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Abstract
This paper studies the problem of robust stability for uncertain neutral systems with
distributed delay. By utilizing the incorporation of a new integral inequality technique
and a novel Lyapunov–Krasovskii functional, some reduced conservative
delay-dependent stability conditions for asymptotic stability are established. Then
some special cases of neutral systems are discussed. Based on these delay-dependent
stability conditions, the condition for robustness is obtained for uncertain linear
delayed systems. All these stability conditions are given in terms of linear matrix
inequalities (LMIs), which can easily be computed by the LMI toolbox of Matlab.
Finally, several examples are discussed in detail to display the usefulness and
superiority of the obtained results.
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1 Introduction
The stability analysis of neutral delay-differential systems has received considerable at-
tention over the decades [1–18]. In the literature [1–18], the W-transform approach [1],
the positivity-based approach [2–16], the characteristic equation method [17], the Lya-
punov technique [18], and the state trajectory approach have been utilized to derive suf-
ficient conditions for asymptotic stability and exponential stability of the systems. How-
ever, most of the criteria are expressed in terms of a matrix norm or matrix measure of
the system matrices. Unfortunately, the matrix norm operations usually make the crite-
ria more conservative. Also the criteria in recent studies [16–18] require strong assump-
tions such as that the matrix measures of system matrices have to be negative. These as-
sumptions often make it difficult to apply the criteria to various systems, such as neu-
tral delay-differential systems with time-varying delay, uncertain neutral delay-differential
systems with time-delay, and so on. Inversely, these problems can easily be solved via the
Lyapunov–Krasovskii functional (LKF) method, and this method has thus received con-
siderable attention in the area of control engineering (see [19–23]).

As is well known, the Lyapunov functional method has received more and more atten-
tion in recent years due to its effectiveness in many problems, such as the problem of
control for linear neutral systems, the problem of delay-dependent stability (DDS) for lin-
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ear neutral systems (LNSS), etc. Based on this method, many interesting results on less
conservative DDS conditions have been obtained (see, e.g., [24–42]). It is worth noting
that [24–30, 42] mainly considered the neutral and discrete delay. In fact, a lot of practical
applications are modeled by systems with distributed delay. Consequently, a large number
of stability and stabilization results on systems with distributed delay have been reported
in [31–40]. It is pointed out that, although the information of three kinds of time-delays
were considered in [32–37], the relationships between the three kinds of time-delays have
not been fully studied. Accordingly, their interrelationships are discussed in [41]. How-
ever, so far, the obtained maximum allowable upper bounds (MAUBs) of delay in [41] are
not the best results. Thus, there still exists some room to improve with some novel LKFs,
which combines with a new inequality technique.

On the other hand, DDS conditions are often obtained by the Lyapunov functionals
theorem accompanied by some important techniques. Many important methods include
the bounding inequalities for the cross term [24], a descriptor model transformation [25],
the free-weighting matrix technique [26], integral inequality (II) methods (see [27, 28, 42]),
delay decomposition [29], and discretized LKFs [30]. Generally speaking, the II method
has always played a very important role in acquiring a DDS condition.

Up to now, many outstanding efforts have been made focused on the investigation of
integral inequalities to decrease the conservatism of stability criteria. As an option of the
Jensen inequality [25], the Wirtinger-based inequality was presented [43], in which the
single integral information of the state is considered. Recently, the free-matrix based II
was proposed in [44] by introducing some free matrices, which may be considered as an
improved version of the Wirtinger-based inequality. More recently, the double integral
information and triple integral information of the states was considered and a proposal
was made [45] which could lead to more relaxed stability criteria for the systems. Spe-
cially, it is noted that in order to further reduce the conservatism, some triple integral
functions have been added into the LKFs [45]. Very recently, [46] presented a series of
single/multiple IIs which proved to be less conservative than the existing ones. With the
results in [46], further less conservative results would be obtained based on some novel
Lyapunov functionals. Hence, the IIs in [46] should not be ignored, because they maybe
play a significant role in getting a delay-dependent stability condition for neutral systems
with discrete and distributed delays.

Motivated by the above discussion, the uncertain LNSS with discrete and distributed
delays will be considered in this article. By choosing some suitable IIs, a novel LKF is con-
structed. Based on the Lyapunov stability theory, some DDS conditions are got in terms of
LMIs. Moreover, some examples are given to display the superiority and low conservatism
of our results.

