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Abstract
In this paper, we consider a two-dimensional nonstandard renewal risk model with
stochastic returns, in which the two lines of claim sizes form a sequence of
independent and identically distributed random vectors following a bivariate
Sarmanov distribution, and the two claim-number processes satisfy a certain
dependence structure. When the two marginal distributions of the claim-size vector
belong to the intersection of the dominated-variation class and the class of
long-tailed distributions, we obtain uniform asymptotic formulas of finite-time and
infinite-time ruin probabilities.
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1 Introduction
In this paper, we study a two-dimensional nonstandard renewal risk model with stochastic
returns, in which an insurer simultaneously operates two kinds of insurance businesses.
The claim sizes {(X, Y ), (Xi, Yi), i ≥ 1} form a sequence of independent and identically dis-
tributed (i.i.d.) and nonnegative random vectors, whose marginal distribution functions
are denoted by F(x) and G(y) on [0,∞), respectively. Suppose that (X, Y ) follows a bivariate
Sarmanov distribution of the following form:

P(X ∈ du, Y ∈ dv) =
(
1 + θϕ1(u)ϕ2(v)

)
F(du)G(dv), u ≥ 0, v ≥ 0, (1.1)

where the kernels ϕ1(u) and ϕ2(v) are two functions and the parameter θ is a real constant
satisfying

Eϕ1(X) = Eϕ2(Y ) = 0,

and

1 + θϕ1(u)ϕ2(v) ≥ 0, for all u ∈ DX , v ∈ DY ,
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where DX = {u ≥ 0 : P(X ∈ (u – δ, u + δ)) > 0 for all δ > 0} and DY = {v ≥ 0 : P(Y ∈ (v – δ, v +
δ)) > 0 for all δ > 0}. Clearly, if θ = 0 or ϕ1(u) ≡ 0, u ∈ DX , or ϕ2(v) ≡ 0, v ∈ DY , then X and
Y are independent. So we say that a random vector (X, Y ) follows a proper bivariate Sar-
manov distribution, if the parameter θ �= 0, and the kernels ϕ1(u) and ϕ2(v) are not identical
to 0 in DX and DY , respectively. For more details of multivariate Sarmanov distributions,
the read is referred to Lee [19] and Kotz et al. [18].

The Sarmanov family includes Falie–Gumbel–Morgenstern (FGM) distributions as spe-
cial cases. For the FGM family, Schucany et al. [26] showed that both of the ranges of cor-
relation coefficients and rank correlation coefficients are limited to (–1/3, 1/3), and the
Kendall τ coefficient equals 2/3 of the rank correlation coefficient. The correlation co-
efficients of the Sarmanov family can attain a much wider range than those of the FGM
family. Moreover, the range of correlation coefficients depends on marginal distributions.
For example, for uniform and normal marginals, Shubina and Lee [27] proved that the
ranges of correlation coefficients are [–3/4, 3/4] and [–2/π , 2/π ], respectively. Shubina and
Lee [27] and Huang and Lin [15] constructed some Sarmanov distributions, for which
the correlation coefficients approach 1. For the Sarmanov family, Shubina and Lee [27]
demonstrated that the range of rank correlation coefficients is (–3/4, 3/4), while the range
of Kendall τ coefficients is (–1/2, 1/2). For simplicity, we assume that limu→∞ ϕ1(u) = d1

and limv→∞ ϕ1(v) = d2.
Let ci(t) represent the probability density function of premium income for the ith kind

of insurance business at time t. Suppose that there is a positive constant M such that 0 ≤
ci(t) ≤ M, i = 1, 2.

In risk theory, some publications suppose that two kinds of businesses share a common
claim-number process or the two claim-number processes are mutually independent. It
should be noted that these assumptions are made mainly for mathematical tractability. In
reality, the claim-number processes of different insurance businesses are not always the
same but closely dependent. We refer the reader to Ambagaspitiya [1] for details. Hence,
establishing a bivariate risk model with a certain dependence structure between the two
claim-number processes become more and more imperative. In this paper, let {τk , k ≥ 1}
and {ηk , k ≥ 1} denote the arrival times of two kinds of successive claims, respectively.
Suppose τ0 = 0 and η0 = 0. We assume that {(τk – τk–1,ηk – ηk–1), k ≥ 1} form another se-
quence of i.i.d. random vectors such that {(M(t), N(t)), t ≥ 0} is a bivariate renewal process.
Denote

λ(u, v) =
∞∑

i=1

∞∑

j=1

P(τi ≤ u,ηj ≤ v).

Then λ(u, v) is called a renewal function of the above bivariate renewal process.
In addition, when {(M(t), N(t)), t ≥ 0} is a bivariate renewal process, it is easy to see

that both {M(t), t ≥ 0} and {N(t), t ≥ 0} are one-dimensional renewal processes, and their
renewal functions are denoted by λ1(t) and λ2(t), respectively.

Denote by Λ the set of all t for which 0 < λ(t, t) ≤ ∞. Let t = inf{t : P(τ1 ≤ t,η1 ≤ t) > 0}.
Then it is clear that

Λ =

⎧
⎨

⎩
[t,∞] if P(τ1 ≤ t,η1 ≤ t) > 0,

(t,∞] if P(τ1 ≤ t,η1 ≤ t) = 0.
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For more details of a bivariate renewal process, we refer the reader to Hunter [16]. Let
ΛT = Λ ∩ (0, T].

In addition, it is easy to get

λ1(t) =
∞∑

i=1

P(τi ≤ t) and λ2(t) =
∞∑

j=1

P(ηj ≤ t).

