New approximation inequalities for circular functions

Ling Zhu ${ }^{1 *}$ and Marija Nenezić ${ }^{2}$
"Correspondence:
zhuling0571@163.com
'Department of Mathematics, Zhejiang Gongshang University, Hangzhou City, China Full list of author information is available at the end of the article

Abstract

In this paper, we obtain some improved exponential approximation inequalities for the functions $(\sin x) / x$ and $\sec (x)$, and we prove them by using the properties of Bernoulli numbers and new criteria for the monotonicity of quotient of two power series.

MSC: Primary 26D05; 26D15; secondary 33B10 Keywords: Circular functions; Bernoulli numbers; Mitrinovic-Adamovic inequality; Exponential approximation inequalities

1 Introduction

The following result is known as the Mitrinovic-Adamovic inequality [1, 2]:

$$
\begin{equation*}
\left(\frac{\sin x}{x}\right)^{3}>\cos x, \quad 0<x<\frac{\pi}{2} . \tag{1.1}
\end{equation*}
$$

Nishizawa [3] gave the upper bound of the function $((\sin x) / x)^{3}$ in the form of the above inequality (1.1) and obtained the following power exponential inequality:

$$
\begin{equation*}
\left(\frac{\sin x}{x}\right)^{3}<(\cos x)^{1-2 x / \pi}, \quad 0<x<\frac{\pi}{2} . \tag{1.2}
\end{equation*}
$$

Chen and Sándor [4] looked into the bounds for the function $\sec x$ and obtain the following result for $0<x<\pi / 2$:

$$
\begin{equation*}
\frac{\pi^{2}}{\pi^{2}-4 x^{2}}<\sec x<\frac{4 \pi}{\pi^{2}-4 x^{2}} . \tag{1.3}
\end{equation*}
$$

Nishizawa [3] obtained the following inequality with power exponential functions derived from the right-hand inequality side of (1.3):

$$
\begin{equation*}
\left(\frac{4 \pi}{\pi^{2}-4 x^{2}}\right)^{4 x^{2} / \pi^{2}}<\sec x, \quad 0<x<\frac{\pi}{2} . \tag{1.4}
\end{equation*}
$$

The purpose of this article is to establish some exponential approximation inequalities which improve the ones of (1.1)-(1.4). We prove these results for circular functions by using the properties of Bernoulli numbers and new criteria for the monotonicity of quotient of two power series.

Theorem 1.1 Let $0<x<\pi / 2, a=2 / 15 \approx 0.13333$ and $b=4 / \pi^{2} \approx 0.40528$. Then we have

$$
\begin{equation*}
(\cos x)^{1-a x^{2}}<\left(\frac{\sin x}{x}\right)^{3}<(\cos x)^{1-b x^{2}} \tag{1.5}
\end{equation*}
$$

where a and b are the best constants in (1.5).

Theorem 1.2 Let $0<x<\pi / 2, c=19 / 945 \approx 0.02011$ and $d=8\left(30-\pi^{2}\right) /\left(15 \pi^{4}\right) \approx 0.11022$. Then we have

$$
\begin{equation*}
(\cos x)^{1-2 x^{2} / 15-c x^{4}}<\left(\frac{\sin x}{x}\right)^{3}<(\cos x)^{1-2 x^{2} / 15-d x^{4}}, \tag{1.6}
\end{equation*}
$$

where c and d are the best constants in (1.6).

Theorem 1.3 Let $0<x<\pi / 2, b=4 / \pi^{2} \approx 0.40528$ and $p=1 /(2 \ln (4 / \pi)) \approx 2.0698$. Then we have

$$
\begin{equation*}
\left(\frac{4 \pi}{\pi^{2}-4 x^{2}}\right)^{b x^{2}}<\sec x<\left(\frac{4 \pi}{\pi^{2}-4 x^{2}}\right)^{p x^{2}} \tag{1.7}
\end{equation*}
$$

where b and p are the best constants in (1.7).

Theorem 1.4 Let $0<x<\pi / 2$,

$$
\alpha=\frac{1}{12 \ln \frac{4}{\pi}}-\frac{2}{\pi^{2} \ln ^{2} \frac{4}{\pi}} \approx-3.1277, \quad \beta=\frac{16}{\pi^{4}}\left(1-\frac{1}{8} \frac{\pi^{2}}{\ln \frac{4}{\pi}}\right) \approx-0.67462 .
$$

Then we have

$$
\begin{equation*}
\left(\frac{4 \pi}{\pi^{2}-4 x^{2}}\right)^{x^{2} /(2 \ln (4 / \pi))+\alpha x^{4}}<\sec x<\left(\frac{4 \pi}{\pi^{2}-4 x^{2}}\right)^{x^{2} /(2 \ln (4 / \pi))+\beta x^{4}}, \tag{1.8}
\end{equation*}
$$

where α and β are the best constants in (1.8).