Some significant symbols used throughout this paper are considerably standard. The
symbols ‘–1’ and ‘T ’ represent the inverse and transpose of a matrix, respectively; Rn

stands for n-dimensional Euclidean space; Rm×n is the set of all m × n real matrices; P > 0
means that the matrix P is symmetric and positive definite; sym{X} = X + XT ; I is the
identity matrix; 0 is a zero matrix; and ‖ · ‖ refers to the induced matrix 2-norm. If the
dimensions of a matrix are not explicitly stated, the matrix is assumed to have compatible
dimensions.
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2 Problem statement
Consider the uncertain LNSS with time-delay

⎧
⎨

⎩

ẋ(t) – Bẋ(t – τ ) = Ax(t) + A1x(t – h) + A2
∫ t

t–r x(s) ds,

x(t) = φ(t), ∀t ∈ [–ρ, 0],ρ = max{τ , h, r}, t ≥ 0,
(1)

where x(t) ∈ R
n is the state vector, τ , h and r represent the neutral, discrete and distributed

delay, respectively. ρ = max{τ , h, r}, φ(t) is the initial condition function. B = B + �B,
A = A + �A, A1 = A1 + �A1, A2 = A2 + �A2. A, B, A1, A2 are known constant matrices.
�A, �A1, �A2 and �B denote the time-varying uncertainties, and the uncertainties are
supposed to be norm-bounded and satisfy

[

�A �A1 �A2 �B
]

= DF(t)
[

Na Nb Nc Nd

]
, (2)

where D, Na, Nb, Nc and Nd are known constant matrices, and F(t) is an unknown continu-
ous time-varying matrix function and satisfies FT (t)F(t) ≤ I . Furthermore, for system (1),
in order to guarantee system (1) has asymptotic stability, we need to assume ‖B + �B‖ ≤ 1.

The major object of this paper is to establish some less conservative stability and robust
stability conditions (RSCSs) for system (1). Before giving the primary results of this article,
some important lemmas are firstly introduced as follows.

Lemma 2.1 ([45]) For a given R > 0 and any differentiable function w : [a, b] → R
n, the

following inequality holds:

∫ b

a
wT (α)Rw(α) dα ≥ 1

b – a

(∫ b

a
w(α) dα

)T

R
(∫ b

a
w(α) dα

)

, (3)

∫ b

a
wT (α)Rw(α) dα ≥ 1

b – a

(∫ b

a
w(α) dα

)T

R
(∫ b

a
w(α) dα

)

+
3

b – a
Ω̄T

1 RΩ̄1 +
5

b – a
Ω̄T

2 RΩ̄2, (4)

where

Ω̄1 =
∫ b

a
w(α) dα –

2
b – a

∫ b

a

∫ b

β

w(α) dα dβ ,

Ω̄2 =
∫ b

a
w(α) dα –

6
b – a

∫ b

a

∫ b

β

w(α) dα dβ +
12

(b – a)2

∫ b

a

∫ b

γ

∫ b

β

w(α) dα dβ dγ .

Lemma 2.2 ([46]) For a given R > 0 and any differentiable function x : [a, b] → R
n, and

Mk ∈R
6n×n (k = 1, 2, 3, 4, 5), the following inequality holds:

–
∫ b

a
ẋT (s)Rẋ(s) ds ≤ υTΩυ, (5)

where

υ =
[

xT (b) xT (a) 1
ba

vT
1

2
b2

a
vT

2
6

b3
a

vT
3

24
b4

a
vT

4

]T
,



Wu et al. Journal of Inequalities and Applications        (2018) 2018:314 Page 4 of 16

Ω =
5∑

k=1

ba

2k – 1
MkR–1MT

k + sym{MkΠk}, ba = b – a,

v1 =
∫ b

a
x(s) ds, v2 =

∫ b

a

∫ b

θ

x(s) ds dθ , v3 =
∫ b

a

∫ b

θ

∫ b

u
x(s) ds du dθ ,

v4 =
∫ b

a

∫ b

θ

∫ b

u

∫ b

v
x(s) ds dv du dθ , Π1 = ē1 – ē2, Π2 = ē1 + ē2 – 2ē3,

Π3 = ē1 – ē2 + 6ē3 – 6ē4, Π4 = ē1 + ē2 – 12ē3 + 30ē4 – 20ē5,

Π5 = ē1 – ē2 + 20ē3 – 90ē4 + 140ē5 – 70ē6,

ēi =
[

0n×(i–1)n In 0n×(6–i)n

]
, i = 1, 2, . . . , 6.

In the following, we will use Lemmas 2.1 and 2.2 to obtain some main results.

