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Abstract
In this article, we first develop a semi-discretized Crank–Nicolson format about time
for the two-dimensional non-stationary Stokes equations about vorticity–stream
functions and analyze the existence, uniqueness, stability, and convergence of the
semi-discretized Crank–Nicolson solutions. Then we establish a fully discretized
Crank–Nicolson finite spectral element format based on the quadrilateral elements
for the two-dimensional non-stationary Stokes equations about vorticity–stream
functions and analyze the existence, uniqueness, stability, and convergence of the
Crank–Nicolson finite spectral element solutions. In the end, we use three numerical
examples to confirm the validity of our theoretical conclusions.
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1 Introduction
Let Θ ⊂ R

2 be a connected and bounded domain. Consider the following two-dimensional
(2D) non-stationary Stokes equations:

Problem 1 Find (u, v) and p such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t – μ( ∂2u

∂x2 + ∂2u
∂y2 ) + ∂p

∂x = g1, (x, y, t) ∈ Θ × (0, T),
∂v
∂t – μ( ∂2v

∂x2 + ∂2v
∂y2 ) + ∂p

∂y = g2, (x, y, t) ∈ Θ × (0, T),
∂u
∂x + ∂v

∂y = 0, (x, y, t) ∈ Θ × (0, T),

u(x, y, t) = ϕu(x, y, t), v(x, y, t) = ϕv(x, y, t), (x, y, t) ∈ ∂Θ × (0, T],

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (x, y) ∈ Θ ,

(1)

where (u, v) represents the fluid velocity vector, p is the pressure, T is the total time, μ =
1/Re, Re is the Reynolds number, g1(x, y, t), ϕu(x, y, t), and u0(x, y) are, respectively, the given
body force, boundary value, and initial value functions in the x direction, and g2(x, y, t),
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ϕv(x, y, t), v0(x, y) are, respectively, the given body force, boundary value, and initial value
functions in the y direction.

For the sake of convenience but without losing generality, we will assume that ϕu(x, y, t) =
ϕv(x, y, t) = 0 in the following discussion.

The 2D non-stationary Stokes equations constitute an important mathematical model
in fluid dynamics and have been successfully and extensively used to simulate the prac-
tical engineering problems as mentioned in [1–8]. However, when their computational
domains are the irregular geometrical shape, we can usually not find their analytical solu-
tions, so that we have to depend upon numerical solutions.

At present, finite difference (FD) scheme (see, e.g., [9, 10]), finite element (FE) method
(see, e.g., [1–4, 11, 12]), finite volume element (FVE) method (see, e.g., [13, 14]), and
spectral method (see [15–21]) are considered as to be four popular numerical methods.
However, the spectral method holds highest accuracy among four numerical methods be-
cause it adopts the whole smooth functions (such as trigonometric functions, Chebyshev’s
polynomials, Jacobi’s polynomials, and Legendre’s polynomials) to approximate unknown
function, whereas the FE and FVE methods usually adopt standard polynomials to ap-
proximate unknown function and the FD scheme adopts difference quotient to approx-
imate derivative. Especially, the finite spectral element (FSE) method can be suitable for
the computational domains with complex geometric shapes, just as the FE method, so
that it is widely used to solve various partial differential equations (PDEs), including the
second-order elliptic equations, the parabolic equations, the hyperbolic equations, the hy-
dromechanics equations (see, e.g., [22–26]).

Though some FSE methods have been presented in [25, 26], as far as we know, there
has not been any report that the Crank–Nicolson (CN) finite spectral element (CNFSE)
method is used to solve the 2D non-stationary Stokes equations about vorticity–stream
functions, especially, there has not been any report about the theoretical analysis of the
existence, stability, and convergence of the CNFSE solutions. Therefore, in this paper, we
will first propose a time semi-discretized CN format with second-order time accuracy
for the 2D non-stationary Stokes equations about vorticity–stream functions and analyze
the errors of the time semi-discretized CN solutions. Then we will establish the fully dis-
cretized CNFSE format based on the quadrilateral elements for the 2D non-stationary
Stokes equations about vorticity–stream functions and analyze the existence, uniqueness,
stability, and convergence of the CNFSE solutions. In the end, we will use three numerical
examples to confirm the validity of the obtained theoretical conclusions.

The CNFSE format for the 2D non-stationary Stokes equations about vorticity–stream
functions has not only the second-order accuracy in time, but also is formed by system of
two relatively independent linear equations for vorticity–stream approximate functions,
so that it can easily be solved, which is different from the existing other FSE methods as
mentioned above. Of course, the CNFSE format is also different from the spectral methods
in [15–21]. Therefore, the CNFSE method here is a development and improvement over
the existing methods.

The rest contents of this article is arranged as follows. In Sect. 2, we propose the semi-
discretized CN format with approximation of second order by the time variable for the
2D non-stationary Stokes equations about vorticity–stream functions and analyze the ex-
istence, uniqueness, stability, and convergence of the time semi-discretized CN solutions.
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In Sect. 3, we establish the fully discretized CNFSE format based on the quadrilateral el-
ements for the 2D non-stationary Stokes equations about vorticity–stream functions and
analyze the existence, uniqueness, stability, and convergence of the CNFSE solutions. In
Sect. 4, we use three numerical examples to confirm the validity of theoretical conclusion.
Section 5 provides the main conclusions and discussions.

2 The semi-discretized CN method about time for the 2D non-stationary
Stokes equations

The Sobolev spaces, norms, and inner products used in this article are common (see [27]).

