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Abstract
This paper deals with the first-order delayed differential systems

{
u′ + a(t)u = h(t)v + f (t,u(t – τ (t))),

v′ + b(t)v = g(t,u(t – τ (t))),

where a, b, τ , h are continuous ω-periodic functions with
∫ ω

0 a(t)dt = 0 and∫ ω

0 b(t)dt > 0; f ∈ C(R× [0,∞),R) and g ∈ C(R× [0,∞), [0,∞)) are ω-periodic with
respect to t. By means of the fixed point theorem in cones, several new existence
theorems on positive periodic solutions are established. Our main results enrich and
complement those available in the literature.
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1 Introduction
In the past few decades, there has been considerable interest in the existence of positive
periodic solutions of the first-order delayed equation

u′ + a(t)u = λb(t)f
(
u
(
t – τ (t)

))
, (1.1)

where a, b ∈ C(R, [0,∞)) are ω-periodic with

∫ ω

0
a(t) dt > 0,

∫ ω

0
b(t) dt > 0,

and τ is a continuous ω-periodic function. Note that when λ = 0, equation (1.1) reduces
to u′ = –a(t)u, which is well known in Malthusian population models. In real world appli-
cations, (1.1) has also been viewed as a model for a variety of physiological processes and
conditions including production of blood cells, respiration and cardiac arrhythmias. We
refer the reader to [1–10] for some research work on this topic. Meanwhile, many authors
have paid attention to the corresponding differential systems of (1.1), namely,

u′
i + ai(t)ui = λbi(t)fi(u1, u2, . . . , un), i = 1, 2, . . . , n,
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where ai, bi ∈ C(R, [0,∞)) are ω-periodic functions, and also supposed to satisfy

∫ ω

0
ai(t) dt > 0,

∫ ω

0
bi(t) dt > 0, i = 1, 2, . . . , n.

See, for instance, Wang [11, 12], Chen et al. [13] and the references therein.
Obviously, the basic assumption

∫ ω

0 a(t) dt > 0 or
∫ ω

0 ai(t) dt > 0 (i = 1, 2, . . . , n), employed
usually to guarantee the linear boundary value problem

u′ + a(t)u = 0, u(0) = u(ω) (1.2)

is non-resonant, has played a key role in the arguments of the above-mentioned papers.
Indeed, it ensures a number of tools, such as fixed point theory, bifurcation theory and so
on, could be applied to study the corresponding problems and establish desired existence
results. Here (1.2) is called non-resonant if the unique solution of it is the trivial one.
Moreover, if (1.2) is non-resonant then, provided that h is a L1-function, the Fredholm
alternative theorem implies the nonhomogeneous problem

u′ + a(t)u = h(t), u(0) = u(ω)

always admits a unique solution, which can be written as

x(t) =
∫ ω

0
G(t, s)h(s) ds,

where G(t, s) is the Green’s function associated to (1.2), see [7–13] for more details.
Compared with the non-resonant problems, the research of the resonant problems pro-

ceeds very slowly and the related results are relatively little. Therefore inspired by the
existing literature, we study the existence of positive periodic solutions of the following
first-order delayed differential system:

⎧⎨
⎩u′ + a(t)u = h(t)v + f (t, u(t – τ (t))),

v′ + b(t)v = g(t, u(t – τ (t))).
(1.3)

A natural and interesting question is whether or not (1.3) possesses a positive periodic
solution provided that

∫ ω

0
a(t) dt = 0,

∫ ω

0
b(t) dt > 0, (1.4)

which means a may change its sign on R and the linear differential operator Lau := u′ +
a(t)u is resonant, Lbu := u′ + b(t)u is non-resonant.