3 Main results
In this section, for the uncertain LNSS (1), we give some sufficient conditions to ensure
its robust stability. Then, for the sake of convenient calculation, we rewrite system (1) as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + A1x(t – h) + A2
∫ t

t–r x(s) ds + Bẋ(t – τ ) + Dp(t),

p(t) = F(t)q(t),

q(t) = Nax(t) + Nbx(t – h) + Nc
∫ t

t–r x(s) ds + Ndẋ(t – τ ),

(6)

where p(t) ∈R
n, q(t) ∈R

n. Now, the DDS conditions are presented by taking advantage of
the new inequality technique and the novel constructed Lyapunov functionals.

Theorem 3.1 For given delays τ , h and r, system (1) is robustly asymptotically stable,
if there exist positive definite matrices P ∈ R

5n×5n, and H , Qi, Ri ∈ R
n×n (i ∈ 1, 2, 3), Q4 ∈

R
2n×2n and any matrices Nk , Mk , Fk ∈R

5n×n (k ∈ 1, 2, 3, 4) satisfying the following inequal-
ities:

Ψ = sym
{
Γ T

2 PΓ1
}

+ eT
1 (Q1 + Q2 + rQ3)e1 – eT

2 Q1e2 – eT
3 Q2e3 – reT

12Q3e12

– 3rΩT
1 Q3Ω1 – 5rΩT

2 Q3Ω2 + ΘT
1 Q4Θ1 – ΘT

2 Q4Θ2 + heT
0 R1e0

+ τeT
0 R2e0 + reT

0 R3e0 + Ω3 + Ω4 + Ω5 + ΣT HΣ – eT
15He15 < 0, (7)

where

Γ1 =
[

eT
1 eT

3 heT
6 τeT

9 reT
12

]T
,

Γ2 =
[

eT
0 eT

5 eT
1 – eT

2 eT
1 – eT

3 eT
1 – eT

4

]T
,

Ω1 = e12 – 2e13, Ω2 = e12 – 6e13 + 12e14, Θ1 =
[

eT
1 eT

0

]T
,

Θ2 =
[

eT
3 eT

5

]T
, e0 = Ae1 + A1e2 + rA2e12 + Be5 + De15,

υ1 =
[

eT
1 eT

2 eT
6 eT

7 eT
8

]T
, υ2 =

[

eT
1 eT

2 eT
9 eT

10 eT
11

]T
,
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υ3 =
[

eT
1 eT

2 eT
12 eT

13 eT
14

]T
, Σ = Nae1 + Nbe2 + rNce12 + Nde5,

Ω3 = υT
1

( 4∑

k=1

h
2k – 1

NkR–1
1 NT

k

)

υ1 + sym
{
υT

1 NkEk
}

,

Ω4 = υT
2

( 4∑

k=1

τ

2k – 1
MkR–1

2 MT
k

)

υ2 + sym
{
υT

2 MkDk
}

,

Ω5 = υT
3

( 4∑

k=1

r
2k – 1

FkR–1
3 FT

k

)

υ3 + sym
{
υT

3 FkGk
}

,

E1 = e1 – e2, E2 = e1 + e2 – 2e6, E3 = e1 – e2 + 6e6 – 6e7,

E4 = e1 + e2 – 12e6 + 30e7 – 20e8,

D1 = e1 – e3, D2 = e1 + e3 – 2e9, D3 = e1 – e3 + 6e9 – 6e10,

D4 = e1 + e3 – 12e9 + 30e10 – 20e11,

G1 = e1 – e4, G2 = e1 + e4 – 2e12, G3 = e1 – e4 + 6e12 – 6e13,

G4 = e1 + e4 – 12e12 + 30e13 – 20e14,

ei =
[

0n×(i–1)n In 0n×(15–i)n

]
, i = 1, 2, 3, . . . , 15.

Proof Take the following LKF candidate:

V (t) = ηT
1 (t)Pη1(t) +

∫ t

t–h
xT (s)Q1x(s) ds +

∫ t

t–τ

xT (s)Q2x(s) ds

+
∫ t

t–r

∫ t

θ

xT (s)Q3x(s) ds dθ +
∫ t

t–τ

(
x(s)
ẋ(s)

)T

Q4

(
x(s)
ẋ(s)

)

ds

+
∫ t

t–h

∫ t

θ

ẋT (s)R1ẋ(s) ds dθ +
∫ t

t–τ

∫ t

θ

ẋT (s)R2ẋ(s) ds dθ

+
∫ t

t–r

∫ t

θ

ẋT (s)R3ẋ(s) ds dθ , (8)

where

η1(t) =
[

xT (t) xT (t – τ )
∫ t

t–h xT (s) ds
∫ t

t–τ
xT (s) ds

∫ t
t–r xT (s) ds

]T
.