We note that the right-hand side of the inequality (1.5) is stronger than that one in (1.2) due to

$$
1-\frac{4}{\pi^{2}} x^{2}=\left(1+\frac{2 x}{\pi}\right)\left(1-\frac{2 x}{\pi}\right)>1-\frac{2 x}{\pi}
$$

while the double inequality (1.6) and (1.8) are sharper than the (1.5) and (1.7), respectively.

2 Lemmas

Lemma 2.1 ([5-8]) Let $B_{2 n}$ be the even-indexed Bernoulli numbers, $n=1,2, \ldots$. Then

$$
\begin{align*}
& \frac{2(2 n)!}{(2 \pi)^{2 n}} \frac{2^{2 n}}{2^{2 n}-1}<\left|B_{2 n}\right|<\frac{2(2 n)!}{(2 \pi)^{2 n}} \frac{2^{2 n}}{2^{2 n}-2}, \tag{2.1}\\
& \frac{2^{2 n-1}-1}{2^{2 n+1}-1} \frac{(2 n+2)(2 n+1)}{\pi^{2}}<\frac{\left|B_{2 n+2}\right|}{\left|B_{2 n}\right|}<\frac{2^{2 n}-1}{2^{2 n+2}-1} \frac{(2 n+2)(2 n+1)}{\pi^{2}} . \tag{2.2}
\end{align*}
$$

Lemma 2.2 Let $B_{2 n}$ be the even-indexed Bernoulli numbers. Then the following power series expansion:

$$
\begin{equation*}
\ln \frac{\sin x}{x}=-\sum_{n=1}^{\infty} \frac{2^{2 n}}{2 n(2 n)!}\left|B_{2 n}\right| x^{2 n}, \quad 0<|x|<\pi, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln \cos x=-\sum_{n=1}^{\infty} \frac{2^{2 n}-1}{2 n(2 n)!} 2^{2 n}\left|B_{2 n}\right| x^{2 n}, \quad|x|<\frac{\pi}{2} \tag{2.4}
\end{equation*}
$$

hold.

Proof The following power series expansions can be found in [9, 1.3.1.4(2)(3)]:

$$
\begin{align*}
& \cot x=\frac{1}{x}-\sum_{n=1}^{\infty} \frac{2^{2 n}}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1} \tag{2.5}\\
& \tan x=\sum_{n=1}^{\infty} \frac{2^{2 n}-1}{(2 n)!} 2^{2 n}\left|B_{2 n}\right| x^{2 n-1} \tag{2.6}
\end{align*}
$$

By (2.5) and (2.6) we have

$$
\begin{aligned}
\ln \frac{\sin x}{x} & =\int_{0}^{x}\left(\ln \frac{\sin t}{t}\right)^{\prime} d t=\int_{0}^{x}\left(\cot t-\frac{1}{t}\right) d t \\
& =-\sum_{n=1}^{\infty} \frac{2^{2 n}}{2 n(2 n)!}\left|B_{2 n}\right| x^{2 n}
\end{aligned}
$$

and

$$
\begin{aligned}
\ln \cos x & =\int_{0}^{x}(\ln \cos t)^{\prime} d t=-\int_{0}^{x} \tan t d t \\
& =-\sum_{n=1}^{\infty} \frac{2^{2 n}-1}{2 n(2 n)!} 2^{2 n}\left|B_{2 n}\right| x^{2 n}
\end{aligned}
$$

Lemma 2.3 ([10]) Let a_{n} and $b_{n}(n=0,1,2, \ldots)$ be real numbers, and let the power series $A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and $B(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$ be convergent for $|t|<R(R \leq+\infty)$. If $b_{n}>0$ for $n=0,1,2, \ldots$, and if $\varepsilon_{n}=a_{n} / b_{n}$ is strictly increasing (or decreasing) for $n=0,1,2, \ldots$, then the function $A(t) / B(t)$ is strictly increasing (or decreasing) on $(0, R)(R \leq+\infty)$.

In order to prove Theorem 1.4, we need the following lemma. We introduce a useful auxiliary function $H_{f, g}$. For $-\infty \leq a<b \leq \infty$, let f and g be differentiable on (a, b) and $g^{\prime} \neq 0$ on (a, b). Then the function $H_{f, g}$ is defined by

$$
H_{f, g}=\frac{f^{\prime}}{g^{\prime}} g-f
$$

The function $H_{f, g}$ has some good properties and plays an important role in the proof of a monotonicity criterion for the quotient of power series.

Lemma 2.4 ([11]) Let $A(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ and $B(t)=\sum_{k=0}^{\infty} b_{k} t^{k}$ be two real power series converging on $(-r, r)$ and $b_{k}>0$ for all k. Suppose that, for certain $m \in N$, the non-constant sequence $\left\{a_{k} / b_{k}\right\}$ is increasing (resp. decreasing) for $0 \leq k \leq m$ and decreasing (resp. increasing) for $k \geq m$. Then the function A / B is strictly increasing (resp. decreasing) on $(0, r)$ if and only if $H_{A, B}\left(r^{-}\right) \geq($resp. $\leq) 0$. Moreover, if $H_{A, B}\left(r^{-}\right)<($resp. >) 0 , then there exists $t_{0} \in(0, r)$ such that the function A / B is strictly increasing (resp. decreasing) on $\left(0, t_{0}\right)$ and strictly decreasing (resp. increasing) on $\left(t_{0}, r\right)$.