Recently, Domoshnitsky et al. [14] studied the following system of periodic functional
differential equations:

(Mix)(t) ≡ x′
i(t) +

n∑
j=1

(Bijxj)(t) = fi(t), t ∈ [0,ω], i = 1, 2, . . . , n, (1.5)
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xi(0) = xi(ω) + ci, i = 1, 2, . . . , n, (1.6)

where x = col(x1, . . . , xn), Bij : C[0,ω] → L[0,ω] are linear bounded operator for i, j =
1, . . . , n, fi ∈ L[0,ω] and ci ∈R for i = 1, . . . , n. Note that if the corresponding homogeneous
problem

(Mix)(t) = 0, t ∈ [0,ω], i = 1, 2, . . . , n, (1.7)

xi(0) = xi(ω), i = 1, 2, . . . , n (1.8)

has only trivial solution, then, for any f = col(f1, . . . , fn) and c = col(c1, . . . , cn), system (1.5),
(1.6) admits a unique solution x defined as [15]

x(t) =
∫ ω

0
G(t, s)f (s) ds + X(t)c, t ∈ [0,ω]. (1.9)

Here G(t, s) is a n × n matrix and is called Green’s matrix of (1.5), the n × n matrix X(t)
is the fundamental matrix of (1.7) satisfying X(0) – X(ω) = E, where E denotes the unit
n × n matrix. By an inspection of (1.9), It is not difficult to see all properties of solutions
are determined by G(t, s) and X(t). Hence a series of excellent results on positivity and
negativity of G(t, s) have been established in [14]. For instance, there are results on posi-
tivity (negativity) of G(t, s) when all nondiagonal operators Bij (i �= j, i, j = 1, . . . , n) are neg-
ative (positive), and results about positivity or negativity of the elements in the nth row of
G(t, s). To prove these results, the main idea and approach adopted by Domoshnitsky is to
construct a corresponding first-order scalar functional equation

x′
n(t) + (Bxn)(t) = f ∗(t), t ∈ [0,ω],

for nth component of a solution vector, here B : C[0,ω] → L[0,ω] is a linear continuous
operator and f ∗ ∈ L[0,ω]. This idea has also been applied by Domoshnitsky to a study of
the Cauchy problem [16] and some two-point boundary value problems [17].

In Sects. 2 and 3 of the present paper, the key idea of [14] to use non-resonant second
scalar equation to obtain the assertion of v(t), and then to set its representation in the
first equation, will be employed to establish new existence theorems for system (1.3). To
the best of our knowledge, the above-mentioned problem has not been studied so far and
our results shall fill this gap. For the simplicity of statement, let E be the Banach space
composed of continuous ω-periodic functions with the norm ‖u‖ = maxt∈[0,ω] |u(t)|. For
q ∈ E, we say q 
 0 if it is strictly positive on [0,ω], and q � 0 if q is nonnegative and∫ ω

0 g(t) dt > 0. We denote by q̄ and q the maximum and minimum of q 
 0 on [0,ω]. By a
positive ω-periodic solution of (1.3), we mean a vector function (u, v), such that u, v 
 0
are continuously differentiable everywhere and satisfy (1.3). Hence for the above question,
if we choose χ 
 0 such that p := a + χ � 0, then

∫ ω

0 p(t) dt > 0, so the linear differential
operator Lu := u′ + p(t)u is invertible. In the following, we always assume τ ∈ C(R,R) is
ω-periodic, and:

(H1) a ∈ C(R,R) is ω-periodic with
∫ ω

0 a(t) dt = 0 and b � 0, h � 0;
(H2) there exists χ 
 0 such that p = a + χ � 0;
(H3) f ∈ C(R× [0,∞),R) is ω-periodic with respect to t and f (t, u) ≥ –χ (t)u;
(H4) g ∈ C(R× [0,∞), [0,∞)) is ω-periodic with respect to t.
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Remark 1.1 Note that a and f are assumed to be sign-changing, and therefore system
(1.3) is more general than corresponding ones studied in the existing literature. For other
research work on nonlinear differential equations at resonance, we refer the reader to [18–
21] and the references listed therein.

The rest of the paper is arranged as follows. In Sect. 2, we introduce some preliminaries.
And finally in Sect. 3, we state and prove our main results. In addition, several remarks
will be given to demonstrate the feasibility of our main results.

2 Preliminaries
Let G̃(t, s) be the Green’s function of the linear boundary value problem

v′ + b(t)v = 0, v(0) = v(ω).

Then simple calculation gives the following.

Lemma 2.1 Let (H1) hold and δ̃ = e–
∫ ω

0 b(t) dt . Then

G̃(t, s) =
e
∫ s

t b(θ ) dθ

δ̃–1 – 1
, t ≤ s ≤ t + ω,

and

m̃ :=
1

δ̃–1 – 1
≤ G̃(t, s) ≤ δ̃–1

δ̃–1 – 1
=: M̃, t ≤ s ≤ t + ω.