Define

ξ (t) =
[

xT (t) xT (t – h) xT (t – τ ) xT (t – r) ẋT (t – τ ) 1
h cT

1
2

h2 cT
2

6
h3 cT

3
1
τ

cT
4

2
τ2 cT

5
6
τ3 cT

6
1
r cT

7
2
r2 cT

8
6
r3 cT

9 pT (t)
]T

, (9)

with

c1 =
∫ t

t–h
x(s) ds, c2 =

∫ t

t–h

∫ t

θ

x(s) ds dθ , c3 =
∫ t

t–h

∫ t

θ

∫ t

u
x(s) ds du dθ ,

c4 =
∫ t

t–τ

x(s) ds, c5 =
∫ t

t–τ

∫ t

θ

x(s) ds dθ , c6 =
∫ t

t–τ

∫ t

θ

∫ t

u
x(s) ds du dθ ,
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c7 =
∫ t

t–r
x(s) ds, c8 =

∫ t

t–r

∫ t

θ

x(s) ds dθ , c9 =
∫ t

t–r

∫ t

θ

∫ t

u
x(s) ds du dθ .

From (8), differentiating V (t) leads to

V̇ (t) = 2η̇T
1 (t)Pη1(t) + xT (t)Q1x(t) + xT (t)Q2x(t) – xT (t – h)Q1x(t – h)

+ hẋT (t)R1ẋ(t) – xT (t – τ )Q2x(t – τ ) + rxT (t)Q3x(t)

–
∫ t

t–r
xT (s)Q3x(s) ds +

(
x(t)
ẋ(t)

)T

Q4

(
x(t)
ẋ(t)

)

–

(
x(t – τ )
ẋ(t – τ )

)T

Q4

(
x(t – τ )
ẋ(t – τ )

)

–
∫ t

t–h
ẋT (s)R1ẋ(s) ds

+ τ ẋT (t)R2ẋ(t) –
∫ t

t–τ

ẋT (s)R2ẋ(s) ds

+ rẋT (t)R3ẋ(t) –
∫ t

t–r
ẋT (s)R3ẋ(s) ds, (10)

where

η̇1(t) =
[

ẋT (t) ẋT (t – τ ) xT (t) – xT (t – h) xT (t) – xT (t – τ ) xT (t) – xT (t – r)
]T

.

By noting η1(t) = Γ1ξ (t), η̇1(t) = Γ2ξ (t) and ẋ(t) = e0ξ (t) and by utilizing (4), we obtain

–
∫ t

t–r
xT (s)Q3x(s) ds ≤ ξT (t)

(
–reT

12Q3e12 – 3rΩT
1 Q3Ω1 – 5rΩT

2 Q3Ω2
)
ξ (t). (11)

Employing Lemma 2.2 to (10), it is not difficult to get

–
∫ t

t–h
ẋT (s)R1ẋ(s) ds ≤ ξT (t)Ω3ξ (t), (12)

–
∫ t

t–τ

ẋT (s)R2ẋ(s) ds ≤ ξT (t)Ω4ξ (t), (13)

and

–
∫ t

t–r
ẋT (s)R3ẋ(s) ds ≤ ξT (t)Ω5ξ (t). (14)

From the condition FT (t)F(t) ≤ I , clearly, we have

pT (t)p(t) ≤ qT (t)q(t) = ξT (t)ΣTΣξ (t). (15)

Accordingly, there exists a matrix H > 0, such that the following inequality holds:

0 ≤ ξT (t)ΣT HΣξ (t) – pT (t)Hp(t), (16)

where Σ is defined in (7).
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From (10) to (16), one can obtain

V̇ (t) ≤ ξT (t)Ψ ξ (t).

By using the Schur complement, according to the condition (7), it is easy to see that
the inequality Ψ < 0. Hence, by Theorem 1.3 in [19], system (1) is robustly asymptotically
stable. This completes our proof. �

Remark 3.2 It is worthy to note that the construction on Lyapunov functionals in (8)
is very creative. Firstly, the functional contains three single integrals and four dou-
ble integrals based on the property of the neutral distributed delay systems. Secondly,
functionals consider the cross influence between the state information x(t – τ ), and
its derivatives and the system. Thirdly, the constructed functionals introduce addi-
tional state information because of the utilization of the inequalities in the above
lemmas, such as 1

h2

∫ t
t–h

∫ t
θ

xT (s) ds dθ , 1
τ2

∫ t
t–τ

∫ t
θ

xT (s) ds dθ , 1
h3

∫ t
t–h

∫ t
θ

∫ t
u xT (s) ds du dθ ,

1
τ3

∫ t
t–τ

∫ t
θ

∫ t
u xT (s) ds du dθ , 1

r3

∫ t
t–r

∫ t
θ

∫ t
u xT (s) ds du dθ and so on. Since the information of

the state can be fully utilized, the resulting stability criteria may be less conservative.