2.1 The semi-discretized CN format about time
When Θ is connected and bounded and ∂u/∂x + ∂v/∂y = 0, there is a unique stream func-
tion ψ such that

u =
∂ψ

∂y
, v = –

∂ψ

∂x
. (2)

Further, there is unique a vorticity function ω such that ω = ∂v/∂x – ∂u/∂y = –(∂ψ2/∂x2 +
∂ψ2/∂y2). Thus, Problem 1 can be transformed into the following system of two relatively
independent linear PDEs about vorticity–stream functions.

Problem 2 Find ω and ψ such that
⎧
⎨

⎩

– ∂ψ2

∂x2 – ∂ψ2

∂y2 = ω, (x, y, t) ∈ Θ × (0, T),

ψ = 0, (x, y, t) ∈ ∂Θ × [0, T],
(3)

⎧
⎪⎪⎨

⎪⎪⎩

∂ω
∂t – μ( ∂2ω

∂x2 + ∂2ω

∂y2 ) = f , (x, y, t) ∈ Θ × (0, T),

ω = 0, (x, y, t) ∈ ∂Θ × [0, T],

ω = ω0, (x, y) ∈ Θ ,

(4)

where f = ∂g2/∂x – ∂g1/∂y, ω0 = ∂v0/∂x – ∂u0/∂y.

When (g1, g2) ∈ H1(0, T ; C1(Θ̄)) × H1(0, T ; C1(Θ̄)) and (u0, v0) ∈ H2(Θ) × H2(Θ), from
the above discussion and the regularity for PDEs (see, e.g., [11, 27]) we can conclude that
there is a unique solution ω ∈ H2(0, T ; C1

0(Θ̄) ∩ H2(Θ)) and ψ ∈ H2(0, T ; C1
0(Θ̄) ∩ H2(Θ))

for Problem 2 meeting

‖ψ‖H2(W 0,∞) + ‖ψ‖H2(H2) + ‖ω‖H2(W 0,∞) + ‖ω‖H2(H2) ≤ σ
(
g1, g2, u0, v0,μ

)
, (5)

where ‖ · ‖Hm(W 0,∞) and ‖ · ‖Hm(Hk ) represent, respectively, the norms in spaces Hm(0, T ;
W 0,∞(Θ)) and Hm(0, T ; Hk(Θ)), and σ (g1, g2, u0, v0) is a non-negative constant dependent
on g1, g2, u0, v0, and μ.

Let M be a positive integer, �t = T/M be the time step, and ωn(x, y) and ψn(x, y) be the
approximations of ω(x, y, t) and ψ(x, y, t) at tn = n�t (n = 0, 1, 2, . . . , M), respectively. From
the first equation in (4) we attain

∂2ω

∂t2 =
∂

∂t

[

μ

(
∂2ω

∂x2 +
∂2ω

∂y2

)

+ f
]

. (6)
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Thus, by Taylor’s formula and (6) we obtain

∂ωn–1

∂t
=

ωn – ωn–1

�t
–

�t
2

∂2ωn–1

∂t2 + o
(
�t2)

=
ωn – ωn–1

�t
–

μ

2

(
∂2(ωn – ωn–1)

∂x2 +
∂2(ωn – ωn–1)

∂y2

)

+
f n – f n–1

2
+o

(
�t2). (7)

Further, by inputting (7) into the first equation in (4) we obtain

ωn – ωn–1

�t
–

μ

2

[
∂2(ωn + ωn–1)

∂x2 +
∂2(ωn + ωn–1)

∂y2

]

=
f n + f n–1

2
+o

(
�t2). (8)

Set V = H1
0 (Θ). Thus, by Green’s formula we can establish the semi-discretized CN for-

mat with the second-order accuracy in time as follows.

Problem 3 For given ω0 ∈ C0(Θ̄) and f n ∈ C0(Θ̄) (n = 0, 1, . . . , M), find (ωn,ψn) ∈ V × V
(n = 1, 2, . . . , M) that satisfy

∫

Θ

(
∂ψn–1

∂x
∂w
∂x

+
∂ψn–1

∂y
∂w
∂y

)

dx dy

=
∫

Θ

ωn–1w dx dy, ∀w ∈ V , n = 1, 2, . . . , M + 1; (9)

∫

Θ

[

ωnw +
μ�t

2

(
∂ωn

∂x
∂w
∂x

+
∂ωn

∂y
∂w
∂y

)]

dx dy

=
∫

Θ

[

ωn–1w –
μ�t

2

(
∂ωn–1

∂x
∂w
∂x

+
∂ωn–1

∂y
∂w
∂y

)]

dx dy

+
�t
2

∫

Θ

(
f n + f n–1)w dx dy, ∀w ∈ V , n = 1, 2, . . . , M. (10)

2.2 The existence, uniqueness, stability, and convergence of the time
semi-discretized CN solutions

In the following, we employ the Lax–Milgram theorem, and the Hölder, Poincaré,
Cauchy–Schwarz inequalities, and the following discrete Gronwall inequality (see [11,
Lemma 3.4] or [28, Lemma 1.4.1]) to analyze the existence, uniqueness, stability, and con-
vergence for the time semi-discretized CN solutions to Problem 3.

Lemma 4 If {an} and {bn} are two non-negative sequences, and {cn} is a positive monotone
sequence, that satisfy

an + bn ≤ cn + λ̄

n–1∑

i=0

ai (λ̄ > 0); a0 + b0 ≤ c0,

then

an + bn ≤ cn exp(nλ̄), n = 0, 1, 2, . . . .