Suppose that the price processes of the investment portfolios for two kinds of insurance
businesses are modeled by two geometric Lévy processes {eR1(t), t ≥ 0} and {eR2(t), t ≥ 0},
where {R1(t), t ≥ 0} and {R2(t), t ≥ 0} are two Lévy processes which starts from 0, have
independent and stationary increments, and are stochastically continuous. For any i = 1, 2,
let {Ri(t), t ≥ 0} be a real-valued Lévy process with Lévy triplet (ri,σi,ρi), where –∞ < ri <
∞ and σi > 0 are constants, and ρi is a measure supported on (–∞,∞), satisfying ρi(0) = 0
and

∫
(–∞,∞)(y

2 ∧ 1)ρi(dy) < ∞. According to Proposition 3.14 of Cont and Tankov [5], if
∫
|y|≥1 ezyρi(dy) < ∞ for z ∈ (–∞,∞), then the Laplace exponent for {Ri(t), t ≥ 0} is defined

as

Φi(z) = log EezRi(1), z ∈ (–∞,∞),

where

Φi(z) =
1
2
σ 2

i z2 + riz +
∫

(–∞,∞)

(
ezy – 1 – zy1(–1,1)(y)

)
ρi(dy) < ∞.

Let

φi(z) = Φi(–z) =
1
2
σ 2

i z2 – riz +
∫

(–∞,∞)

(
e–zy – 1 + zy1(–1,1)(y)

)
ρi(dy) < ∞.

Then, for all t ≥ 0 and z satisfying
∫
|y|≥1 ezyρi(dy) < ∞, EezRi(t) = etφi(–z) < ∞. Further, since

φi(0) = 0, by the two expressions above, we can prove that φi(z) is convex in z for which
φi(z) is finite. Since φi(0) = 0, for some β∗ > 0, φi(β∗) < 0 means that φi(z) < 0 for all z ∈
(0,β∗]. For the general theory of Lévy processes, we refer the reader to Cont and Tankov
[5] and Sato [25].

For two-dimensional risk models, some authors suppose that the insurance company
invests the surpluses of two kinds of insurance businesses in one portfolio; see Fu and Ng
[10], Li [20] and Guo et al. [14]. But such an assumption is restrictive in applications. In
fact, an insurer often invests the surpluses of different businesses into different portfolios
in order to avoid risks.

Throughout this paper, we suppose that {(Xi, Yi), i ≥ 1}, {(c1(t), c2(t)), t ≥ 0}, {R1(t), t ≥
0}, {R2(t), t ≥ 0} and {(M(t), N(t)), t ≥ 0} are mutually independent.

Denote the initial capital vector by (x, y). For any time t ≥ 0, the surplus process of the
insurer can be described as

(
U1(t)
U2(t)

)

=

(
xeR1(t)

yeR2(t)

)

+

(∫ t
0 eR1(t)–R1(s)c1(s) ds

∫ t
0 eR2(t)–R2(s)c2(s) ds

)

–

(∑M(t)
i=1 XieR1(t)–R1(τi)

∑N(t)
j=1 YjeR2(t)–R2(ηj)

)

. (1.2)
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Next we define two types of ruin times for the risk model (1.2) as follows:

Tmax = inf
{

t ≥ 0 : max
{

U1(t), U2(t)
}

< 0
}

and

Tmin = inf
{

t ≥ 0 : min
{

U1(t), U2(t)
}

< 0
}

.

Then the corresponding ruin probabilities of the risk model (1.2) are defined by

ψmax(x, y; t) = P
(
Tmax ≤ t|(U1(0), U2(0)

)
= (x, y)

)
, t ≥ 0,

and

ψmin(x, y; t) = P
(
Tmin ≤ t|(U1(0), U2(0)

)
= (x, y)

)
, t ≥ 0,

respectively. ψmax(x, y; t) denotes the probability that ruin occurs in both business lines
over the time (0, t], while ψmin(x, y; t) represents the probability that ruin occurs in at least
one business line over the time (0, t].

In the recent years, the one-dimensional renewal risk model with stochastic returns
has been widely investigated. We refer the reader to Klüppelberg and Kostadinova [17],
Tang et al. [29], Dong and Wang [6], Dong and Wang [7], Guo and Wang [12], Guo and
Wang [13], and Peng and Wang [24], among many others. So far few articles have been
involved in a bivariate risk model with stochastic returns. For example, Fu and Ng [10]
considered a two-dimensional renewal risk model with stochastic returns, in which the
claim sizes for the same kind of insurance business are pairwise quasi-independent but
the claim sizes of different kinds of insurance businesses are independent, and presented
a uniform asymptotic formula only for the discounted aggregate claims. Li [20] considered
a multi-dimensional renewal risk model, where there exists a certain dependence struc-
ture among claim sizes and their corresponding inter-arrival times. When the claim-size
vector has a multi-dimensional regular variation distribution, the authors gave a uniform
asymptotic formula for ruin probabilities over all the whole times. Guo et al. [14] studied
another two-dimensional risk model with stochastic investment returns, where two lines
of insurance businesses share a common claim-number process and their surpluses are in-
vested into the same kind of risky asset, and the claim sizes of two kinds of insurance busi-
nesses and their common inter-arrival times correspondingly follow a three-dimensional
Sarmanov distribution. When the marginal distributions of the claim-size vector belong
to the regular variation class, the above reference presented uniform asymptotic formulas
for the finite-time ruin probability. Fu and Ng [11] discussed a two-dimensional renewal
risk model, in which there is a FGM structure between the claim sizes from two different
lines of businesses, and showed uniform asymptotic formulas of the finite-time ruin prob-
ability, when the distributions of claim sizes belong to the intersection of the dominated
varying class and the class of long-tailed distributions.