Remark 3.3 In many practical systems, finding the MAUB on r or h for different h or r to
analyze the stability of the distributed delay systems is also meaningful.

By utilizing a method like in Theorem 3.1, one obtains the less conservative DDS crite-
rion for the following system with h �= r:

⎧
⎨

⎩

ẋ(t) = Ax(t) + A1x(t – h) + A2
∫ t

t–r x(s) ds,

x(t) = φ(t), ∀t ∈ [–σ , 0],σ = max{h, r}, t ≥ 0.
(17)

Corollary 3.4 For given scalars h and r, system (17) is asymptotically stable, if there exist
positive definite matrices P ∈ R

3n×3n, Qi ∈ R
n×n (i ∈ 1, 2, 3), and R1, R2 ∈ R

n×n, and any
matrices Nk , Mk ∈R

3n×n (k ∈ 1, 2) satisfying the following inequalities:

Ψ̄ = sym
{
Γ T

4 PΓ3
}

+ eT
1 (Q1 + Q2 + rQ3)e1 – eT

2 Q1e2 – eT
3 Q2e3

– reT
5 Q3e5 + heT

0 R1e0 + reT
0 R2e0 + Ω6 + Ω7 < 0, (18)

where

Γ3 =
[

eT
1 heT

4 reT
5

]T
, Γ4 =

[

eT
0 eT

1 – eT
2 eT

1 – eT
3

]T
,

e0 = Ae1 + A1e2 + rA2e5, ῡ1 =
[

eT
1 eT

2 eT
4

]T
, ῡ2 =

[

eT
1 eT

3 eT
5

]T
,

Ω6 = ῡT
1

( 2∑

k=1

h
2k – 1

NkR–1
1 NT

k

)

ῡ1 + sym
{
ῡT

1 NkEk
}

,

Ω7 = ῡT
2

( 2∑

k=1

r
2k – 1

MkR–1
2 MT

k

)

ῡ2 + sym
{
ῡT

2 MkDk
}

,

E1 = e1 – e2, E2 = e1 + e2 – 2e4,
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D1 = e1 – e3, D2 = e1 + e3 – 2e5,

ei =
[

0n×(i–1)n In 0n×(5–i)n

]
, i = 1, 2, 3, 4, 5.

Proof Choose LKF as follows:

Ṽ (t) = ηT
2 (t)Pη2(t) +

∫ t

t–h
xT (s)Q1x(s) ds +

∫ t

t–r
xT (s)Q2x(s) ds

+
∫ t

t–r

∫ t

θ

xT (s)Q3x(s) ds dθ +
∫ t

t–h

∫ t

θ

ẋT (s)R1ẋ(s) ds dθ

+
∫ t

t–r

∫ t

θ

ẋT (s)R2ẋ(s) ds dθ ,

where

η2(t) =
[

xT (t)
∫ t

t–h xT (s) ds
∫ t

t–r xT (s) ds
]T

,

ξ1(t) =
[

xT (t) xT (t – h) xT (t – r) 1
h
∫ t

t–h xT (s) ds 1
r
∫ t

t–r xT (s) ds
]T

.

Combining (3) with (5), and following a similar line to Theorem 3.1, it is not hard to obtain
the DDS criterion (18). The proof is completed. �

In the case of r = h, system (1) is rewritten as

ẋ(t) – Bẋ(t – τ ) = Ax(t) + A1x(t – h) + A2

∫ t

t–h
x(s) ds. (19)

Theorem 3.5 For given scalars τ and h, system (19) is asymptotically stable, if there ex-
ist matrices P ∈ R

5n×5n, Q1, Q2, R ∈ R
n×n, and any matrices Mk ∈ R

6n×n (k ∈ 1, 2, 3, 4, 5)
satisfying the following inequalities:

Φ = sym
{
Υ T

2 PΥ1
}

+ eT
1 Q1e1 – eT

2 Q1e2 + eT
0 Q2e0 – eT

7 Q2e7

+ heT
0 Re0 + υTΩυ < 0, (20)

where

Υ1 =
[

eT
1 heT

3
h2

2 eT
4

h3

6 eT
5

h4

24 eT
6

]T
,

Υ2 =
[

eT
0 eT

1 – eT
2 h(eT

1 – eT
3 ) h2

2 (eT
1 – eT

4 ) h3

6 (eT
1 – eT

5 )
]T

,

e0 = Ae1 + A1e2 + hA2e3 + Be7,

ei =
[

0n×(i–1)n In 0n×(7–i)n

]
, i = 1, 2, . . . , 7.