We have the following main conclusion for Problem 3.
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Theorem 5 If ω0 ∈ C0(Θ̄) and f n ∈ C0(Θ̄), i.e., (u0, v0) ∈ C1(Θ̄) × C1(Θ̄) and (gn
1 , gn

2 ) ∈
C1(Θ̄) × C1(Θ̄), the iterative equations (9) and (10) have a unique series of solutions
(ωn,ψn) ∈ V × V (n = 1, 2, . . . , M) meeting the following stability:

∥
∥ωn∥∥2

0 + μ�t
∥
∥∇ωn∥∥2

0 ≤
(

2
∥
∥ω0∥∥2

0 + μ�t
∥
∥∇ω0∥∥2

0 + 2�t
n∑

i=0

∥
∥f i∥∥2

0

)

exp(2n�t),

n = 1, 2, . . . , M; (11)

∥
∥∇ψn(x, y)

∥
∥

0 ≤ σ

(

2
∥
∥ω0∥∥2

0 + μ�t
∥
∥∇ω0∥∥2

0 + 2�t
n∑

i=0

∥
∥f i∥∥2

0

)1/2

exp(2n�t),

n = 0, 1, 2, . . . , M, (12)

and the following convergence:

∥
∥ψ(x, y, tn) – ψn(x, y)

∥
∥

0,∞ +
∥
∥ω(x, y, tn) – ωn(x, y)

∥
∥

0,∞ ≤ σ�t2, (13)

where σ , used in the subsequent, is the generic positive constant independent of �t, but it
is inequable in different places.

Proof Set

Ã(ψ , w) =
∫

Θ

(
∂ψ

∂x
∂w
∂x

+
∂ψ

∂y
∂w
∂y

)

dx dy, ∀ψ , w ∈ V ; (14)

G̃(w) =
∫

Θ

ωn–1w dx dy, ∀w ∈ V ; (15)

B̃(ω, w) =
∫

Θ

[

ωw +
μ�t

2

(
∂ω

∂x
∂w
∂x

+
∂ω

∂y
∂w
∂y

)]

dx dy, ∀ω, w ∈ V ; (16)

F̃(w) =
∫

Θ

[

ωn–1w –
μ�t

2

(
∂ωn–1

∂x
∂w
∂x

+
∂ωn–1

∂y
∂w
∂y

)]

dx dy

+
�t
2

∫

Θ

(
f n + f n–1)w dx dy, ∀w ∈ V . (17)

Then Problem 3 can be rewritten as follows.

Problem 6 Find (ωn,ψn) ∈ V × V (n = 1, 2, . . . , M) that satisfy

Ã
(
ψn–1, w

)
= G̃(w), ∀w ∈ V , n = 1, 2, . . . , M + 1; (18)

B̃
(
ωn, w

)
= F̃(w), ∀w ∈ V , n = 1, 2, . . . , M. (19)

Both bilinear functionals Ã(·, ·) and B̃(·, ·) are bounded and positive definitive on V × V
and both linear functionals G̃(·) and F̃(·) are bounded on V for any given ωn–1, f n, and f n–1.
Then, according on the Lax–Milgram theorem, Problem 6, i.e., the iterative equations (9)
and (10), have a unique series of solutions (ωn,ψn) ∈ V × V (n = 1, 2, . . . , M).

By taking w = ψn–1 in (9) in addition to the Hölder and Poincaré inequalities we get

∥
∥∇ψn–1∥∥2

0 ≤ ∥
∥ωn–1∥∥

0

∥
∥ψn–1∥∥

0 ≤ σ
∥
∥ωn–1∥∥

0

∥
∥∇ψn–1∥∥

0, n = 1, 2, . . . , M + 1. (20)
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Further, we obtain

∥
∥∇ψn–1∥∥

0 ≤ σ
∥
∥ωn–1∥∥

0, n = 1, 2, . . . , M + 1. (21)

By taking w = ωn in (10) and the Hölder and Cauchy–Schwarz inequalities we obtain

∥
∥ωn∥∥2

0 +
μ�t

2
∥
∥∇ωn∥∥2

0

≤ ∥
∥ωn–1∥∥

0

∥
∥ωn∥∥

0 +
μ�t

2
∥
∥∇ωn–1∥∥

0

∥
∥∇ωn∥∥

0

+
�t
2

∥
∥ωn∥∥

0

∥
∥f n∥∥

0 +
�t
2

∥
∥ωn∥∥

0

∥
∥f n–1∥∥

0

≤ 1
2
∥
∥ωn–1∥∥2

0 +
1
2
∥
∥ωn∥∥2

0 +
μ�t

4
∥
∥∇ωn–1∥∥2

0 +
μ�t

4
∥
∥∇ωn∥∥

0

+
�t
2

∥
∥ωn∥∥2

0 +
�t
4

(∥
∥f n∥∥2

0 +
∥
∥f n–1∥∥2

0

)
, n = 1, 2, . . . , M. (22)

Further, we obtain

∥
∥ωn∥∥2

0 +
μ�t

2
∥
∥∇ωn∥∥2

0

≤ ∥
∥ωn–1∥∥2

0 +
μ�t

2
∥
∥∇ωn–1∥∥2

0

+ �t
∥
∥ωn∥∥2

0 +
�t
2

(∥
∥f n∥∥2

0 +
∥
∥f n–1∥∥2

0

)
, n = 1, 2, . . . , M. (23)

Summing (23) from 1 to n yields

∥
∥ωn∥∥2

0 +
μ�t

2
∥
∥∇ωn∥∥2

0

≤ ∥
∥ω0∥∥2

0 +
μ�t

2
∥
∥∇ω0∥∥2

0 + �t
n∑

i=1

∥
∥ωi∥∥2

0 + �t
n∑

i=0

∥
∥f i∥∥2

0, n = 1, 2, . . . , M. (24)