In the present paper, we investigate a bivariate renewal risk model with stochastic re-
turns, where the claim sizes form a sequence of i.i.d. random vectors following a bivariate
Sarmanov distribution and the price processes of investment portfolios are modeled by
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two geometric Lévy processes. When the two marginal distributions of the claim-size vec-
tor belong to the intersection of the dominated-variation class and the class of long-tailed
distributions, we obtain uniform asymptotic formulas of the joint tail probability of the
discounted aggregate claims and ruin probabilities for the risk model (1.2).

The rest of this paper is organized as follows. In Sect. 2, we recall some important dis-
tribution classes and give main results of this paper. In Sect. 3, we prepare some necessary
lemmas. In Sect. 4, we prove the two theorems.

2 Preliminaries and main results
This paper is concerned with heavy-tailed distributions, so we first introduce some re-
lated subclasses of heavy-tailed distributions, which can be found in Embrechts et al. [8],
Bingham et al. [2], and Cline and Samorodnitsky [4]. Let H be a distribution and write
H(x) = 1 – H(x). We assume that H(x) > 0 holds for all x > 0. We say that a distribution H
on [0,∞) belongs to the class of long-tailed distributions, denoted by L, if for any u > 0,

lim
x→∞

H(x + u)
H(x)

= 1.

A distribution H on [0,∞) is said to belong to the dominated-varying-tailed class D, if
for all 0 < u < 1,

lim sup
x→∞

H(ux)
H(x)

< ∞.

We say that a distribution H on [0,∞) belongs to the regular variation class, if there is
some α, 0 < α < ∞, such that, for all u > 0,

lim
x→∞

H(ux)
H(x)

= u–α .

In this case, we denote H ∈ R–α and use R to denote the union of all R–α over the range
0 < α < ∞. It is well known that R⊂D ∩L and the inclusion is proper.

We introduce two indices of any distribution H . Denote

J+
H = – lim

y→∞
log H∗(y)

log y
and J–

H = – lim
y→∞

log H∗(y)
log y

.

Following Tang and Tsitsiashvili [28], we call J+
H and J–

H the upper and lower Matuszewska
indices of H .

Hereafter, all limit relationships are for min(x, y) → ∞ unless stated otherwise. For two
positive functions a(x, y) and b(x, y), we write a(x, y) � b(x, y) if lim supmin(x,y)→∞ a(x, y)/
b(x, y) ≤ 1, write a(x, y) � b(x, y) if lim inf a(x, y)/b(x, y) ≥ 1, write a(x, y) ∼ b(x, y) if a(x, y) �
b(x, y) and a(x, y) � b(x, y), and write a(x, y) = o(b(x, y)) if limmin(x,y)→∞ a(x, y)/b(x, y) = 0.
Furthermore, for two positive ternary functions a(·, ·; t) and b(·, ·; t), we say that the asymp-
totic relation a(x, y; t) ∼ b(x, y; t) holds uniformly for t in a nonempty set � if

lim
min(x,y)→∞

sup
t∈�

∣
∣∣
∣
a(x, y; t)
b(x, y; t)

– 1
∣
∣∣
∣ = 0.
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Clearly, the asymptotic relation a(x, y; t) ∼ b(x, y; t) holds uniformly for t ∈ � if and only if

lim sup
min(x,y)→∞

sup
t∈�

a(x, y; t)
b(x, y; t)

≤ 1 and lim inf
min(x,y)→∞

inf
t∈�

a(x, y; t)
b(x, y; t)

≥ 1,

which means that both a(x, y; t) � b(x, y; t) and a(x, y; t) � b(x, y; t) hold uniformly for
t ∈ �.

Now we are in a position to state our main results. We first present a uniform asymptotic
formula of the joint tail probability of two discounted aggregate claims. Then we establish
uniform asymptotic formulas of ruin probabilities.

Theorem 2.1 Consider the risk model (1.2). Let {(X, Y ), (Xk , Yk), k ≥ 1} be i.i.d. random
vectors following a bivariate Sarmanov distribution of the form (1.1), where limx→∞ φi(x) =
di for i = 1, 2. Suppose that the distributions of X and Y satisfy F ∈ D ∩L and G ∈ D ∩L
with J–

F > 0 and J–
G > 0. If φi(βi) < 0, i = 1, 2, for some β1 > J+

F and β2 > J+
G, then uniformly for

all t ∈ Λ

P

(M(t)∑

i=1

Xie–R1(τi) > x,
N(t)∑

j=1

Yje–R2(ηj) > y

)

∼

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
λ(du, dv)

+ θd1 d2

∞∑

i=1

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv), (2.1)

where X∗ and Y ∗ are two independent nonnegative random variables with distributions F
and G, respectively.

Theorem 2.2 Under the conditions of Theorem 2.1,

ψmax(x, y; t) ∼
∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
λ(du, dv) + θd1d2

×
∞∑

i=1

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv) (2.2)

holds uniformly for all t ∈ Λ. In addition, for any T ∈ Λ,

ψmin(x, y; t) ∼
∫ t

0
P
(
Xe–R1(u) > x

)
λ1(u) +

∫ t

0
P
(
Ye–R2(v) > y

)
dλ2(v) (2.3)

holds uniformly for all t ∈ ΛT . In particular,

ψmax(x, y;∞)

∼

∫ ∞

0

∫ ∞

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
λ(du, dv)

+ θd1d2

∞∑

i=1

∫ ∞

0

∫ ∞

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv).
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By the definition of the regular variation class and Theorem 2.2, we easily obtain the
following corollary.