υ and Ω are defined in Lemma 2.2.
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Proof Consider the LKF candidate

V̄ (t) = ηT
3 (t)Pη3(t) +

∫ t

t–h
xT (s)Q1x(s) ds +

∫ t

t–τ

ẋT (s)Q2ẋ(s) ds

+
∫ t

t–h

∫ t

θ

ẋT (s)Rẋ(s) ds dθ , (21)

where

η3(t) =
[

xT (t) vT
1 (t) vT

2 (t) vT
3 (t) vT

4 (t)
]T

, v1(t) =
∫ t

t–h
x(s) ds,

v2(t) =
∫ t

t–h

∫ t

θ

x(s) ds dθ , v3(t) =
∫ t

t–h

∫ t

θ

∫ t

u
xT (s) ds du dθ ,

v4(t) =
∫ t

t–h

∫ t

θ

∫ t

u

∫ t

v
xT (s) ds dv du dθ .

Define

ξ2(t) =
[

xT (t) xT (t – h) 1
h vT

1 (t) 2
h2 vT

2 (t) 6
h3 vT

3 (t) 24
h4 vT

4 (t) ẋT (t – τ )
]T

.

By noting η3(t) = Υ1ξ2(t), η̇T
3 (t) = Υ2ξ2(t) and ẋ(t) = e0ξ2(t), the derivative of V̄ (t) along

the trajectory of system (19) is computed:

˙̄V (t) = 2η̇T
3 (t)Pη3(t) + xT (t)Q1x(t) – xT (t – h)Q1x(t – h) + ẋT (t)Q2ẋ(t)

– ẋT (t – τ )Q2ẋ(t – τ ) + hẋT (t)Rẋ(t) –
∫ t

t–h
ẋT (s)Rẋ(s) ds. (22)

Using Lemma 2.2, one can see that the following inequality holds:

–
∫ t

t–h
ẋT (s)Rẋ(s) ds ≤ ξT

2 (t)

[ 5∑

k=1

h
2k – 1

MkR–1MT
k +

5∑

k=1

sym{MkΠk}
]

ξ2(t). (23)

Therefore, by combining (22) and (23), one has

˙̄V (t) ≤ ξT
2 (t)Φξ2(t).

We proceed by applying the Schur complement, and Φ is given in Theorem 3.5. Thus,
if Φ < 0 in (20) holds, it is easy to see that ˙̄V (t) < 0, which means that system (19) has
asymptotic stability. This completes the proof. �

Remark 3.6 Unlike the previous conditions, the quadruple integral information of the
state has been fully utilized in Theorem 3.5. In order to coordinate the application of the
inequality in Lemma 2.2, both the quadratic vector η3(t) and the intermediate vector ξ2(t)
are expanded by adding the quadruple integral term v4(t). What is more important is the
fact that adding the quadruple integral term can make the result less conservative in Theo-
rem 3.5. As a matter of fact, the novel constructed Lyapunov–Krasovskii functionals are as
important to get less conservative delay-dependent stability conditions as skillfully using
more accurate integral inequalities.
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For system (19), if there exist uncertain matrices �A, �A1, �A2 and �B, we may also
obtain the sufficient condition to ensure the robustly asymptotically stability. Hence, we
will consider the uncertain neutral delayed system as follows:

ẋ(t) – Bẋ(t – τ ) = Ax(t) + A1x(t – h) + A2

∫ t

t–h
x(s) ds. (24)

From (24), by using similar techniques to Theorem 3.1 to handle the uncertainties, a
robust asymptotic stability condition can be given as follows.

Corollary 3.7 For given scalars τ and h, the uncertain system (24) with A1 + �A1 = 0 is
robustly asymptotically stable, if there exist matrices P ∈ R

5n×5n, Q1, Q2, R, K ∈ R
n×n, and

any matrices Mk ∈R
6n×n (k ∈ 1, 2, 3, 4, 5) satisfying the following inequalities:

Φ̄ = Φ + Σ̄T KΣ̄ – eT
8 Ke8 < 0, (25)

where Φ is defined in (20) and

e0 = Ae1 + hA2e3 + Be7 + De8, Σ̄ = Nae1 + hNce3 + Nde7,

ei =
[

0n×(i–1)n In 0n×(8–i)n

]
, i = 1, 2, . . . , 8,

where

ξ3(t) =
[

xT (t) xT (t – h) 1
h vT

1 (t) 2
h2 vT

2 (t) 6
h3 vT

3 (t) 24
h4 vT

4 (t) ẋT (t – τ ) pT (t)
]

.