By Lemma 2.1 and (H4), it is not difficult to verify

⎧⎨
⎩v′ + b(t)v = g(t, u(t – τ (t))), t ∈ (0,ω),

u(0) = u(ω),

is equivalent to the equation

v(t) =
∫ t+ω

t
G̃(t, s)g

(
s, u

(
s – τ (s)

))
ds =: Au(t), (2.1)

and A : E → E is completely continuous. Then system (1.3) can be equivalently written as
the following integral-differential equation:

u′ + a(t)u = h(t)Au(t) + f
(
t, u

(
t – τ (t)

))
.

Moreover, by (H2) we get

u′ + p(t)u = χ (t)u + h(t)Au(t) + f
(
t, u

(
t – τ (t)

))
. (2.2)

Clearly, if u is a positive ω-periodic solution of (2.2), then the original system (1.3) admits
a positive ω-periodic solution (u, v). In the following, we shall focus on studying (2.2).
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Recall that (H2) ensures the linear differential operator Lu := u′ + p(t)u is invertible.
Therefore, by an argument similar to obtain Lemma 2.1, the Green’s function of

u′ + p(t)u = 0, u(0) = u(ω),

can be expressed as

K(t, s) =
e
∫ s

t p(θ ) dθ

δ–1 – 1
, t ≤ s ≤ t + ω,

where δ = e–
∫ ω

0 p(t) dt , and accordingly,

m :=
1

δ–1 – 1
≤ K(t, s) ≤ δ–1

δ–1 – 1
=: M, t ≤ s ≤ t + ω.

Consequently, (2.2) can be written as the equivalent operator equation

u(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + h(s)Au(s) + f

(
s, u

(
s – τ (s)

)))
ds =: Tu(t).

Setting σ := m
M and define

P =
{

u ∈ E : u(t) ≥ σ‖u‖, t ∈ [0,ω]
}

.

Then σ < 1 and P is a positive cone in E.

Lemma 2.2 Let (H1)–(H4) hold. Then T(P) ⊆ P and T : P → P is compact and contin-
uous.

Proof Using (H3), and similarly to the proof of [12, Lemmas 2.2, 2.3] with obvious changes,
we can easily get the conclusion. �

The following lemma is crucial to prove our main results.

Lemma 2.3 (Guo–Krasnoselskii’s fixed point theorem [22, 23]) Let E be a Banach space,
and let P ⊆ E a cone. Assume Ω1, Ω2 are two open bounded subsets of E with 0 ∈ Ω1,
Ω̄1 ⊆ Ω2, and let T : P ∩ (Ω̄2 \ Ω1) →P be a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂Ω2; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω̄2 \ Ω1).

3 Main results
In this section, we shall state and prove our main findings. First we give the following
notations:

f0 = lim
u→0+

f (t, u)
u

, f∞ = lim
u→∞

f (t, u)
u

, uniformly for t ∈ [0,ω];

g0 = lim
u→0+

g(t, u)
u

, g∞ = lim
u→∞

g(t, u)
u

, uniformly for t ∈ [0,ω].
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Theorem 3.1 Let (H1)–(H4) hold. If g0 = 0, f∞ = ∞ and

lim
u→0+

f (t, u)
u

= –χ (t), (3.1)

then (1.3) admits at least one positive ω-periodic solution.

Proof For 0 < r < R < ∞, setting

Ω1 =
{

u ∈ E : ‖u‖ < r
}

, Ω2 =
{

u ∈ E : ‖u‖ < R
}

,

then we have 0 ∈ Ω1, Ω̄1 ⊆ Ω2.
It follows from (3.1) that there exists r1 > 0, such that, for any 0 < u ≤ r1,

f (t, u) ≤ cu – χ (t)u,

where c is a positive constant small such that cMω ≤ 1
2 . Therefore, for u ∈P with ‖u‖ ≤ r1,

we can obtain

f (t, u) + χ (t)u ≤ cu, t ∈ [0,ω].