3 Proof of Theorem 1.1

Let

$$
F_{1}(x)=\frac{\frac{3 \ln \frac{\sin x}{x}}{\ln \cos x}-1}{x^{2}}=\frac{3 \ln \frac{\sin x}{x}-\ln \cos x}{x^{2} \ln \cos x}=\frac{\ln \cos x-3 \ln \frac{\sin x}{x}}{-x^{2} \ln \cos x}=\frac{A(x)}{B(x)}, \quad 0<x<\frac{\pi}{2},
$$

where

$$
\begin{aligned}
A(x) & =\ln \cos x-3 \ln \frac{\sin x}{x}=-\sum_{n=1}^{\infty} \frac{2^{2 n}-1}{2 n(2 n)!} 2^{2 n}\left|B_{2 n}\right| x^{2 n}+\sum_{n=1}^{\infty} \frac{3 \cdot 2^{2 n}}{2 n(2 n)!}\left|B_{2 n}\right| x^{2 n} \\
& =-\sum_{n=1}^{\infty} \frac{2^{2 n}-4}{2 n(2 n)!} 2^{2 n}\left|B_{2 n}\right| x^{2 n}=-\sum_{n=2}^{\infty} \frac{2^{2 n}-4}{2 n(2 n)!} 2^{2 n}\left|B_{2 n}\right| x^{2 n} \\
& =-\sum_{n=1}^{\infty} \frac{2^{2 n+2}-4}{(2 n+2)(2 n+2)!} 2^{2 n+2}\left|B_{2 n+2}\right| x^{2 n+2}=\sum_{n=1}^{\infty} a_{n} x^{2 n}
\end{aligned}
$$

and

$$
B(x)=-x^{2} \ln \cos x=\sum_{n=1}^{\infty} \frac{2^{2 n}-1}{2 n(2 n)!} 2^{2 n}\left|B_{2 n}\right| x^{2 n+2}=\sum_{n=1}^{\infty} b_{n} x^{2 n}
$$

by Lemma 2.2. Let

$$
\frac{a_{n}}{b_{n}}=-\frac{16 n}{(2 n+2)(2 n+1)(n+1)} \frac{\left|B_{2 n+2}\right|}{\left|B_{2 n}\right|}=-e_{n}
$$

where

$$
e_{n}=\frac{16 n}{(2 n+2)(2 n+1)(n+1)} \frac{\left|B_{2 n+2}\right|}{\left|B_{2 n}\right|} .
$$

We now show that $\left\{e_{n}\right\}$ is increasing for $n \geq 1$. Since

$$
\begin{aligned}
& e_{n-1}=\frac{16(n-1)}{(2 n)(2 n-1)(n)} \frac{\left|B_{2 n}\right|}{\left|B_{2 n-2}\right|}<\frac{16(n-1)}{(2 n)(2 n-1)(n)} \frac{1}{(2 \pi)^{2}} \frac{2 n(2 n-1) 2^{2 n-1}}{2^{2 n-1}-1} \\
& e_{n}>\frac{16 n}{(2 n+2)(2 n+1)(n+1)} \frac{1}{(2 \pi)^{2}} \frac{(2 n+2)(2 n+1)\left(2^{2 n-1}-1\right)}{2^{2 n-1}}
\end{aligned}
$$

by Lemma 2.1, the proof of $e_{n-1}<e_{n}$ for $n \geq 2$ can be completed when proving

$$
\frac{n}{n+1} \frac{\left(2^{2 n-1}-1\right)}{2^{2 n-1}}>\frac{n-1}{n} \frac{2^{2 n-1}}{2^{2 n-1}-1}
$$

In fact,

$$
n^{2}\left(2^{2 n-1}-1\right)^{2}-\left(n^{2}-1\right) 2^{2(2 n-1)}=2^{4 n-2}-4^{n} n^{2}+n^{2}>0
$$

for $n \geq 2$. So $\left\{a_{n} / b_{n}\right\}_{n \geq 1}$ is decreasing, and $F_{1}(x)$ is decreasing on $(0, \pi / 2)$ by Lemma 2.3. In view of $F_{1}\left(0^{+}\right)=-2 / 15$, and $F_{1}\left((\pi / 2)^{-}\right)=-4 / \pi^{2}$, the proof of Theorem 1.1 is complete.