Corollary 2.1 Consider the risk model (1.2). Suppose that the conditions of Theorem 2.1
are satisfied. Further, if the distributions of X and Y satisfy F ∈ R–α and G ∈ R–α with
0 < α < ∞, then

ψmax(x, y; t) ∼
∫ t

0

∫ t

0
euφ1(α)+vφ2(α)λ(du, dv)F(x)G(y)

+ θd1d2

∞∑

i=1

∫ t

0

∫ t

0
euφ1(α)+vφ2(α)P(τi ∈ du,ηi ∈ dv)F(x)G(y)

holds uniformly for all t ∈ Λ. In addition, for any T ∈ Λ,

ψmin(x, y; t) ∼
∫ t

0
euφ1(α) dλ1(u)F(x) +

∫ t

0
evφ2(α) dλ2(v)G(y)

holds uniformly for all t ∈ ΛT .

3 Some lemmas
The first lemma is from Lemma 2.19 of Foss et al. [9].

Lemma 3.1 If H ∈L, then there exists a slowly varying function h(x) satisfying 0 < h(x) →
∞, h(x)/x → 0, such that

lim
x→∞

H(x ± h(x))
H(x)

= 1.

The lemma below is due to Proposition 1.1 of Yang and Wang [31].

Lemma 3.2 Suppose that (X, Y ) follows a proper bivariate Sarmanov distribution of the
form (1.1). Then there exist two positive constants b1 and b2 such that |ϕ1(u)| ≤ b1 for all
u ∈ DX and |ϕ2(v)| ≤ b2 for all v ∈ DY .

The following lemma is a combination of Proposition 2.2.1 of Bingham et al. [2] and
Lemma 3.5 of Tang and Tsitsiashvili [28].

Lemma 3.3 For a distribution H on [0,∞), the following assertions hold:
(1) if H ∈D, then, for any α < J–

H and β > J+
H , there are positive numbers Ci and

Di, i = 1, 2, such that

H(y)
H(x)

≥ C1

(
x
y

)α

for all x ≥ y ≥ D1

and

H(y)
H(x)

≤ C2

(
x
y

)β

for all x ≥ y ≥ D2;
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(2) if H ∈D, then

x–β = o
(
H(x)

)
for all β > J+

H .

The following lemma is a restatement of Lemma 4.1.2 of Wang and Tang [30].

Lemma 3.4 Let X and ξ be two independent random variables, where X is distributed by
F ∈D∩L and ξ is nonnegative and non-degenerate at 0 satisfying Eξ p < ∞ for some p > J+

F .
Then the distribution of the product ξX belongs to the classD∩L and P(ξX > x) � P(X > x).

Remark 1 Suppose that X and Y are two nonnegative random variables with distributions
F ∈ D ∩ L and G ∈ D ∩ L, and φi(βi) < 0, i = 1, 2, for some β1 > J+

F and β2 > J+
G. Then, by

Lemma 3.4, we can prove both Xe–R1(s) and Ye–R2(w) belong to D∩L for any s > 0 and w > 0.
Hence, by Lemma 3.1 above and Proposition 2.20(i) of Foss et al. [9], there exists a positive
function h(x) satisfying h(x) → ∞, h(x)/x → 0, such that

lim
x→∞

P(Xe–R1(s) > x – h(x))
P(Xe–R1(s) > x)

= 1 (3.1)

and

lim
y→∞

P(Ye–R2(w) > y – h(y))
P(Ye–R2(w) > y)

= 1. (3.2)

The lemma below can be derived from Lemma 5 of Chen et al. [3].

Lemma 3.5 Let {Xi, 1 ≤ i ≤ n} be a sequence of independent random variables with com-
mon distribution F ∈ D ∩ L. Suppose that {ξi, 1 ≤ i ≤ n} is another sequence of nonneg-
ative and non-degenerate at 0 random variables satisfying Eξ

p
i < ∞ for some p > J+

F . If
{ξi, 1 ≤ i ≤ n} is independent of {Xi, 1 ≤ i ≤ n}, then

lim
x∧y→∞

P(ξiXi > x, ξjXj > y)
P(ξjXj > y)

= 0

holds for all 1 ≤ i �= j ≤ n.

The following lemma gives an important property of bivariate Sarmanov distributions
and it is also interesting by itself.

Lemma 3.6 Suppose that (X, Y ) follows a bivariate Sarmanov distribution (1.2) with
limx→∞ ϕi(x) = di for i = 1, 2. Then

P(X > x, Y > y) ∼ (1 + θd1d2)F(x)G(y).

Proof By (1.1),

P(X > x, Y > y) =
∫ ∞

x

∫ ∞

y

(
1 + θϕ1(u)ϕ2(v)

)
F(du)G(dv) ∼ (1 + θd1d2)F(x)G(y). �

By Lemmas 3.3(2), 3.5 and 3.6, the following lemma can be derived from Lemma 3(ii) of
Li [21].
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Lemma 3.7 Let (X, Y ) follow a bivariate Sarmanov distribution of the form (1.1) with
limx→∞ ϕi(x) = di for i = 1, 2. Suppose that φi(βi) < 0, i = 1, 2, for some β1 > J+

F and β2 > J+
G.

