̄2 = b1, c1γ1 + c2γ2 = 1,

a12 = a21 + b1(c1γ1 – c2γ2), a21 = a12 + b2(c2γ2 – c1γ1),

b̄1 = b1c2γ2, b̄2 = b2c1γ1, b1b̄2 – b1a12 = b2b̄1 – b2a21.

(16)

As we can see, there is an equation c1 + c2 = 1. By introducing another parameter θ , it will
come to c1 = 1

2 – θ , c2 = 1
2 + θ . There is no constraint on θ and it can take any real value.

After this, equations (16) can be in a simplified form

c1 =
1
2

– θ , c2 =
1
2

+ θ , b2 = b1, b̄1 = b1c2γ2, b̄2 = b1c1γ1,

a21 – a12 = b1(c2γ2 – c1γ1), 1 = c1γ1 + c2γ2.
(17)

Combining b̄1 = b1c2γ2, b̄2 = b1c1γ1, a21 – a12 = b1(c2γ2 – c1γ1), and EF conditions (11)
(when s = 2), we obtain

b1 =
sinh(z/2)
z cosh(θz)

, (18)

b1(c1γ1 – c2γ2) =
2 sinh(z/2) – z cosh(z/2)

z2 sinh(θz)
, (19)

(a11 + a12) cosh(θz) =
cosh(θz) – cosh(z/2) + c1γ1z sinh(z/2)

z2 , (20)

(a12 – a11) sinh(θz) =
sinh(z/2) – sinh(θz) – c1γ1z cosh(z/2)

z2 , (21)

(a21 + a22) cosh(θz) =
cosh(θz) – cosh(z/2) + c2γ2z sinh(z/2)

z2 , (22)

(a22 – a21) sinh(θz) =
sinh(z/2) + sinh(θz) – c2γ2z cosh(z/2)

z2 . (23)

Using c1γ1 + c2γ2 = 1 in equations (18) and (19), it is easy to obtain

γ1 =
1

2c1
+

2 sinh(z/2) – z cosh(z/2)
2c1b1z2 sinh(θz)

. (24)

The Taylor expansion of γ1 is

γ1 =
1 – 6θ

12θ2 – 6θ
+

–1 + 20θ2

–360θ + 720θ2 z2 + · · · .

As is pointed out in Sect. 3, when z → 0, γ1(z) → 1, we have

1 =
1 – 6θ

12θ2 – 6θ
, i.e., θ = ±

√
3

6
.
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Thanks to the classical SSRKN method in [24], a11 = a22 is picked in this paper. Under
this assumption, by simple calculation, it is not strenuous to find the following equalities:
(22) – (20) ⇒ (18), (21) + (23) ⇒ (19). So, method (2) satisfying (18), (19), (20), and (21)
is exponentially fitted. In (20) and (21), only a11 and a12 are unknown. By adding and
subtracting, the expressions of a11 and a12 are

a11 =
sinh(2θz) – sinh(c2z) + c1γ1z cosh(c2z)

z2 sinh(2θz)
, a12 =

sinh(c1z) – c1γ1z cosh(c1z)
z2 sinh(2θz)

.

Until now, we have obtained an implicit symmetric and symplectic exponentially fitted
Runge–Kutta–Nyström method whose coefficients are given by

θ = ±
√

3
6

, c1 =
1
2

– θ , c2 =
1
2

+ θ , γ1 =
1

2c1
+

2 sinh(z/2) – z cosh(z/2)
2c1b1z2 sinh(θz)

,

b1 =
sinh(z/2)
z cosh(θz)

, b2 = b1, b̄1 = b1(1 – c1γ1), b̄2 = b2c1γ1,

a11 =
sinh(2θz) – sinh(c2z) + c1γ1z cosh(c2z)

z2 sinh(2θz)
, a22 = a11,

a12 =
sinh(c1z) – c1γ1z cosh(c1z)

z2 sinh(2θz)
, a21 = a12 + b1(1 – 2c1γ1).