Moreover, since g0 = 0, there exists r2 > 0 so that g(t, u) ≤ du for any 0 < u ≤ r2. Thus, for
u ∈P with ‖u‖ ≤ r2, simple estimation gives

Au(t) =
∫ t+ω

t
G̃(t, s)g

(
s, u

(
s – τ (s)

))
ds ≤ ωM̃ d‖u‖,

where d is a positive constant small enough such that ω dMM̃h0 ≤ 1
2 and h0 =

∫ ω

0 h(t) dt.
Let r = min{r1, r2}. Then, for u ∈P with ‖u‖ = r, we get

Tu(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds +

∫ t+ω

t
K(t, s)h(s)Au(s) ds

≤ cMω‖u‖ + ω dMM̃h0‖u‖ ≤ ‖u‖,

which implies ‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω1.
On the other hand, f∞ = ∞ shows there exists R̃ > 0 such that, for any u ≥ R̃,

f (t, u) ≥ ηu,

where η > 0 is a constant large enough such that σmω(η + χ ) ≥ 1 and χ = mint∈[0,ω] χ (t).
Fixing R > max{r, R̃

σ
} and let u ∈P with ‖u‖ = R, then

u(t) ≥ σ‖u‖ = σR > R̃

and

f (t, u) + χ (t)u ≥ ηu + χ (t)u ≥ σ (η + χ )‖u‖, t ∈ [0,ω].
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Consequently, for u ∈P with ‖u‖ = R, by (H4) we can obtain

Tu(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds +

∫ t+ω

t
K(t, s)h(s)Au(s) ds

≥ σmω(η + χ )‖u‖ ≥ ‖u‖.

Hence ‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω2.
By Lemma 2.3(i), T has a fixed point u∗ ∈ P ∩ (Ω̄2 \ Ω1), which is just a positive ω-

periodic solution of (2.2). Subsequently, (1.3) admits at least one positive ω-periodic so-
lution. �

Theorem 3.2 Let (H1)–(H4) hold. If f0 = ∞, g∞ = 0 and

lim
u→+∞

f (t, u)
u

= –χ (t), (3.2)

then (1.3) admits at least one positive ω-periodic solution.

Proof We follow the same strategy and notations as in the proof of Theorem 3.1. Firstly,
we show for r > 0 sufficiently small,

‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω1. (3.3)

It follows from f0 = ∞ that there exists r̃ > 0 such that f (t, u) ≥ βu for any 0 < u ≤ r̃, where
β > 0 is a constant large enough such that σmω(β + χ ) ≥ 1. Therefore, for 0 < r ≤ r̃, if
u ∈P and ‖u‖ = r, then

f (t, u) + χ (t)u ≥ βu + χ (t)u ≥ σ (β + χ )‖u‖, t ∈ [0,ω],

and

Tu(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds +

∫ t+ω

t
K(t, s)h(s)Au(s) ds

≥ σmω(β + χ )‖u‖ ≥ ‖u‖.

Thus, (3.3) is true.
Secondly, we show for R > 0 sufficiently large,

‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω2. (3.4)

It follows from (3.2) that there exists R̃ > 0 so that

f (t, u) ≤ μu – χ (t)u

for any u ≥ R̃, where μ > 0 satisfies μMω ≤ 1
2 . Let R1 > max{r̃, R̃

σ
}, then if u ∈P and ‖u‖ ≥

R1, we get

u(t) ≥ σ‖u‖ ≥ σR1 > R̃,
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and then

f (t, u) + χ (t)u ≤ μu ≤ μ‖u‖, t ∈ [0,ω].

Moreover, g∞ = 0 implies there exists R2 > 0 so that g(t, u) ≤ γ u for any u ≥ R2 and t ∈
[0,ω]. Therefore, for u ∈P with ‖u‖ ≥ R2, we have

Au(t) =
∫ t+ω

t
G̃(t, s)g

(
s, u

(
s – τ (s)

))
ds ≤ ωM̃γ ‖u‖,

where γ is a positive constant small enough such that ωγ MM̃h0 ≤ 1
2 . Let R = max{R1, R2}.