4 Proof of Theorem 1.2

(i) We first prove the left-hand side inequality of (1.6). Let

$$
F_{2}(x)=3 \ln \frac{\sin x}{x}-\left(1-\frac{2}{15} x^{2}-\frac{19}{945} x^{4}\right) \ln \cos x, \quad 0<x<\frac{\pi}{2} .
$$

Then by Lemma 2.2 we have

$$
F_{2}(x)=\sum_{n=3}^{\infty} i_{n} 2^{2 n-2}\left|B_{2 n}\right| x^{2 n+2}
$$

where

$$
i_{n}=\frac{16\left(2^{2 n+2}-4\right)}{(2 n+2)(2 n+2)!} \frac{\left|B_{2 n+2}\right|}{\left|B_{2 n}\right|}-\frac{8\left(2^{2 n}-1\right)}{30 n(2 n)!}-\frac{19\left(2^{2 n-2}-1\right)}{945(2 n-2)(2 n-2)!} \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|} .
$$

By Lemma 2.1, we have

$$
\begin{aligned}
i_{n}> & \frac{16\left(2^{2 n+2}-4\right)}{(2 n+2)(2 n+2)!} \frac{(2 n+2)(2 n+1)\left(2^{2 n-1}-1\right)}{\pi^{2}\left(2^{2 n+1}-1\right)}-\frac{8\left(2^{2 n}-1\right)}{30 n(2 n)!} \\
& -\frac{19\left(2^{2 n-2}-1\right)}{945(2 n-2)(2 n-2)!} \frac{\pi^{2}\left(2^{2 n-1}-1\right)}{(2 n)(2 n-1)\left(2^{2 n-3}-1\right)} \\
= & \frac{1}{(2 n)!} j_{n}
\end{aligned}
$$

with

$$
\begin{aligned}
j_{n} & =\frac{16\left(2^{2 n+2}-4\right)}{(2 n+2)} \frac{\left(2^{2 n-1}-1\right)}{\pi^{2}\left(2^{2 n+1}-1\right)}-\frac{8}{15} \frac{2^{2 n}-1}{2 n}-\frac{19}{945} \frac{2^{2 n-2}-1}{(2 n-2)} \frac{\pi^{2}\left(2^{2 n-1}-1\right)}{\left(2^{2 n-3}-1\right)} \\
& >\frac{16\left(2^{2 n+2}-4\right)}{(2 n+2)} \frac{\left(2^{2 n-1}-1\right)}{\frac{79}{8}\left(2^{2 n+1}-1\right)}-\frac{8}{15} \frac{\left(2^{2 n}-1\right)}{2 n}-\frac{19}{945} \cdot \frac{79}{8} \frac{\left(2^{2 n-2}-1\right)}{(2 n-2)} \frac{\left(2^{2 n-1}-1\right)}{\left(2^{2 n-3}-1\right)} \\
& =\frac{1}{1,194,480} \frac{h(n)}{n\left(2 \cdot 2^{2 n}-1\right)\left(2^{2 n}-8\right)(n-1)(n+1)}
\end{aligned}
$$

due to $\pi^{2}<79 / 8$, where

$$
\begin{aligned}
h(n)= & \left(1,061,146 n^{2}-2,172,518 n+637,056\right) 2^{6 n} \\
& -\left(13,695,401 n^{2}-22,830,487 n+6,052,032\right) 2^{4 n} \\
& +\left(39,747,422 n^{2}-52,928,098 n+7,963,200\right) 2^{2 n} \\
& -\left(27,468,904 n^{2}-31,914,392 n+2,548,224\right) \\
= & 2^{4 n} h_{1}(n)+h_{2}(n) .
\end{aligned}
$$

It is not difficult to verify

$$
\begin{aligned}
h_{1}(n)= & \left(1,061,146 n^{2}-2,172,518 n+637,056\right) 2^{2 n} \\
& -\left(13,695,401 n^{2}-22,830,487 n+6,052,032\right) \\
> & 0
\end{aligned}
$$

and

$$
\begin{aligned}
h_{2}(n)= & \left(39,747,422 n^{2}-52,928,098 n+7,963,200\right) 2^{2 n} \\
& -\left(27,468,904 n^{2}-31,914,392 n+2,548,224\right) \\
> & 0
\end{aligned}
$$

for $n \geq 3$. So $i_{n}>0$ for $n \geq 3$, and $F_{2}(x)>0$ for $x \in(0, \pi / 2)$.
(ii) Then we prove the right-hand side inequality of (1.6). Let

$$
F_{3}(x)=3 \ln \frac{\sin x}{x}-\left(1-\frac{2}{15} x^{2}-\frac{8}{15} \frac{30-\pi^{2}}{\pi^{4}} x^{4}\right) \ln \cos x, \quad 0<x<\frac{\pi}{2} .
$$

Then by Lemma 2.2 we have

$$
F_{3}(x)=\sum_{n=2}^{\infty} l_{n} 2^{2 n-2}\left|B_{2 n}\right| x^{2 n+2},
$$

where

$$
l_{n}=\frac{16\left(2^{2 n+2}-4\right)}{(2 n+2)(2 n+2)!} \frac{\left|B_{2 n+2}\right|}{\left|B_{2 n}\right|}-\frac{8}{15} \frac{2^{2 n}-1}{2 n(2 n)!}-\frac{8}{15} \frac{30-\pi^{2}}{\pi^{4}} \frac{2^{2 n-2}-1}{(2 n-2)(2 n-2)!} \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|} .
$$