Similar to the proof of Theorem 3.1, Corollary 3.7 can be proved, so it is omitted here.

Remark 3.8 This paper just discusses the delay-dependent stability criteria, in which some
useful approach can be effectively used to analyze the stabilization for linear neutral sys-
tems with time-delay. Moreover, the employed results and methods may be extended to
many interesting dynamical models such as uncertain neutral systems with Markovian
jumping parameters and uncertain neutral systems with nonlinear perturbations or time-
varying delays.

Remark 3.9 Although the asymptotic stability of system (1) is discussed in this paper, the
exponential stability of system (1) can easily be obtained by using a similar proof in [53].
In fact, for a linear neutral system with time-delay, the asymptotic stability implies expo-
nential stability.

4 Numerical examples
In this section, several examples are provided to illustrate the usefulness of the above re-
sults.

Example 4.1 Consider system (1) with the following parameters [32]:

A =

(
–0.9 0.2
0.1 –0.9

)

, A1 =

(
–1.1 –0.2
–0.1 –1.1

)

,
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Table 1 The MAUB of r for τ = 0.1 and different values h in Example 4.1

h 0.1 0.5 1.0 1.5 1.6 1.7

[32] 6.64 5.55 1.62 – – –
[33] 6.67 6.12 2.75 1.31 0.93 0.42
[34] 6.65 6.02 2.68 0.88 – –
[35] 6.67 5.83 2.97 1.53 1.33 1.14
[41] 6.67 6.67 5.52 1.95 1.55 1.46
Theorem 3.1 8.64 8.64 6.69 2.66 2.32 2.04

Table 2 The MAUB of h for τ = 0.1 and different values r in Example 4.1

r 1 2 3 4 5 6

[32] 1.12 0.93 0.77 0.65 0.55 0.43
[33] 1.58 1.20 0.95 0.77 0.64 0.51
[34] 1.47 1.14 0.95 0.80 0.68 0.50
[35] 1.78 1.30 0.99 0.77 0.62 0.47
[41] 1.90 1.49 1.34 1.20 1.07 0.91
Theorem 3.1 2.10 1.71 1.41 1.25 1.14 1.05

A2 =

(
–0.12 –0.12
–0.12 0.12

)

, B =

(
–0.2 0
0.2 –0.1

)

,

D = I, Na = Nb = Nc = Nd = 0.1I.

For this example, suppose τ = 0.1, by applying Theorem 3.1, one can obtain the MAUB
on r and h for different h and r, which is enumerated in Table 1 and Table 2, respectively.

Example 4.2 Consider system (17) with the following parameters [41]:

A =

(
–0.9 0

0 –0.9

)

, A1 =

(
–1 –0.12

0.12 –1

)

, A2 =

(
–0.12 –0.12
–0.12 0.12

)

.

For this example, in the case h = 1, the allowable delay bounds on r in [41] is computed as
11.05, but by Corollary 3.4, we can get a larger delay bound, 11.21. Besides, in the case r = 1,
the allowable delay bounds on h in [36, 37] and [41] are computed as 1.8302, 2.8011 and
3.5823, respectively. However, by Corollary 3.4, one can obtain a larger delay bound 3.9235,
which are 114.375%, 40.070%, 9.524% more than that of [36, 37] and [41], respectively. In
addition, this example shows that our method in this paper is better than that in [36, 37]
and [41].

Example 4.3 Consider system (19) with the following parameters when B = 0:

A =

(
–2 0
0 –0.9

)

, A1 =

(
–1 0
–1 –1

)

, A2 = 0.

Both the conservatism and the computation burden are carefully compared among dif-
ferent stability conditions. The MAUB is listed in Table 3. It is easy to see that the maxi-
mum admissible upper bounds obtained by Theorem 3.5 is the largest. It is worth to men-
tion that, by Theorem 3.5, the obtained MAUB is the analytical value. This clearly shows
the effectiveness of the DDS criteria in Theorem 3.5.
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Table 3 Upper bound on h obtained for Example 4.3

Methods hmax

(N = 1) [19] 6.059
(N = 2) [19] 6.165
[47] 6.1107
[43] 6.059
(N = 6) [48] 6.12
[49] 6.1664
[46] 6.1719
Theorem 3.5 6.1725
The analytical bounds 6.1725

Table 4 Delay interval which stability of system in Example 4.4 is guaranteed

Methods hmin hmax

(N = 1) [19] 0.1006 1.4272
(N = 2) [19] 0.1003 1.6921
[43] 0.1003 1.5406
[50] 0.1002 1.5954
[49] 0.100169 1.7122
[46] 0.100169 1.7177
Theorem 3.5 0.100169 1.7178
The analytical bounds 0.100169 1.7178

Example 4.4 Consider system (19) with the following parameters when B = 0:

A =

(
0 1

–2 0.1

)

, A1 =

(
0 0
1 0

)

, A2 =

(
0 0
0 0

)

.