If the distributions of X and Y satisfy F ∈ D ∩ L and G ∈ D ∩ L, then, for any s > 0 and
w > 0,

P
(
Xe–R1(s) > x – h(x), Ye–R2(w) > y – h(y)

)

∼ (1 + θd1d2)P
(
X∗e–R1(s) > x

)
P
(
Y ∗e–R2(w) > y

)
,

where h(x) is defined as in (3.1) and (3.2).

In view of Theorem 2.1 in Li [21] and Lemma 3.7, we arrive at the following lemma.

Lemma 3.8 Let {(X, Y ), (Xi, Yi), i ≥ 1} be a sequence of i.i.d. nonnegative random vectors
following a bivariate Sarmanov distribution of the form (1.1). Suppose that φi(βi) < 0, i =
1, 2, for some β1 > J+

F and β2 > J+
G. If the distributions of X and Y satisfy F ∈ D ∩ L and

G ∈ D ∩L, then, for any fixed m ≥ 1 and n ≥ 1, uniformly for all 0 < si ≤ t, 0 < ti ≤ t and
t ∈ ΛT ,

P

( m∑

i=1

Xie–R1(si) > x,
n∑

j=1

Yje–R2(tj) > y

)

∼

m∑

i=1

n∑

j=1

P
(
Xie–R1(si) > x, Yje–R2(tj) > y

)
.

Following the proof of Theorem 1.1 in Liu and Zhang [22] with some modifications, we
can get the lemma below.

Lemma 3.9 Let {(X, Y ), (Xi, Yi), i ≥ 1} be a sequence of i.i.d. nonnegative random vectors
following a bivariate Sarmanov distribution of the form (1.2). Suppose that the distributions
of X and Y satisfy F ∈D∩L and G ∈D∩L with 0 < J–

F ≤ J+
F < ∞ and 0 < J–

G ≤ J+
G < ∞. As-

sume that {ξi, i ≥ 1} and {ζj, j ≥ 1} are another two sequences of nonnegative random vari-
ables, and that there exist p1, p2 and p satisfying 0 < p1 < J–

F , 0 < p2 < J–
G and p > max{J+

F , J+
G}

such that

∞∑

i=1

(
Eξ

p1
i

)1(J+
F <1)+ 1

p 1(J+
F ≥1) < ∞,

∞∑

i=1

(
Eξ

p
i
)1(J+

F <1)+ 1
p 1(J+

F ≥1) < ∞,

∞∑

j=1

(
Eζ

p2
j

)1(J+
G<1)+ 1

p 1(J+
G≥1) < ∞,

∞∑

j=1

(
Eζ

p
j
)1(J+

G<1)+ 1
p 1(J+

G≥1) < ∞.

Then

P

( ∞∑

i=1

ξiXi > x,
∞∑

j=1

ζjYj > y

)

∼

∞∑

i=1

∞∑

j=1

P(ξiXi > x, ζjYj > y).
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Remark 2 For the geometric Lévy process {eR1(t), t ≥ 0}, when J+
F ≤ 1, there exists some β1

satisfying β1 > J+
F and φ(β1) < 0, such that, for any 0 < p1 < β1,

∞∑

i=1

Ee–p1R1(τi) =
∞∑

i=1

∫ ∞

0
esφ1(p1)P(τi ≤ s) =

Eeτ1φ1(p1)

1 – Eeτ1φ1(p1) < ∞.

When J+
F > 1, we can choose some p satisfying β1 > p > J+

F . Likewise,

∞∑

i=1

(
Ee–pR1(τi)

)1/p =
∞∑

i=1

(
Eeτiφ1(p))1/p =

∞∑

i=1

(
Eeτ1φ1(p))i/p < ∞.

Similar results hold for the geometric Lévy process {eR2(t), t ≥ 0}. Hence, by Lemma 3.9,

P

( ∞∑

i=1

Xie–R1(τi) > x,
∞∑

j=1

Yje–R2(ηj) > y

)

∼

∞∑

i=1

∞∑

j=1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y

)
.

For simplicity, for t > 0, denote Ω1(t) = [0, t] × (t,∞), Ω2(t) = (t,∞) × [0, t] and Ω3(t) =
(t,∞) × (t,∞). By a simply calculation, we can obtain the following lemma.

Lemma 3.10 Under the conditions of Theorem 2.1, for any k = 1, 2, 3, the following asser-
tions hold:

lim
t→∞ lim sup

min(x,y)→∞

∫ ∫
Ωk (t) P(X∗e–R1(u) > x)P(Y ∗e–R2(v) > y)λ(du, dv)

∫ t
0
∫ t

0 P(X∗e–R1(u) > x)P(Y ∗e–R2(v) > y)λ(du, dv)
= 0 (3.3)

and

lim
t→∞ lim sup

min(x,y)→∞
sup
i≥1

∫ ∫
Ωk (t) P(X∗e–R1(u) > x)P(Y ∗e–R2(v) > y)P(τi ∈ du,ηi ∈ dv)

∫ t
0
∫ t

0 P(X∗e–R1(u) > x)P(Y ∗e–R2(v) > y)P(τi ∈ du,ηi ∈ dv)

= 0. (3.4)