By Lemma 2.1 we have

$$
\begin{aligned}
l_{n}< & \frac{16\left(2^{2 n+2}-4\right)}{(2 n+2)(2 n+2)!} \frac{2^{2 n}-1}{2^{2 n+2}-1} \frac{(2 n+2)(2 n+1)}{\pi^{2}}-\frac{8}{15} \frac{2^{2 n}-1}{2 n(2 n)!} \\
& -\frac{8}{15} \frac{30-\pi^{2}}{\pi^{4}} \frac{2^{2 n-2}-1}{(2 n-2)(2 n-2)!} \frac{\pi^{2}\left(2^{2 n}-1\right)}{(2 n)(2 n-1)\left(2^{2 n-2}-1\right)}
\end{aligned}
$$

that is,

$$
\begin{aligned}
(2 n)!l_{n} & <\frac{16\left(2^{2 n+2}-4\right)}{(2 n+2)} \frac{\left(2^{2 n}-1\right)}{\pi^{2}\left(2^{2 n+2}-1\right)}-\frac{8}{15} \frac{2^{2 n}-1}{2 n}-\frac{8}{15} \frac{30-\pi^{2}}{\pi^{4}} \frac{2^{2 n-2}-1}{(2 n-2)} \frac{\pi^{2}\left(2^{2 n}-1\right)}{\left(2^{2 n-2}-1\right)} \\
& =\frac{4}{15}\left(2^{2 n}-1\right) \frac{t(n)}{\pi^{2} n\left(n^{2}-1\right)\left(4 \cdot 2^{2 n}-1\right)},
\end{aligned}
$$

where

$$
t(n)=-\left(240 n-4 \pi^{2} n-4 \pi^{2}\right) 2^{2 n}-\left(90 n^{2}-\left(150-\pi^{2}\right) n+\pi^{2}\right)<0
$$

for $n \geq 2$. So $l_{n}<0$ for $n \geq 2$ and $F_{3}(x)<0$ for $x \in(0, \pi / 2)$.
(iii) Let

$$
F_{4}(x)=\frac{\frac{3 \ln \frac{\sin x}{x}}{\ln \cos x}-\left(1-\frac{2}{15} x^{2}\right)}{x^{4}}, \quad 0<x<\frac{\pi}{2} .
$$

Then

$$
F_{4}\left(0^{+}\right)=-\frac{19}{945}, \quad F_{4}\left(\left(\frac{\pi}{2}\right)^{-}\right)=-\frac{8}{15} \frac{30-\pi^{2}}{\pi^{4}} .
$$

This complete the proof of Theorem 1.2.

5 Proof of Theorem 1.3

(1) Let

$$
G_{1}(x)=\ln \sec x-\left(\frac{2 x}{\pi}\right)^{2} \ln \frac{4 \pi}{\pi^{2}-4 x^{2}}, \quad 0<x<\frac{\pi}{2} .
$$

Then we get

$$
G_{1}(x)=\sum_{n=0}^{\infty} k_{n} x^{2 n+2}
$$

where

$$
\begin{aligned}
& k_{0}=\frac{1}{2}-\frac{4}{\pi^{2}} \ln \frac{4}{\pi}>0, \\
& k_{n}=-\left(\left(\frac{2}{\pi}\right)^{2 n+2} \frac{1}{n}-\frac{2^{2 n+2}-1}{(2 n+2)(2 n+2)!} 2^{2 n+2}\left|B_{2 n+2}\right|\right), \quad n=1,2, \ldots .
\end{aligned}
$$

We now show

$$
\begin{equation*}
k_{n}=-\left(\left(\frac{2}{\pi}\right)^{2 n+2} \frac{1}{n}-\frac{2^{2 n+2}-1}{(2 n+2)(2 n+2)!} 2^{2 n+2}\left|B_{2 n+2}\right|\right)<0 \tag{5.1}
\end{equation*}
$$

for $n \geq 1$, that is,

$$
\left(\frac{2}{\pi}\right)^{2 n+2} \frac{1}{n}-\frac{2^{2 n+2}-1}{(2 n+2)(2 n+2)!} 2^{2 n+2}\left|B_{2 n+2}\right|>0
$$

or

$$
\left|B_{2 n+2}\right|<\frac{1}{\pi^{2 n+2}} \frac{(2 n+2)!}{2^{2 n+2}-1} \frac{2 n+2}{n}
$$

holds for $n \geq 1$. In fact, by Lemma 2.1 we have

$$
\left|B_{2 n+2}\right|<\frac{2(2 n+2)!}{(2 \pi)^{2 n+2}} \frac{2^{2 n}}{2^{2 n}-2},
$$