(25)

We denote this method as ISSEFMRKN2. For small values of z, the series expansions for
the coefficients are given by

b1 =
1
2

+
(

1
48

–
θ2

4

)

z2 +
(

1
3840

–
θ2

96
+

5θ4

48

)

z4 + · · · ,

γ1 =
1 – 6θ

12θ2 – 6θ
+

–1 + 20θ2

–360θ + 720θ2 z2 + · · · ,

γ2 =
1 + 6θ

12θ2 + 6θ
+

–1 + 20θ2

360θ + 720θ2 z2 + · · · ,

b̄1 =
1 + 6θ

24θ
+

3 + 30θ – 20θ2 – 360θ3

2880θ
z2 + · · · ,

b̄2 =
6θ – 1

24θ
+

–3 + 30θ + 20θ2 – 360θ3

2880θ
z2 + · · · ,

a11 =
–13 + 160θ2 + 720θ4

2880θ2 +
–37 + 3052θ2 – 27,888θ4 – 100,800θ6

967,680θ2 z2 + · · · ,

a12 =
13 – 120θ + 200θ2 + 720θ4

2880θ2

+
40,357 – 1008θ – 479,332θ2 + 6720θ3 – 32,592θ4 – 100,800θ6

967,680θ2 z2 + · · · ,

a21 =
13 + 120θ + 200θ2 + 720θ4

2880θ2

+
40,357 + 1008θ – 479,332θ2 – 6720θ3 – 32,592θ4 – 100,800θ6

967,680θ2 z2 + · · · .

From the Taylor expansions, we can verify that our method ISSEFMRKN2 meets all the
four order conditions, but fails in the fifth order condition d′(5)

1 :=
∑

i b(0)
i c4

i – 1
5 = 0. So,
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the method ISSEFMRKN2 is of order 4. When z → 0, ISSMEFRKN2 reduces to SSRKN
of order 4 in [24] with a11 = 1

45 .

5 Numerical experiments
To test the numerical performance of the method ISSEFMRKN2, we carry out experi-
ments on four problems to illustrate the effectiveness and efficiency. The codes used for
comparison are

• DIRKNRaed: The embedded diagonally implicit RKN 4(3) pair method proposed by
Al-Khasawneh et al. in [1].

• DIRKNNora: The three-stage fourth-order diagonally implicit RKN method proposed
by Senu et al. in [27].

• ISSRKN2: The symmetric and symplectic two-stage fourth-order implicit RKN
method proposed by MENG-ZHAO QIN et al. in [24] with a11 = –13+160θ2+720θ4

2880θ2 and
θ = ±

√
3

6 , i.e., a11 = 1
45 .

• ISSEFRKN2: The symmetric and symplectic exponentially fitted two-stage RKN
method proposed in [35] which is of order 4.

• ISSEFMRKN2: The symmetric and symplectic exponentially fitted two-stage
modified RKN method (25) proposed in this paper which is of order 4.

As we can see, the proposed method ISSEFMRKN2 is implicit. The main computation
is in computing the non-linear equations

⎧
⎨

⎩

Y1 = y0 + c1γ1hy′
0 + h2(a11f (t0 + c1h, Y1) + a12f (t0 + c2h, Y2)),

Y2 = y0 + c2γ2hy′
0 + h2(a21f (t0 + c1h, Y1) + a22f (t0 + c2h, Y2)).

In this paper, we use the Newton iteration method with initial values Y (0)
1 = Y (0)

2 = y(0).
Here we use two stopping criteria for iteration. First, iterations are carried out until the
difference between the Euclidean norm of two successive iterations attains 10–8. Second,
if the first criterion fails, then the iteration will be forced to terminate after running 1000
times.

The criterion used in the numerical comparisons is the usual test based on computing
the maximum global error in the solution over the whole integration interval. In Figs. 1–5,

Figure 1 Maximum global error in the solution for
Problem 1
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Figure 2 Maximum global error in the solution for
Problem 2

Figure 3 Maximum global error in the solution for
Problem 3 with λ = 1.2i

Figure 4 Maximum global error in the solution for
Problem 3 with λ = i

we show the decimal logarithm of the maximum global error (log10(err)) versus the num-
ber of steps required by each code on a logarithmic scale (log10(nsteps)). All computa-
tions are carried out in MATLAB(Version R2015b), on a notebook computer with Intel
Core(TM)i7-2640M CPU (2.80 GHz) and 8 GB RAM.



Chen and Zhai Journal of Inequalities and Applications        (2018) 2018:321 Page 14 of 17

Figure 5 Maximum global error in the solution for
Problem 4

Problem 1 We consider the perturbed orbital problem (studied in [11])

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′′
1 = – y1

(y2
1+y2

2)3/2 – (2ε+ε2)y1
(y2

1+y2
2)5/2 , t ∈ [0, tend],

y′′
2 = – y2

(y2
1+y2

2)3/2 – (2ε+ε2)y2
(y2

1+y2
2)5/2 ,

y1(0) = 1, y′
1(0) = 0, y2(0) = 0, y′

2(0) = 1 + ε,

whose exact solution is

y1(t) = cos(t + εt), y2(t) = sin(t + εt).