Proof It suffices to prove the first expression for k = 1. By the proof of Lemma 4.3 in Tang et
al. [29], we know that E(e–p inf0≤u≤t R1(u)) < ∞ holds for 0 < p < β1, and that P(e– sup0≤u≤t R1(u) >
ε) > 0 holds for 0 < ε < 1. By Lemma 3.4,

lim
t→∞ lim sup

min(x,y)→∞

∫ ∫
Ω1(t) P(X∗e–R1(u) > x)P(Y ∗e–R2(v) > y)λ(du, dv)

∫ t
0
∫ t

0 P(X∗e–R1(u) > x)P(Y ∗e–R2(v) > y)λ(du, dv)

≤ lim
x→∞

P(X∗e– inf0≤u≤t R1(u) > x)
P(X∗ε > x)P(e– sup0≤u≤t R1(u) > ε)

× lim
t→∞ lim

y→∞

∫ ∞
t P(Y ∗e–R2(v) > y) dλ2(v)
∫ t

0 P(Y ∗e–R2(v) > y) dλ2(v)
= 0.

In the same way, for k = 1, 2, 3, (3.3) and (3.4) follow. �
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In order to prove Theorem 2.2, we define ruin times for the two kinds of insurance busi-
nesses. Denote

ϑi = inf
{

t ≥ 0 : Ui(t) < 0
}

, i = 1, 2.

The following lemma plays an important role in proving Theorem 2.2.

Lemma 3.11 Under the conditions of Theorem 2.1, we have

P(ϑ1 ≤ t) ∼
∫ t

0
P
(
X∗e–R1(u) > x

)
dλ1(u) (3.5)

and

P(ϑ2 ≤ t) ∼
∫ t

0
P
(
Y ∗e–R2(v) > y

)
dλ2(v) (3.6)

hold uniformly for all t ∈ Λ.

Proof In proving Theorem 1.2 of Fu and Ng [10], for F ∈D ∩L, applying Theorem 1.1 of
Liu and Zhang [22] instead of Theorem 2 of Yi et al. [32], we can arrive at

P

(M(t)∑

i=1

Xie–R1(τi) > x

)

∼

∫ t

0
P
(
X∗e–R1(u) > x

)
dλ1(u) (3.7)

holds uniformly for all t ∈ Λ. Hence, it is clear that

P(ϑ1 ≤ t) ≤ P

(M(t)∑

i=1

Xie–R1(τi) > x

)

∼

∫ t

0
P
(
X∗e–R1(u) > x

)
dλ1(u) (3.8)

holds uniformly for all t ∈ Λ.
Next we turn to the proof of the asymptotic lower bound of (3.5). Since F ∈ D ∩ L,

according to Lemma 3.4, for any 0 ≤ u ≤ t, the distribution of X∗e–R1(u) still belongs to
D∩L. By Remark 1, there exists some slowly varying function l(x) satisfying 0 < l(x) → ∞,
l(x)/x → 0 such that, for any 0 ≤ u ≤ t,

lim
x→∞

P(X∗e–R1(u) > x + l(x))
P(X∗e–R1(u) > x)

= 1. (3.9)

From Sect. 2.1 of Maulik and Zwart [23], we can see that
∫ ∞

0 e–R1(u) du is light-tailed.
Hence, by (3.7), (3.9) and Fatou’s lemma, uniformly for all t ∈ Λ,

P(ϑ1 ≤ t) ≥ P

(M(t)∑

i=1

Xie–R1(τi) – M
∫ ∞

0
e–R1(u) du > x

)

� P

(M(t)∑

i=1

Xie–R1(τi) > x + l(x)

)

�
∫ t

0
P
(
X∗e–R1(u) > x

)
dλ1(u). (3.10)
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A combination of (3.8) and (3.10) yields (3.5) holds uniformly for all t ∈ Λ. In the same
way, we can prove that (3.6) also holds uniformly for all t ∈ Λ. �

4 Proofs of main results
4.1 Proof of Theorem 2.1
Choose some fixed positive integer M. Uniformly for all t ∈ ΛT

P

(M(t)∑

i=1

Xie–R1(τi) > x,
N(t)∑

j=1

Yje–R2(ηj) > y

)

=
∞∑

m=1

∞∑

n=1

P

( m∑

i=1

Xie–R1(τi) > x,
n∑

j=1

Yje–R2(ηj) > y, M(t) = m, N(t) = n

)

=

( M∑

m=1

M∑

n=1

+
M∑

m=1

∞∑

n=M+1

+
∞∑

m=M+1

M∑

n=1

+
∞∑

m=M+1

∞∑

n=M+1

)

× P

( m∑

i=1

Xie–R1(τi) > x,
n∑

j=1

Yje–R2(ηj) > y, M(t) = m, N(t) = n

)

≡ K1(x, y; t) + K2(x, y; t) + K3(x, y; t) + K4(x, y; t). (4.1)

We first consider K1(x, y; t). For m ≥ 1 and n ≥ 1, write Ω (1)(m) = {0 ≤ s1 ≤ · · · ≤ sm ≤
t, sm+1 > t} and Ω (2)(n) = {0 ≤ t1 ≤ · · · ≤ tn ≤ t, tn+1 > t}. By Lemma 3.8, uniformly for all
t ∈ ΛT

K1(x, y; t)

∼
M∑

m=1

M∑

n=1

m∑

i=1

n∑

j=1

∫

Ω(1)(m)×Ω(2)(n)
P
(
X∗e–R1(si) > x, Y ∗e–R2(tj) > y

)

× P(τ1 ∈ s1, . . . , τm+1 ∈ sm+1,η1 ∈ t1, . . . ,ηn+1 ∈ tn+1)

=
M∑

m=1

M∑

n=1

m∑

i=1

n∑

j=1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y, M(t) = m, N(t) = n

)
.