so (5.1) holds as long as we can prove that

$$
\frac{2(2 n+2)!}{(2 \pi)^{2 n+2}} \frac{2^{2 n}}{2^{2 n}-2}<\frac{1}{\pi^{2 n+2}} \frac{(2 n+2)!}{2^{2 n+2}-1} \frac{2 n+2}{n}
$$

that is,

$$
n\left(2^{2 n+2}-1\right)<4(n+1)\left(2^{2 n}-2\right)
$$

which is equivalent to

$$
4(n+1)\left(2^{2 n}-2\right)-n\left(2^{2 n+2}-1\right)=4 \cdot 2^{2 n}-7 n-8>0
$$

for $n \geq 1$. So $k_{n}<0$ for $n \geq 1$, which leads to $G_{1}^{\prime \prime \prime}(x)=\sum_{n=2}^{\infty} 2 n(2 n-1)(2 n-2) k_{n} x^{2 n-3}<0$, and $G_{1}^{\prime \prime}(x)$ is decreasing on $(0, \pi / 2)$. We can compute

$$
\begin{aligned}
& G_{1}^{\prime}(x)=\tan x-\frac{8}{\pi^{2}} x \ln \left(-4 \frac{\pi}{4 x^{2}-\pi^{2}}\right)+\frac{32}{\pi^{2}} \frac{x^{3}}{4 x^{2}-\pi^{2}} \\
& G_{1}^{\prime \prime}(x)=\tan ^{2} x-\frac{8}{\pi^{2}} \ln \left(-4 \frac{\pi}{4 x^{2}-\pi^{2}}\right)+\frac{160}{\pi^{2}} \frac{x^{2}}{4 x^{2}-\pi^{2}}-\frac{256}{\pi^{2}} \frac{x^{4}}{\left(4 x^{2}-\pi^{2}\right)^{2}}+1,
\end{aligned}
$$

which give

$$
G_{1}^{\prime \prime}\left(0^{+}\right)=1-\frac{8}{\pi^{2}} \ln \frac{4}{\pi} \approx 0.80420>0, \quad G_{1}^{\prime \prime}\left(\frac{\pi}{2}\right)=-\infty
$$

Then there exists an unique real number $x_{1} \in(0, \pi / 2)$ such that $G_{1}^{\prime \prime}(x)>0$ on $\left(0, x_{1}\right)$ and $G_{1}^{\prime \prime}(x)<0$ on $\left(x_{1}, \pi / 2\right)$. So $G_{1}^{\prime}(x)$ is increasing on $\left(0, x_{1}\right)$ and decreasing on $\left(x_{1}, \pi / 2\right)$. Since

$$
G_{1}^{\prime}\left(0^{+}\right)=0, \quad G_{1}^{\prime}\left(\left(\frac{\pi}{2}\right)^{-}\right)=-\infty
$$

there exists an unique real number $x_{2} \in\left(x_{1}, \pi / 2\right)$ such that $G_{1}^{\prime}(x)>0$ on $\left(0, x_{2}\right)$ and $G_{1}^{\prime}(x)<$ 0 on $\left(x_{2}, \pi / 2\right)$. So $G_{1}(x)$ is increasing on $\left(0, x_{2}\right)$ and decreasing on $\left(x_{2}, \pi / 2\right)$. In view of $G_{1}\left(0^{+}\right)=0=G_{1}\left((\pi / 2)^{-}\right)$, the proof of the left-hand side inequality of (1.7) is complete.
(2) Let

$$
G_{2}(x)=\frac{x^{2}}{2 \ln \frac{4}{\pi}} \ln \frac{4 \pi}{\pi^{2}-4 x^{2}}-\ln \sec x, \quad 0<x<\frac{\pi}{2}
$$

Then we get

$$
G_{2}(x)=\sum_{n=1}^{\infty} w_{n} x^{2 n+2},
$$

where

$$
w_{n}=\frac{1}{2 \ln \frac{4}{\pi}}\left(\frac{2}{\pi}\right)^{2 n} \frac{1}{n}-\frac{2^{2 n+2}-1}{(2 n+2)(2 n+2)!} 2^{2 n+2}\left|B_{2 n+2}\right|, \quad n=1,2, \ldots .
$$

We now show $w_{n}>0$ for $n \geq 1$, that is,

$$
\begin{equation*}
\left|B_{2 n+2}\right|<\frac{(n+1)(2 n+2)!}{4 n \ln \frac{4}{\pi} \pi^{2 n}\left(2^{2 n+2}-1\right)} \tag{5.2}
\end{equation*}
$$

holds for $n \geq 1$. In fact, by Lemma 2.1 we have

$$
\left|B_{2 n+2}\right|<\frac{2(2 n+2)!}{(2 \pi)^{2 n+2}} \frac{2^{2 n}}{2^{2 n}-2}
$$

so (5.2) holds as long as we can prove that

$$
\left(2 n \ln \frac{4}{\pi}\right)\left(2^{2 n+2}-1\right)<\pi^{2}(n+1)\left(2^{2 n}-2\right)
$$

which is true for $n \geq 1$. So $G_{2}^{\prime}(x)>0$, and $G_{2}(x)$ is increasing on $(0, \pi / 2)$. We can compute $G_{2}\left(0^{+}\right)=0$ and $G_{2}\left((\pi / 2)^{-}\right)=+\infty$, the proof of the right-hand side inequality of (1.7) is complete.
(3) Let

$$
G_{3}(x)=\frac{\ln \sec x}{x^{2} \ln \frac{4 \pi}{\pi^{2}-4 x^{2}}}, \quad 0<x<\frac{\pi}{2} .
$$