In our test we choose ω = 1, λ = i, tend = 10, and the parameter values ε = 10–3, and the
numerical results presented in Fig. 1 have been computed with the integration steps h =
1/2m, m = 2, 3, 4, 5.

Problem 2 Consider the second-order ODE
⎧
⎨

⎩

y′′ = –30 sin(30t), t ∈ [0, tend],

y(0) = 0, y′(0) = 1,

whose analytic solution is given by

y(t) = sin(30t)/30.

For this problem, the parameters are chosen as ω = 30, λ = 30i, tend = 10, h = 1/2m, m =
3, 4, 5, 6. The numerical result can be seen in Fig. 2.

Problem 3 We consider the second-order ODEs

⎧
⎪⎪⎨

⎪⎪⎩

y′′
1 = (μ – 2)y1 + (2μ – 2)y2, t ∈ [0, tend]

y′′
2 = (1 – μ)y1 + (1 – 2μ)y2,

y1(0) = 2, y′
1(0) = 0, y2(0) = –1, y′

2(0) = 0,
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where μ is an arbitrary parameter. The exact solution is

y1(t) = 2 cos(t), y2(t) = – cos(t).

In this problem we chose the parameters as follows: μ = 1.44, λ = 1.2i (Fig. 3), λ = i (Fig. 4),
tend = 10. For the integration steps h, we select them as h = 1/2m, m = 1, 2, 3, 4. The numer-
ical result is presented in Figs. 3–4, one each for λ = 1.2i, λ = i.

Problem 4 We consider the coupled linear system (studied in [11])

⎧
⎪⎪⎨

⎪⎪⎩

y′′
1 = – 101

2 y1 + 99
2 y2 + ε( 93

2 cos(2t) – 99
2 sin(2t)), t ∈ [0, tend],

y′′
2 = 99

2 y1 – 101
2 y2 + ε( 93

2 sin(2t) – 99
2 cos(2t)),

y1(0) = –1 + ε, y′
1(0) = –10, y2(0) = 1, y′

2(0) = 10 + 2ε,

whose exact solution is

y1(t) = – cos(10t) – sin(10t) + ε cos(2t),

y2(t) = cos(10t) + sin(10t) + ε sin(2t).

This solution represents a periodic motion with different frequencies. In our test we
choose the parameter values λ = 10i, tend = 10, ε = 10–3, and the numerical results stated
in Fig. 5 have been computed with steps h = 1/2m, m = 3, 4, 5, 6.

From Figs. 1–5, we can find that the implicit modified EFRKN method ISSEFMRKN2
is more efficient than ISSEFRKN2 and the symmetric and symplectic method ISSRK2.
ISSEFRKN2 does not possess higher accuracy than ISSRKN2 for Problems 3 and 4. For
Problem 3, its true frequency is 1. In the numerical study, we select two frequencies 1.2
(Fig. 3) and 1 (Fig. 4). From Figs. 3–4, we can see the accuracies are quite different. The
accuracy of 1 is much higher than that of 1.2. In this problem, we know its true frequency.
But when it comes to applications, the true frequency is often unpredictable. Therefore, we
need to try some different candidates. For Problems 2 and 3, we find that ISSEFMRKN2 is
much more accurate and efficient than our methods considered in this paper. As is pointed
out in introduction, ISSEFRKN2 is not a complete EF method. However, ISSEFMRKN2
is completely EF. The solutions of Problems 2 and 3 are all in the form of a triangular
function. This is just in line with EF methods. So, ISSEFMRKN2 performs very well.

6 Conclusions
In this paper a two-stage symmetric, symplectic IEFMRKN integrator has been derived.
Like the existing EFRKN integrators such as [34, 35], the coefficients of the new method
depend on the product of the dominant frequency ω and the step size h. When the param-
eter z approaches zero, the ISSEFMRKN2 method reduces to the classical RKN method.
The numerical experiments carried out show that the new method is more efficient than
some implicit RKN methods. In every experiment, the method ISSEFMRKN2 is shown
to be the most efficient one among the methods used for comparison. However, like the
ISSEFRKN2 method in [35], we derive only one method, not a class of methods whose
coefficients can be dependent on one or more parameters. In the future, we will consider
deriving a class of ISSEFRKN methods.
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