When �t is sufficiently small such that �t ≤ 1/2, from (24), we attain

∥
∥ωn∥∥2

0 + μ�t
∥
∥∇ωn∥∥2

0

≤ 2
∥
∥ω0∥∥2

0 + μ�t
∥
∥∇ω0∥∥2

0 + 2�t
n–1∑

i=0

∥
∥ωi∥∥2

0 + 2�t
n∑

i=0

∥
∥f i∥∥2

0, n = 1, 2, . . . , M. (25)

By using the discrete Gronwall inequality (Lemma 4) for (25), we obtain

∥
∥ωn∥∥2

0 + μ�t
∥
∥∇ωn∥∥2

0 ≤
(

2
∥
∥ω0∥∥2

0 + μ�t
∥
∥∇ω0∥∥2

0 + 2�t
n∑

i=0

∥
∥f i∥∥2

0

)

exp(2n�t),

n = 1, 2, . . . , M. (26)

This is exactly (11). By (11) and (21) we immediately attain (12).
By (8) we immediately attain (13). �
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3 The CNFSE method for the 2D non-stationary Stokes equations about
vorticity–stream functions

3.1 The establishment of the CNFSE format
Let 
N be the quasi-uniform quadrilateral subdivision on Θ̄ and the spectral element sub-
space be chosen as the following:

VN =
{

wN ∈ H1
0 (Θ) ∩ C0(Θ̄) : wN |Kj ∈P1(Kj), Kj ∈ 
N , j = 1, 2, . . . , N

}
, (27)

where N is the number of elements and P1(Kj) is formed by the quadrilateral spectral
element, i.e.,

P1(Kj) = span{Nij : 1 ≤ i ≤ 4},

the above Nij = N̂i ◦ F–1
j (x, y), N̂i(ξ ,η) = [1 + cosπ (ξ – ξi)][1 + cosπ (η – ηi)]/4, (x, y) =

Fj(ξ ,η) = (
∑4

i=1 N̂i(ξ ,η)xij,
∑4

i=1 N̂i(ξ ,η)yij) is a reversible transformation from Kj ∈ 
N to
the referencing quadrilateral K̂ = [–1, 1] × [–1, 1], and (xij, yij) and (ξi,ηi) are the vertices
of Kj and K̂ , respectively (see [11, 25]).

Let RN : H1
0 (Θ) → VN be the H1-orthogonal projection, i.e., for any ϕ ∈ H1

0 (Θ),

∫

Θ

∇(RNϕ – ϕ)∇vN dx dy = 0, ∀vN ∈ VN . (28)

Further, because 
N is the quasi-uniform quadrilateral subdivision for Θ , the number of
nodes is approximately equal to the number of elements (see [11, Lemma 1.30]), RN has
the following important property (see, e.g., [17, Chapters II and III]).

Theorem 7 For any ϕ ∈ Hq(Ω) with q ≥ 2, we have

‖∇RNϕ‖0,r ≤ σr‖∇ϕ‖0,r ,
∥
∥∂k(RNϕ – ϕ)

∥
∥

0 ≤ σNk–q, 0 ≤ k ≤ q ≤ N + 1,

where σr (r = 2 or ∞, and when r = 2, σr = 1) is the general positive constant independent
of N and N is the number of nodes in 
N .

By the subspace VN we can establish the CNFSE formulation as follows.

Problem 8 Find (ωn
N ,ψn

N ) ∈ VN × VN (n = 1, 2, . . . , M) that satisfy

∫

Θ

(
∂ψn–1

N
∂x

∂wN

∂x
+

∂ψn–1
N

∂y
∂wN

∂y

)

dx dy

=
∫

Θ

ωn–1
N wN dx dy, ∀wN ∈ VN , n = 1, 2, . . . , M + 1; (29)

∫

Θ

[

ωn
N wN +

μ�t
2

(
∂ωn

N
∂x

∂wN

∂x
+

∂ωn
N

∂y
∂wN

∂y

)]

dx dy

=
�t
2

∫

Θ

(
f n + f n–1)wN dx dy

+
∫

Θ

[

ωn–1
N wN +

μ�t
2

(
∂ωn–1

N
∂x

∂wN

∂x
+

∂ωn–1
N

∂y
∂wN

∂y

)]

dx dy
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– μ�t
∫

Θ

(
∂ωn–1

N
∂x

∂wN

∂x
+

∂ωn–1
N

∂y
∂wN

∂y

)

dx dy,

∀wN ∈ VN , n = 1, 2, . . . , M, (30)

where ω0
N = RNω0.

Set

ωn =
(
ωn

11,ωn
21,ωn

31,ωn
41,ωn

12,ωn
22,ωn

32,ωn
42, . . . ,ωn

1N ,ωn
2N ,ωn

3N ,ωn
4N

)T ,

ψn =
(
ψn

11,ψn
21,ψn

31,ψn
41,ψn

12,ψn
22,ψn

32,ψn
42, . . . ,ψn

1N ,ψn
2N ,ψn

3N ,ψn
4N

)T ,

Ñ = (N11, N21, N31, N41, N12, N22, N32, N42, . . . , N1N , N2N , N3N , N4N )T ,

ωn
N =

N∑

j=1

4∑

i=1

ωn
ijNij =: Ñ · ωn, ψn

N =
N∑

j=1

4∑

i=1

ψn
ij Nij =: Ñ · ψn.

Thus, Problem 8 can be rewritten as follows.