Then

$$
G_{3}\left(0^{+}\right)=\frac{1}{2 \ln \frac{4}{\pi}} \approx 2.0698, \quad G_{3}\left(\left(\frac{\pi}{2}\right)^{-}\right)=\frac{4}{\pi^{2}} \approx 0.40528,
$$

this completes the proof of Theorem 1.3.

6 Proof of Theorem 1.4

Let

$$
G_{4}(x)=\frac{\frac{\ln \sec x}{\ln \frac{4 \pi}{\pi^{2}-4 x^{2}}}-\frac{1}{2} \frac{x^{2}}{\ln \frac{4}{\pi}}}{x^{4}}=\frac{\ln \sec x-\frac{1}{2} \frac{x^{2}}{\ln \frac{4}{\pi}} \ln \frac{4 \pi}{\pi^{2}-4 x^{2}}}{x^{4} \ln \frac{4 \pi}{\pi^{2}-4 x^{2}}}=\frac{f(x)}{g(x)}, \quad 0<x<\frac{\pi}{2},
$$

where

$$
f(x)=p_{1} x^{4}+\sum_{n=2}^{\infty} p_{n} x^{2 n+2}
$$

and

$$
g(x)=q_{1} x^{4}+\sum_{n=2}^{\infty} q_{n} x^{2 n+2}
$$

with

$$
\begin{aligned}
& p_{1}=\frac{1}{12}-\frac{1}{2} \frac{1}{\ln \frac{4}{\pi}}\left(\frac{2}{\pi}\right)^{4} ; \\
& p_{n}=\frac{2^{2 n+2}-1}{(2 n+2)(2 n+2)!} 2^{2 n+2}\left|B_{2 n+2}\right|-\frac{1}{2} \frac{1}{\ln \frac{4}{\pi}}\left(\frac{2}{\pi}\right)^{2 n} \frac{1}{n}, \quad n \geq 2 . \\
& q_{1}=\ln \frac{4}{\pi}>0 ; \\
& q_{n}=\left(\frac{2}{\pi}\right)^{2 n-2} \frac{1}{n-1}>0, \quad n \geq 2 .
\end{aligned}
$$

Since

$$
\frac{p_{1}}{q_{1}}=\frac{\frac{1}{12}-\frac{1}{2} \frac{1}{\ln \frac{4}{\pi}}\left(\frac{2}{\pi}\right)^{4}}{\ln \frac{4}{\pi}} \approx-1.0624
$$

and

$$
\frac{p_{n}}{q_{n}}=\frac{2(n-1)}{\pi^{2}}\left(\frac{4 \pi^{2 n}}{(2 n+2)!} \frac{2^{2 n+2}-1}{n+1}\left|B_{2 n+2}\right|-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n}\right), \quad n \geq 2
$$

we can obtain

$$
\frac{p_{1}}{q_{1}} \approx-1.0624<\frac{p_{2}}{q_{2}}=\frac{1}{\pi^{2}}\left(\frac{1}{180} \pi^{4}-\frac{1}{\ln \frac{4}{\pi}}\right) \approx-0.36461
$$

but

$$
\begin{equation*}
\frac{p_{n}}{q_{n}}>\frac{p_{n+1}}{q_{n+1}} \tag{6.1}
\end{equation*}
$$

for $n \geq 2$. The inequality (6.1) is equivalent to

$$
\begin{aligned}
& \frac{2(n-1)}{\pi^{2}}\left(\frac{4 \pi^{2 n}}{(2 n+2)!} \frac{2^{2 n+2}-1}{n+1}\left|B_{2 n+2}\right|-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n}\right) \\
& \quad>\frac{2 n}{\pi^{2}}\left(\frac{4 \pi^{2 n+2}}{(2 n+4)!} \frac{2^{2 n+4}-1}{n+2}\left|B_{2 n+4}\right|-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n+1}\right), \quad n \geq 2 .
\end{aligned}
$$

By Lemma 2.1, we have

$$
\frac{2(n-1)}{\pi^{2}}\left(\frac{4 \pi^{2 n}}{(2 n+2)!} \frac{2^{2 n+2}-1}{n+1}\left|B_{2 n+2}\right|-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n}\right)>\frac{2(n-1)}{\pi^{2}}\left(\frac{8}{\pi^{2}(n+1)}-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n}\right)
$$

and

$$
\begin{aligned}
& \frac{2 n}{\pi^{2}}\left(\frac{4 \pi^{2 n+2}}{(2 n+4)!} \frac{2^{2 n+4}-1}{n+2}\left|B_{2 n+4}\right|-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n+1}\right) \\
& \quad<\frac{2 n}{\pi^{2}}\left(\frac{1}{\pi^{2}\left(2^{2 n+3}-1\right)} \frac{2^{2 n+6}-4}{n+2}-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n+1}\right)
\end{aligned}
$$