Then, for u ∈P with ‖u‖ = R, we can obtain

Tu(t) =
∫ t+ω

t
K(t, s)

(
χ (s)u(s) + f

(
s, u

(
s – τ (s)

)))
ds +

∫ t+ω

t
K(t, s)h(s)Au(s) ds

≤ μMω‖u‖ + ωγ MM̃h0‖u‖ ≤ ‖u‖,

which implies (3.4) is true.
Consequently, it follows from Lemma 2.3(ii) that T has a fixed point u∗ in P ∩ (Ω̄2 \Ω1),

which is just a positive ω-periodic solution of (2.2), Subsequently, (1.3) admits at least one
positive ω-periodic solution. �

In the following, we investigate the multiplicity of positive ω-periodic solutions of sys-
tem (1.3). To the end, we suppose:

(H5) g0 = 0 = g∞, and (3.1) and (3.2) hold. In addition, there exists α > 0, such that

min
{

f (t, u) : σα ≤ u ≤ α, t ∈ [0,ω]
}

>
(
μ – σχ (t)

)
α,

where μ > 0 satisfies mωμ ≥ 1.

Theorem 3.3 Let (H1)–(H5) hold. Then (1.3) admits at least two positive ω-periodic so-
lutions.

Proof Define

Ω3 =
{

u ∈ E : ‖u‖ < α
}

.

Let Ω1 and Ω2 be the same as in the proofs of Theorems 3.1 and 3.2. Then, for 0 < r < α < R,
we have Ω̄1 ⊆ Ω3, Ω̄3 ⊆ Ω2.

Applying g0 = 0 and (3.1), and by an argument similar to the first part of the proof of
Theorem 3.1, we can obtain

‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω1.

Similarly, combining g∞ = 0 and (3.2), we conclude

‖Tu‖ ≤ ‖u‖, ∀u ∈P ∩ ∂Ω2.
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Obviously, the proof is finished if we prove

‖Tu‖ ≥ ‖u‖, ∀u ∈P ∩ ∂Ω3. (3.5)

Suppose u ∈ P and ‖u‖ = α, then σα ≤ σ‖u‖ ≤ u(t) ≤ ‖u‖ = α, which together with
(H5) yields

f (t, u) >
(
μ – σχ (t)

)
α, t ∈ [0,ω],

and then

f (t, u) + χ (t)u ≥ f (t, u) + σχ (t)α > μα, t ∈ [0,ω].

Thus, similar to the first part of the proof of Theorem 3.2, we get

Tu(t) ≥ mωμα = mωμ‖u‖ ≥ ‖u‖,

and (3.5) is true. By Lemma 2.3, T has two fixed points u1 and u2, located in P ∩ (Ω̄3 \
Ω1) and P ∩ (Ω̄2 \ Ω3), respectively. Hence, (1.3) admits at least two positive ω-periodic
solutions. �

Conversely, if (H5) is replaced with:
(H5)′ f0 = ∞ = f∞, and there exists α > 0 such that

max
{

f (t, u) : σα ≤ u ≤ α, t ∈ [0,ω]
}

<
(
ε – χ (t)

)
α,

max
{

g(t, u) : σα ≤ u ≤ α, t ∈ [0,ω]
}

< εα,

where ε > 0, ε > 0 satisfies εMω ≤ 1
2 and ωεM̃Mh0 ≤ 1

2 , respectively, then similar
to the proof of Theorems 3.1–3.3, we can prove the following.

Theorem 3.4 Let (H1)–(H4) and (H5)′ hold. Then (1.3) admits at least two positive ω-
periodic solutions.

Remark 3.1 We would like to point out that the results of Theorems 3.1–3.4 remain true
for the special case a(·) ≡ 0, i.e., for system

⎧⎨
⎩u′ = h(t)v + f (t, u(t – τ (t))),

v′ + b(t)v = g(t, u(t – τ (t))).

Remark 3.2 It is worth remarking Theorems 3.1–3.4 apply to some equations which can-
not be treated by the results of [7–10], and thus our main results are novel.

4 Conclusions
We establish several novel existence theorems on positive periodic solutions for delayed
differential systems (1.3), via fixed point theorem in cones. Our main findings Theo-
rems 3.1–3.4 not only enrich and complement those available in the literature, but they
also apply to some systems (equations) which cannot be dealt with by the results appeared
in the existing literature.
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