Problem 9 Find (ωn,ψn) ∈R
4N ×R

4N (n = 1, 2, . . . , M) that satisfy

Âψn–1 = Cωn–1, n = 1, 2, . . . , M + 1; (31)

Aωn = Aωn–1 + �tBωn–1 + �tFn, n = 1, 2, . . . , M, (32)

where Â = diag{Â11, Â22, . . . , ÂNN }, A = diag{A11, A22, . . . , ANN }, B = diag{B11, B22, . . . , BNN },
C = diag{C11, C22, . . . , CNN }, Fn = (Fn

I×1)4N×1, and

ÂIJ =
(∫

Θ

[
∂NiI

∂x
∂NjJ

∂x
+

∂NiI

∂y
∂NjJ

∂y

]

dx dy
)

4×4
,

AIJ =
(∫

Θ

[

NiINjJ +
μ�t

2

(
∂NiI

∂x
∂NjJ

∂x
+

∂NiI

∂y
∂NjJ

∂y

)]

dx dy
)

4×4
,

BIJ = –μ

(∫

Θ

(
∂NiI

∂x
∂NjJ

∂x
+

∂NiI

∂y
∂NjJ

∂y

)

dx dy
)

4×4
,

CIJ =
(∫

Θ

NiINjJ dx dy
)

4×4
, Fn

I×1 =
(∫

Θ

f (n) + f (n–1)

2
NjI dx dy

)

4×1
.

3.2 The existence, stability, and convergence of the CNFSE solutions
To analyze the existence, stability, and convergence of the CNFSE solutions, we consider
the max-norms of matrix and vector (the more detailed results see [26]), which are, re-
spectively, defined dy

‖D‖∞ = max
1≤i≤m

l∑

j=1

|dij|, ∀D = (dij)m×l ∈R
m ×R

l,

‖χ‖∞ = max
1≤j≤m

|χj|, ∀χ = (χ1,χ2, . . . ,χm)T ∈ R
m.
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In the following, we employ the matrix theory, the FE (see [11]) and FSE (see [17]) meth-
ods, and the discrete Gronwall (Lemma 4), Hölder, Poincaré, and Cauchy–Schwarz in-
equalities to analyze the existence, stability, and convergence of the CNFSE solutions for
Problem 8. We have the following result.

Theorem 10 If ω0 = ∂v0/∂x –∂u0/∂y ∈ W 0,∞(Θ), i.e., (u0, v0) ∈ W 1,∞(Θ)×W 1,∞(Θ), and
f = ∂g2/∂x – ∂g1/∂y ∈ W 0,∞(Θ), i.e., (g1, g2) ∈ W 1,∞(Θ) × W 1,∞(Θ), then the CNFSE solu-
tions (ωn

N ,ψn
N ) are existing and unique and satisfy the following stability:

∥
∥ωn

N
∥
∥

0,∞ ≤ σ

(
∥
∥ω0∥∥∞ + �tN–1

n∑

i=1

∥
∥Fi∥∥∞

)

, n = 1, 2, . . . , M, (33)

∥
∥ψn

N
∥
∥

0,∞ ≤ σN–1

(
∥
∥ω0∥∥∞ + �tN–1

n∑

i=1

∥
∥Fi∥∥∞

)

, n = 1, 2, . . . , M. (34)

where σ , used in the subsequent, is also the generic positive constant independent of �t and
N , but is inequable in different places. Further, when (ω,ψ) ∈ [H3(0, T ; Hq(Θ)∩H1

0 (Θ))]×
[H3(0, T ; Hq(Θ) ∩ H1

0 (Θ))] (2 ≤ q ≤ N + 1), we have the following error estimates:

∥
∥ω(x, y, tn) – ωn

N
∥
∥

0 +
√

�t
∥
∥∇(

ω(x, y, tn) – ωn
N
)∥
∥

0 ≤ σ
(
�t2 + N1–q); (35)

∥
∥∇(

ψ(x, y, tn) – ψn
N
)∥
∥

0 ≤ σ
(
�t2 + N1–q), (36)

where n = 1, 2, . . . , M.

Proof First, by the symmetry and positive definiteness of the matrices Â and A we conclude
that Problem 9 has a unique series of the coefficient vector solutions (ωn,ψn) ∈R

4N ×R
4N

(n = 1, 2, . . . , M). Thus, by ωn
N = Ñ · ωn, ψn

N = Ñ · ψn we can immediately conclude that
Problem 8 has a unique series of the CNFSE solutions (ωn

N ,ψn
N ) (n = 1, 2, . . . , M).

Next, we analyze the stability of the CNFSE solutions. From (31) and (32) we can attain
the following:

⎧
⎨

⎩

ψn–1 = Â
–1

Cωn–1, 1 ≤ n ≤ M + 1;

ωn = ωn–1 + �tA–1Bωn–1 + �tA–1Fn, 1 ≤ n ≤ M.
(37)

Moreover, from the FE method (see, e.g., [11, Lemmas 1.18 and 1.22]) and FSE method
(see, e.g., [17, Chapters II and III]) we can attain the following inequalities:

∥
∥Â

–1∥∥∞ ≤ σN–1;
∥
∥A–1∥∥∞ ≤ σN–1; ‖B‖∞ ≤ σN ;

‖C‖∞ ≤ σ ,
∥
∥C–1∥∥∞ ≤ σ .