So (6.1) holds when we prove

$$
n\left(\frac{1}{\pi^{2}\left(2^{2 n+3}-1\right)} \frac{2^{2 n+6}-4}{n+2}-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n+1}\right)<(n-1)\left(\frac{8}{\pi^{2}(n+1)}-\frac{1}{\ln \frac{4}{\pi}} \frac{1}{n}\right)
$$

or

$$
\pi^{2}\left(2^{2 n+3}-1\right)(n+2)>\left(\ln \frac{4}{\pi}\right) n\left(2^{2 n+7}+4 n^{2}+4 n-16\right)
$$

which is ensured for $n \geq 2$.

So

$$
\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}>\frac{p_{3}}{q_{3}}>\frac{p_{4}}{q_{4}}>\cdots .
$$

Since

$$
H_{f, g}\left(\left(\frac{\pi}{2}\right)^{-}\right)=\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}}\left(\frac{f^{\prime}}{g^{\prime}} g-f\right)=0
$$

we see that $G_{4}(x)$ is increasing on $(0, \pi / 2)$ by Lemma 2.4. In view of

$$
\begin{aligned}
& G_{4}\left(0^{+}\right)=\alpha=\frac{1}{12 \ln \frac{4}{\pi}}-\frac{2}{\pi^{2} \ln ^{2} \frac{4}{\pi}} \approx-3.1277 \\
& G_{4}\left(\left(\frac{\pi}{2}\right)^{-}\right)=\beta=\frac{16}{\pi^{4}}\left(1-\frac{1}{8} \frac{\pi^{2}}{\ln \frac{4}{\pi}}\right) \approx-0.67462
\end{aligned}
$$

the proof of Theorem 1.4 is complete.

7 Remark

Remark 7.1 The results of inequalities in Theorems 1.1-1.4 can be validated by methods and algorithms developed in [12, 13] and [14].

Funding

The first author was supported by the National Natural Science Foundation of China (no. 11471285 and no. 61772025).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors provided the questions and gave the proof for the main results. They read and approved the manuscript.

Author details

${ }^{1}$ Department of Mathematics, Zhejiang Gongshang University, Hangzhou City, China. ${ }^{2}$ School of Electrical Engineering, University of Belgrade, Belgrade, Serbia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 24 April 2018 Accepted: 9 November 2018 Published online: 16 November 2018

References

1. Mitrinović, D.S., Adamović, D.D.: Sur une inegalite elementaire ou interviennent des fonctions trigonometriques. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 149, 23-34 (1965)
2. Mitrinović, D.S., Adamović, D.D.: Complement A L'article "Sur une inegalite elementaire ou interviennent des fonctions trigonometriques". Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 166, 31-32 (1966)
3. Nishizawa, Y.: Sharp exponential approximate inequalities for trigonometric functions. Results Math. 71, 609-621 (2017). https://doi.org/10.1007/s00025-016-0566-3
4. Chen, C.P., Sándor, J.: Sharp inequalities for trigonometric and hyperbolic functions. J. Math. Inequal. 9(1), 203-217 (2015). https://doi.org/10.7153/jmi-09-19
5. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55, 9th printing. National Bureau of Standards, Washington (1972)
6. D'Aniello, C.: On some inequalities for the Bernoulli numbers. Rend. Circ. Mat. Palermo 43, 329-332 (1994). https://doi.org/10.1007/BF02844246
7. Alzer, H.: Sharp bounds for the Bernoulli numbers. Arch. Math. 74, 207-211 (2000). https://doi.org/10.1155/2012/137507
8. Qi, F :. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. (2019, in press). https://doi.org/10.1016/j.cam.2018.10.049
9. Jeffrey, A.: Handbook of Mathematical Formulas and Integrals, 3rd edn. Academic Press, San Diego (2004)
10. Biernacki, M., Krzyz, J.: On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 2, 134-145 (1955)
11. Yang, Z.H., Chu, Y.M., Wang, M.K.: Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 428(1), 587-604 (2015). https://doi.org/10.1016/j.jmaa.2015.03.043
12. Malesevic, B., Makragic, M.: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10(3), 849-876 (2016). https://doi.org/10.7153/jmi-11-63
13. Lutovac, T., Malesevic, B., Mortici, C.: The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 1 (2017). https://doi.org/10.1186/s13660-017-1392-1
14. Malesevic, B., Lutovac, T., Banjac, B.: A proof of an open problem of Yusuke Nishizawa for a power-exponential function. J. Math. Inequal. 12(2), 473-485 (2018). https://doi.org/10.7153/jmi-2018-12-35

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