According to the above expression, uniformly for all t ∈ ΛT ,

K1(x, y; t)

∼
∞∑

m=1

∞∑

n=1

m∑

i=1

n∑

j=1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y, M(t) = m, N(t) = n

)

–
∞∑

m=1

∞∑

n=M+1

m∑

i=1

n∑

j=1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y, M(t) = m, N(t) = n

)

–
∞∑

m=M+1

M∑

n=1

m∑

i=1

n∑

j=1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y, M(t) = m, N(t) = n

)

≡ K11(x, y; t) – K12(x, y; t) – K13(x, y; t).
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For K11(x, y; t), uniformly for all t ∈ ΛT ,

K11(x, y; t)

=
∞∑

j=1

∞∑

i=1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y, τi ≤ t,ηj ≤ t

)

=
∞∑

j=1

∞∑

i=j+1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y, τi ≤ t,ηj ≤ t

)

+
∞∑

i=1

P
(
Xie–R1(τi) > x, Yie–R2(ηi) > y, τi ≤ t,ηi ≤ t

)

+
∞∑

i=1

∞∑

j=i+1

P
(
Xie–R1(τi) > x, Yje–R2(ηj) > y, τi ≤ t,ηj ≤ t

)

∼

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
λ(du, dv)

+ θd1d2

∞∑

i=1

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv), (4.2)

where at the last step we used Lemma 3.6. In the following, we prove that K12(x, y; t) is
asymptotically negligible compared with K11(x, y; t). For K12(x, y; t), by Lemma 3.2, uni-
formly for all t ∈ ΛT ,

K12(x, y; t)

≤ (
1 + |θ |b1b2

)
P
(
X∗e– inf0≤u≤T R1(u) > x

)
P
(
Y ∗e– inf0≤v≤T R2(v) > y

)

× EN(t)M(t)1(N(T)≥M). (4.3)

By (4.3) and Lemma 3.4, for 0 < ε < 1,

lim
M→∞ lim

min{x,y}→∞
sup

t∈ΛT

K12(x, y; t)
∫ t

0
∫ t

0 P(X∗e–R1(u) > x, Y ∗e–R2(v) > y)λ(du, dv)

≤ lim
min{x,y}→∞

(1 + |θ |b1b2)P(X∗e– inf0≤u≤T R1(u) > x)P(Y ∗e– inf0≤v≤T R2(v) > y)
P(X∗e– sup0≤u≤T R1(u) > x)P(Y ∗ε > y)P(e– sup0≤v≤T R2(v) > ε)

× lim
M→∞ sup

t∈ΛT

EN(t)M(t)1(N(T)≥M)

λ(t, t)
= 0. (4.4)

As above, as M → ∞ and min{x, y} → ∞, we can prove K13(x, y; t) is also asymptotically
negligible in comparison with K11(x, y; t). Hence, uniformly for all t ∈ ΛT ,

K1(x, y; t)

∼

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)
λ(du, dv) + θd1d2

×
∞∑

i=1

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv). (4.5)
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Next we switch to deal with K2(x, y; t). Choose some p > max{J+
F , J+

G}. According to
Lemma 3.2 and Lemma 3.3(1), uniformly for all t ∈ ΛT ,

K2(x, y; t)

≤
M∑

m=1

∞∑

n=M+1

m∑

i=1

n∑

j=1

P
(
Xie– inf0≤u≤T R1(u) > x/m, Yje– inf0≤v≤T R2(v) > y/n

)

× P
(
M(t) = m, N(t) = n

)

≤ C
(
1 + |θ |b1b2

)
P
(
X∗e– inf0≤u≤T R1(u) > x

)
P
(
Y ∗e– inf0≤v≤T R2(v) > y

)

× E
(
M(t)N(t)

)p+11(N(T)≥M),

where C is a positive number. Following the proof of (4.4), we have

lim
M→∞ lim

min{x,y}→∞
sup

t∈ΛT

K2(x, y; t)
∫ t

0
∫ t

0 P(X∗e–R1(u) > x, Y ∗e–R2(v) > y)λ(du, dv)
= 0. (4.6)

Similarly to above, we can prove that

lim
M→∞ lim

min{x,y}→∞
sup

t∈ΛT

K3(x, y; t) + K4(x, y; t)
∫ t

0
∫ t

0 P(X∗e–R1(u) > x, Y ∗e–R2(v) > y)λ(du, dv)
= 0. (4.7)

Substituting (4.5), (4.6) and (4.7) into (4.1), we find that (2.1) holds uniformly for all t ∈ ΛT .
In what follows, we extend the uniformity of Eq. (2.1) to the whole interval Λ. By virtue

of Lemma 3.10, for any 0 < ε < 1, there exists some constant T0 such that, for any k = 1, 2, 3,
and i = 1, 2, . . . , the inequalities

∫ ∫

Ωk (T0)
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)
λ(du, dv)

≤ ε

∫ T0

0

∫ T0

0
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)
λ(du, dv) (4.8)

and
∫ ∫

Ωk (T0)
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv)

≤ ε

∫ T0

0

∫ T0

0
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv) (4.9)

hold for all sufficiently large x and y.
On the one hand, by Theorem 2.1, (4.8) and (4.9), for sufficiently large x and y, uniformly

for all t ∈ (T0,∞],

P

(M(t)∑

i=1

Xie–R1(τi) > x,
N(t)∑

j=1

Yje–R2(ηj) > y

)