(38)

Thus, by (37) and (38) we obtain

∥
∥ψn∥∥∞ ≤ σN–1∥∥ωn∥∥∞, n = 0, 1, 2, . . . , M; (39)
∥
∥ωn∥∥∞ ≤ ∥

∥ωn–1∥∥∞ + σ�t
∥
∥ωn–1∥∥∞ + σ�tN–1∥∥Fn∥∥∞, n = 1, 2, . . . , M. (40)
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Summing (40) from 1 to n, we attain

∥
∥ωn∥∥∞ ≤ ∥

∥ω0∥∥∞ + σ�t
n–1∑

i=0

∥
∥ωi∥∥∞ + σ�tN–1

n∑

i=1

∥
∥Fi∥∥∞, n = 1, 2, . . . , M. (41)

By the discrete Gronwall inequality (Lemma 4) and from (41) we obtain

∥
∥ωn∥∥∞ ≤

(
∥
∥ω0∥∥∞ + σ�tN–1

n∑

i=1

∥
∥Fi∥∥∞

)

exp[σn�t], n = 1, 2, . . . , M. (42)

Combining (42) with (39), we get

∥
∥ψn∥∥∞ ≤ σN–1

(
∥
∥ω0∥∥∞ + �tN–1

n∑

i=1

∥
∥Fi∥∥∞

)

, n = 1, 2, . . . , M. (43)

Because ωn
N = Ñ ·ωn, ψn

N = Ñ ·ψn, and ‖Ñ‖∞ ≤ 1, from (42) and (43) we immediately attain
(33) and (34), respectively.

Finally, we discuss the convergence of the CNFSE solutions. Subtracting (29) and (30)
from (9) and (10) taking w = wN , respectively, we attain the following equations for deter-
mining the error:

∫

Θ

∇(
ψn–1 – ψn–1

N
)∇wN dx dy

=
∫

Θ

(
ωn–1 – ωn–1

N
)
wN dx dy, ∀wN ∈ VN , n = 1, 2, . . . , M + 1; (44)

∫

Θ

[
(
ωn – ωn

N
)
wN +

μ�t
2

∇(
ωn – ωn

N
)∇wN

]

dx dy

=
∫

Θ

(
ωn–1 – ωn–1

N
)
wN dx dy

–
μ�t

2

∫

Θ

∇(
ωn–1 – ωn–1

N
)∇wN dx dy, ∀wN ∈ VN , n = 1, 2, . . . , M, (45)

where ω0
N = RNω0.

By (44) and (28), the Cauchy–Schwarz, Hölder, and Poincaré inequalities, and Theo-
rem 7, we obtain

∥
∥∇(

ψn–1 – ψn–1
N

)∥
∥2

0

=
∫

Θ

∇(
ψn–1 – ψn–1

N
)∇(

ψn–1 – ψn–1
N

)
dx dy

=
∫

Θ

∇(
ψn–1 – RNψn–1)∇(

ψn–1 – RNψn–1)dx dy

+
∫

Θ

∇(
ψn–1 – ψn–1

N
)∇(

RNψn–1 – ψn–1
N

)
dx dy

=
∥
∥∇(

ψn–1 – RNψn–1)∥∥2
0 +

∫

Θ

(
ωn–1 – ωn–1

N
)(

RNψn–1 – ψn–1
N

)
dx dy

≤ ∥
∥∇(

ψn–1 – RNψn–1)∥∥2
0 +

∥
∥ωn–1 – ωn–1

N
∥
∥

0

∥
∥RNψn–1 – ψn–1∥∥

0
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+
∥
∥ωn–1 – ωn–1

N
∥
∥

0

∥
∥ψn–1 – ψn–1

N
∥
∥

0

≤ σ
(
N2–2q +

∥
∥ωn–1 – ωn–1

N
∥
∥2

0

)

+
1
2
∥
∥∇(

ψn–1 – ψn–1
N

)∥
∥2

0, n = 1, 2, . . . , M + 1, 2 ≤ q ≤ N + 1. (46)

Further, we get

∥
∥∇(

ψn–1 – ψn–1
N

)∥
∥

0

≤ σ
(
N1–q +

∥
∥ωn–1 – ωn–1

N
∥
∥

0

)
, n = 1, 2, . . . , M + 1, 2 ≤ q ≤ N + 1. (47)

By using (45) and (28), the Hölder, Poincaré, and Cauchy–Schwarz inequalities, and The-
orem 7, we obtain

∥
∥ωn – ωn

N
∥
∥2

0 +
μ�t

2
∥
∥∇(

ωn – ωn
N
)∥
∥2

0

=
∫

Θ

(
ωn – ωn

N
)(

ωn – ωn
N
)

dx dy +
μ�t

2

∫

Θ

∇(
ωn – ωn

N
)∇(

ωn – ωn
N
)

dx dy

=
∫

Θ

(
ωn – ωn

N
)(

ωn – RNωn)dx dy +
μ�t

2
∥
∥∇(

ωn – RNωn)∥∥2
0

+
∫

Θ

(
ωn – ωn

N
)(

RNωn – ωn
N
)

dx dy

+
μ�t

2

∫

Θ

∇(
ωn – ωn

N
)∇(

RNωn – ωn
N
)

dx dy

=
∫

Θ

(
ωn – ωn

N
)(

ωn – RNωn)dx dy +
μ�t

2
∥
∥∇(

ωn – RNωn)∥∥2
0

+
∫

Θ

(
ωn–1 – ωn–1

N
)(

RNωn – ωn)dx dy +
∫

Θ

(
ωn–1 – ωn–1

N
)(

ωn – ωn
N
)

dx dy

–
μ�t

2

∫

Θ

∇(
ωn–1 – RNωn–1)∇(

RNωn – ωn)dx dy

–
μ�t

2

∫

Θ

∇(
ωn–1 – ωn–1

N
)∇(

ωn – ωn
N
)

dx dy

≤ σN–q(∥∥ωn – ωn
N
∥
∥

0 +
∥
∥ωn–1 – ωn–1

N
∥
∥

0

)
+ σ�tN2–2q

+
μ�t

4
∥
∥∇(

ωn–1 – RNωn–1)∥∥2
0 +

μ�t
4

∥
∥∇(

ωn – RNωn)∥∥2
0

+
1
2
∥
∥ωn–1 – ωn–1

N
∥
∥2

0 +
1
2
∥
∥ωn – ωn

N
∥
∥2

0, n = 1, 2, . . . , M, 2 ≤ q ≤ N + 1. (48)