Since Re(eig(A + A1)) = 0.05 > 0, the system is unstable when h = 0. Few linear matrix
inequalities can test the stability condition of this system. This is so because the delay is
distributed in some interval to guarantee the stability for the systems. Table 4 lists the
results obtained from Theorem 3.5 and other conditions reported in the literature. From
Table 4, we can see that our maximum admissible upper bounds are the analytical bounds.

Example 4.5 When the parameters of system (19) in this example is described as follows
(B = 0):

A =

(
0.2 0
0.2 0.1

)

, A1 = 0, A2 =

(
–1 0
–1 –1

)

.

The corresponding delay bounds can also be given by computing the linear matrix in-
equality in Theorem 3.5. From Table 5, in order to gain the MAUB to guarantee the system
stability, various kinds of methods are proposed to calculate the MAUB. It is easily seen
that our presented approach is best due to the fact that the obtained MAUB concerns the
analytical bounds.

Example 4.6 To show the comparison in more detail, the parameters of the system (19)
in this example are given by [43] when B = 0:

A =

(
0 1

–100 –1

)

, A1 =

(
0 0.1

0.1 0.2

)

, A2 = 0.
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Table 5 Upper bound on h obtained for Example 4.5

Methods hmax

[37] 1.6339
[43] 1.8770
[50] 1.9504
[51] 2.0395
[49] 2.0395
[52] 2.0402
[46] 2.0412
Theorem 3.5 2.0412
The analytical bounds 2.0412

Table 6 Upper bound on h obtained for Example 4.6

Methods hmax

[50] 0.126
[51] 0.577
[52] 0.675
Theorem 3.5 0.749

By using Theorem 3.5, a larger delay bound 0.7495 is got. In order to show more clearly,
Table 6 lists the computed upper bounds by unlike methods. It is easily observed that our
method produces better result than the existing results.

Example 4.7 Consider system (19) with the following parameters:

A =

(
–2 0
0 –0.9

)

, A1 = 0, A2 =

(
–1 0
–1 –1

)

, B =

(
–0.2 0
0.2 –0.1

)

.

By Corollary 1 in [37], the system (19) is asymptotically stable for all delays h ∈
[0, 1.8536]. Applying Theorem 3.5 to this example, system (19) becomes asymptotically
stable for all delays h ∈ [0, 3.6574].

Example 4.8 Consider system (24) with the following parameters:

A =

(
–2 0
0 –0.9

)

, A2 =

(
–1 0
–1 –1

)

, B =

(
–0.2 0
0.2 –0.1

)

,

D = I, Na = Nc = 0.1I.

In the first place, we take Nd = 0. By Corollary 1 in [37], the system (24) is robustly
asymptotically stable for all delays h ∈ [0, 1.7174]. However, using Corollary 3.7 in this ex-
ample, the interval of delay h such that the system (24) is robustly asymptotically stable is
[0, 3.2314]. Then let Nd = 0.1I , by Corollary 2 in [37], the system (24) is robustly asymp-
totically stable for h ∈ [0, 1.4986]. However, by applying Corollary 3.7, we can obtain the
interval of delay h ∈ [0, 3.0175] which ensures the robust stability of system (24).

Example 4.9 To show the comparison in more detail, the parameters of the system (19)
in this example is given by [18]

A =

(
–3 –2
1 0

)

, A1 =

(
0 α

α 0

)

, A2 = 0, B =

(
0.1 0
0 0.1

)

,
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where α is a real parameter. In this example, we assume τ = h = 1. By Theorems 2.5 and
2.6 in [18], it can be found that this system (19) is not only asymptotic but exponential
for all |α| ≤ 0.6213. However, by Theorem 3.5, it is computed that the maximum allowed
value |α| ≤ 1. Therefore, Theorem 3.5 is less conservative than the results in [18].

5 Conclusion
Based on some new LKF and IIs, several new stability and RSCSs have been proposed
for uncertain linear neutral system with time-delay. The obtained DDS conditions in this
paper are of low conservatism owing to the constructed novel LKF, which combines with
the new II technique. Besides, the problem of robust stability for uncertain systems with-
out neutral or distributed term are commendably addressed. Moreover, some interesting
examples have been presented to display the low conservatism of the derived DDS condi-
tions by comparison with the existing results.
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