≥ P

(M(T0)∑

i=1

Xie–R1(τi) > x,
N(T0)∑

j=1

Yje–R2(ηj) > y

)
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≥ (1 – ε)
(∫ t

0
–

∫ ∞

T0

)(∫ t

0
–

∫ ∞

T0

)
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)
λ(du, dv)

+ (1 – ε)θd1d2

∞∑

i=1

(∫ t

0
–

∫ ∞

T0

)(∫ t

0
–

∫ ∞

T0

)
P
(
X∗e–R1(u) > x, Y ∗e–R2(v) > y

)

× P(τi ∈ du,ηi ∈ dv)

≥ (1 – 2ε)2
∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
λ(du, dv) + (1 – 2ε)2

× θd1d2

∞∑

i=1

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv). (4.10)

On the other hand, by Remark 2, (4.8) and (4.9), uniformly for all t ∈ (T0,∞],

P

(M(t)∑

i=1

Xie–R1(τi) > x,
N(t)∑

j=1

Yje–R2(τj) > y

)

≤ (1 + ε)
(∫ t

0
+

∫ ∞

T0

)(∫ t

0
+

∫ ∞

T0

)
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
λ(du, dv)

+ (1 + ε)θd1d2

∞∑

i=1

(∫ t

0
+

∫ ∞

T0

)(∫ t

0
+

∫ ∞

T0

)
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)

× P(τi ∈ du,ηi ∈ dv)

≤ (1 + 2ε)2
∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
λ(du, dv) + (1 + 2ε)2

× θd1d2

∞∑

i=1

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x

)
P
(
Y ∗e–R2(v) > y

)
P(τi ∈ du,ηi ∈ dv). (4.11)

Combining (4.10) and (4.11) and taking account into the arbitrariness of ε, we see that
Eq. (2.1) holds uniformly for all t ∈ (T0,∞). Hence, we complete the proof of Theorem 2.1.

4.2 Proof of Theorem 2.2
For convenience, denote the right-hand side of (2.2) by φθ (x, y; t). We first deal with the
asymptotic upper bound of ψmax(x, y; t). On the one hand, by Theorem 2.1, it follows that

ψmax(x, y; t) ≤ P

(M(t)∑

i=1

Xie–R1(τi) > x,
N(t)∑

j=1

Yje–R2(ηj) > y

)

∼ φθ (x, y; t) (4.12)

holds uniformly for all t ∈ Λ. Then we discuss the asymptotic lower bound of ψmax(x, y; t).
For simplicity, write

Zi =
∫ ∞

0
e–Ri(u) du, i = 1, 2.

Notice that Z1 and Z2 are light-tailed. We can choose some slowly varying function l(x)
satisfying 0 < l(x) → ∞, l(x)/x → 0, such that, for all 0 ≤ u, v ≤ t,

lim
x→∞

P(X∗e–R1(u) > x + l(x))
P(X∗e–R1(u) > x)

= 1
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and

lim
y→∞

P(Y ∗e–R2(v) > y + l(y))
P(Y ∗e–R2(v) > y)

= 1.

According to the definition of ψmax(x, y; t), Theorem 2.1 and Fatou’s lemma, uniformly for
all t ∈ Λ,

ψmax(x, y; t)

� P

(M(t)∑

i=1

Xie–R1(τi) > x + MZ1,
N(t)∑

j=1

Yje–R2(ηj) > y + MZ2

)

� P

(M(t)∑

i=1

Xie–R1(τi) > x + l(x),
N(t)∑

j=1

Yje–R2(ηj) > y + l(y)

)

∼

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x + l(x)

)
P
(
Y ∗e–R2(v) > y + l(y)

)
λ(du, dv) + θd1d2

×
∞∑

i=1

∫ t

0

∫ t

0
P
(
X∗e–R1(u) > x + l(x)

)
P
(
Y ∗e–R2(v) > y + l(y)

)
P(τi ∈ du,ηi ∈ dv)

� φθ (x, y; t). (4.13)

A combination of (4.12) and (4.13) shows that (2.2) holds uniformly for all t ∈ Λ.
Now we begin to discuss the asymptotic behavior of ψmin(x, y; t). It is not hard to see that

ψmin(x, y; t) = P(ϑ1 ≤ t) + P(ϑ2 ≤ t) – ψmax(x, y; t). (4.14)

Since for any fixed T < ∞, N(T) < ∞, there exists some b > 0 such that

∞∑

j=1

P(τi ∈ du,ηj ≤ T) =
∞∑

j=1

P
(
τi ∈ du, N(T) ≥ j

) ≤ bP(τi ∈ du). (4.15)

According to (2.2) and (4.15), we have

lim
min{x,y}→∞

lim sup
t∈ΛT

ψmax(x, y; t)
∫ t

0 P(X∗e–R1(u) > x) dλ1(u) +
∫ t

0 P(Y ∗e–R2(v) > y) dλ2(v)

≤ lim
x→∞ lim sup

t∈ΛT

∑∞
i=1

∫ t
0 P(X∗e–R1(u) > x)(

∑∞
j=1 P(τi ∈ du,ηj ≤ T))

∑∞
i=1

∫ t
0 P(X∗e–R1(u) > x)P(τi ∈ du)

× (
1 + |θ |d1d2

)
lim

y→∞ P
(
Y ∗e– inf0≤v≤T R2(v) > y

)
= 0. (4.16)

In terms of (4.14), (3.5), (3.6) and (4.16), we find that (2.3) holds uniformly for all t ∈ ΛT .
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