Further, we get

∥
∥ωn – ωn

N
∥
∥2

0 +
μ�t

2
∥
∥∇(

ωn – ωn
N
)∥
∥2

0

≤ ∥
∥ωn–1 – ωn–1

N
∥
∥2

0 +
μ�t

2
∥
∥∇(

ωn–1 – ωn–1
N

)∥
∥2

0

+ σN–q(∥∥ωn – ωn
N
∥
∥

0 +
∥
∥ωn–1 – ωn–1

N
∥
∥

0

)
+ σ�tN2–2q, n = 1, 2, . . . , M. (49)
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Summing (49) from 1 to n and using Theorem 7, we attain

∥
∥ωn – ωn

N
∥
∥2

0 +
μ�t

2
∥
∥∇(

ωn – ωn
N
)∥
∥2

0

≤ ∥
∥ω0 – RNω0∥∥2

0 +
μ�t

2
∥
∥∇(

ω0 – RNω0)∥∥2
0

+ σN–1
n∑

i=0

∥
∥ωi – ωi

N
∥
∥2

0 + σ
(
N2–2q + n�tN2–2q)

≤ σ
(
N2–2q + n�tN2–2q) +

1
2N

n∑

i=0

∥
∥ωi – ωi

N
∥
∥2

0, n = 1, 2, . . . , M. (50)

When N is sufficiently large such that N–1 ≤ 1/2, from (50) we attain

∥
∥ωn – ωn

N
∥
∥2

0 + �t
∥
∥∇(

ωn – ωn
N
)∥
∥2

0

≤ σN2–2q + N–1
n–1∑

i=0

∥
∥ωi – ωi

N
∥
∥2

0, n = 1, 2, . . . , M. (51)

By the discrete Gronwall inequality (Lemma 4) and from (51) we obtain

∥
∥ωn – ωn

N
∥
∥2

0 + �t
∥
∥∇(

ωn – ωn
N
)∥
∥2

0

≤ σN2–2q exp
(
nN–1)

≤ σN1–2q, n = 1, 2, . . . , M, 2 ≤ q ≤ N + 1. (52)

By (52) and Theorem 5 we obtain (35). Combining (52) with (47) and Theorem 5, we attain
(36). This finishes the proof of Theorem 10. �

Because ω = ∂v/∂x – ∂u/∂y and ωn
N = ∂vn

N /∂x – ∂un
N /∂y, we immediately attain the fol-

lowing result.

Theorem 11 Under the same conditions as Theorems 5 and 10, the 2D non-stationary
Stokes equations about vorticity–stream functions, Problem 1, has a unique set of fluid
velocity CNFSE solutions (un

N , vn
N ) holding the following stability:

∥
∥un

N
∥
∥

0,∞ +
∥
∥vn

N
∥
∥

0,∞ ≤ σ

[
∥
∥u0∥∥

0,∞ +
∥
∥v0∥∥

0,∞ + �tN–1
n∑

i=1

(∥
∥gi

1
∥
∥

1,∞ +
∥
∥gi

2
∥
∥

1,∞
)
]

, (53)

and the following convergence:

∥
∥∂y

(
u(x, y, tn) – un

N
)∥
∥

0 +
∥
∥∂x

(
v(x, y, tn) – vn

N
)∥
∥

0 ≤ σ
(
�t2 + N1–q), (54)

where n = 1, 2, . . . , M and 2 ≤ q ≤ N + 1.

Remark 12 The error estimates in Theorem 11 attain optimal order even if Θ is the polyg-
onal bounded domain and there is only (u, v) ∈ H2(0, T ; H1

0 (Θ) ∩ H2(Θ)). Especially, the
system of equations (37) has sparse block-diagonal matrices with 4 × 4-blocks such that
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we enable to solve these equations numerically up to very large size of matrices by means
of the chasing algorithm working with this kind of matrices by MATLAB software (see
[10, 29]).

4 Two numerical examples
In this section, we utilize three sets of numerical examples to verify the correctness of
the theoretical results of the CNFSE format, i.e., Problem 8, for the 2D non-stationary
Stokes equations about vorticity–stream functions. These numerical simulations are im-
plemented by Matlab software on Microsoft Surface Book—Computer with Int Core i7
Processor and 16 GB RAM.

4.1 The numerical example of square cavity flow
In this numerical example, we choose the computational field Θ = (0, 1) × (0, 1), Re = 103,
the side length �x = �y = 0.01 of quadrilateral elements in 
N , i.e., N = 104, the time
step �t = 0.0001, the source vector function (g1(x, y, t), g2(x, y, t)) = (0, 0), the initial velocity
vector (u0(x, y), v0(x, y)) = (1, 0) on 0 ≤ x ≤ 1 and y = 1 but (u0(x, y), v0(x, y)) = (0, 0) on other
part of Θ̄ , the boundary value velocity vector (ϕu(x, y, t),ϕv(x, y, t)) = (1, 0) on 0 ≤ x ≤ 1 and
y = 1 at t = 0 but (ϕu(x, y, t),ϕv(x, y, t)) = (0, 0) on other sides of ∂Θ and at other moments.
Thus, we can conclude from ‖∂y(un–1

N – un
N )‖0 + ‖∂x(vn–1

N – vn
N )‖0 = O(�t2, N–2) that the

theoretical errors for the CNFSE solutions are O(10–8).
By the CNFSE model, i.e., Problem 2, we can compute out the CNFSE solution at t = 3,

depicted in Fig. 1. And the absolute error when t = 3, estimated by ‖∂y(un–1
N – un

N )‖0 +
‖∂x(vn–1

N – vn
N )‖0 (1 ≤ n ≤ 30,000), is depicted in Fig. 2, which are accorded with the the-

oretical conclusion, because both errors are no more than O(10–8). This implies that the
CNFSE model is efficient and feasible for solving the 2D non-stationary Stokes equations
about vorticity–stream functions.

4.2 The numerical example of channel flow with two identical rectangular
protrusions

The computational domain Θ consists of a channel with a width of 6 and a total length of
20, with two identical rectangular protrusions at the bottom and at the top of the channel.
The two rectangular protrusions both have a width of 2 and a length of 4 (see Fig. 3).

Figure 1 The CNFSE velocity solution when t = 3
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Figure 2 The absolute error when 0≤ t ≤ 3 estimated by ‖∂y (un–1N – unN)‖0 + ‖∂x (vn–1N – vnN)‖0 (1≤ n ≤ 30,000)

Figure 3 The computational domain and boundary conditions of flow

Figure 4 The CNFSE velocity solution when t = 2

A structured mesh with side length �x = �y = 0.01 is used. Except for the inflow from the
left boundary with a velocity of (u, v) = (0.1(y–2)(8–y), 0) (x = 0, 2 ≤ y ≤ 8) and the outflow
on the right boundary with velocity of u(x, y, t) = u(20 – 1/N , y, t) (20 – 1/N ≤ x ≤ 20,
2 ≤ y ≤ 8, 0 ≤ t ≤ T ), all of the initial and other boundary value conditions are taken
as 0. The time-step increment is also taken as �t = 0.0001. In this case, the theoretical
errors also attain O(10–8).

By the CNFSE model, i.e., Problem 2, we can compute out the CNFSE solutions at t =
2, 3, 4, depicted in Figs. 4, 5, and 6, respectively. And the absolute error when 0 ≤ t ≤ 4,
estimated by ‖∂y(un–1

N – un
N )‖0 + ‖∂x(vn–1

N – vn
N )‖0 (1 ≤ n ≤ 40,000), is depicted in Fig. 7,

which are accorded with the theoretical conclusions, because both errors are no more
than O(10–8). This implies that the CNFSE model is valid and feasible for solving the 2D
non-stationary Stokes equations about vorticity–stream functions.

4.3 The numerical example with analytical solution
In this numerical example, we choose the computational field Θ = (0,π ) × (0,π ), the
source function f (x, y, t) = (1 + 2μ) exp(t) sin x sin y, and ω0 = sin x sin y in (4). Thus,
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Figure 5 The CNFSE velocity solution when t = 3

Figure 6 The CNFSE velocity solution when t = 4

Figure 7 The absolute error when 0≤ t ≤ 4 estimated by ‖∂y (un–1N – unN)‖0 + ‖∂x (vn–1N – vnN)‖0 (1≤ n ≤ 40,000)

Table 1 The errors between the numerical solutions and the analytical solution at t = 1

�t and N ‖∇(ψ (x, y, tn) –ψn
N )‖0 ‖ω(x, y, tn) –ωn

N‖0
�t = 1/8 and N = 8 2.0951e–2 1.5036e–2
�t = 1/16 and N = 16 4.7351e–3 3.5732e–3
�t = 1/32 and N = 32 5.7826e–4 4.9875e–4
�t = 1/64 and N = 64 2.3564e–4 1.3161e–4

Eqs. (3) and (4) have a set of analytical solutions: ψ = ω/2 = 1
2 exp(t) sin x sin y and ω =

exp(t) sin x sin y.
When Re = 103, i.e., μ = 10–3, we estimate the errors between the numerical solutions

and the analytical solutions with different time steps and numbers of meshes at t = 1 and
2, shown in Tables 1 and 2, respectively.

Tables 1 and 2 show that the numerically computing errors are accorded with the the-
oretical results in Theorem 10, i.e., both errors are second-order accuracy since (1/8)2 =
O(10–2), (1/16)2 = O(10–3), (1/32)2 = O(10–4), and (1/64)2 = O(10–4). Due to the accumu-
lation of round-off error, the numerically computing errors at t = 2 are larger than those at
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Table 2 The errors between the numerical solutions and the analytical solution at t = 2

�t and N ‖∇(ψ (x, y, tn) –ψn
N )‖0 ‖ω(x, y, tn) –ωn

N‖0
�t = 1/8 and N = 8 4.4732e–2 3.3764e–2
�t = 1/16 and N = 16 7.0124e–3 6.8274e–3
�t = 1/32 and N = 32 9.5675e–4 8.9906e–4
�t = 1/64 and N = 64 4.6703e–4 3.1033e–4

t = 1, which is reasonable. This further shows that the CNFSE model is efficient and fea-
sible for finding the numerical solutions of the 2D non-stationary Stokes equations about
vorticity–stream functions.

5 Conclusions and discussion
In this work, we have established the time semi-discretized CN and CNFSE format for
the 2D non-stationary Stokes equations about vorticity–stream functions and analyzed
the existence, uniqueness, stability, and convergence of the time semi-discretized CN and
CNFSE solutions, respectively. We have also used three sets of numerical examples to
check the feasibility and effectiveness of the CNFSE format and to verity that the numerical
computing consequences are accorded with the theoretical analysis ones. Moreover, it is
shown that the CNFSE format is valid for solving the 2D non-stationary Stokes equations
about vorticity–stream functions.

Although we here only research the CNFSE method for the 2D non-stationary Stokes
equations about vorticity–stream functions, the CNFSE method can easily and effectively
be used to solve for the non-stationary Stokes equations in three-dimensional space or
more complex fluid dynamics equations, even be applied in the more complex real-world
engineering problems. Therefore, our technique is promising as regards applications.
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