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1 Introduction
The following result is known as the Mitrinovic–Adamovic inequality [1, 2]:

(
sin x

x

)3

> cos x, 0 < x <
π

2
. (1.1)

Nishizawa [3] gave the upper bound of the function ((sin x)/x)3 in the form of the above
inequality (1.1) and obtained the following power exponential inequality:

(
sin x

x

)3

< (cos x)1–2x/π , 0 < x <
π

2
. (1.2)

Chen and Sándor [4] looked into the bounds for the function sec x and obtain the following
result for 0 < x < π/2:

π2

π2 – 4x2 < sec x <
4π

π2 – 4x2 . (1.3)

Nishizawa [3] obtained the following inequality with power exponential functions derived
from the right-hand inequality side of (1.3):

(
4π

π2 – 4x2

)4x2/π2

< sec x, 0 < x <
π

2
. (1.4)

The purpose of this article is to establish some exponential approximation inequalities
which improve the ones of (1.1)–(1.4). We prove these results for circular functions by us-
ing the properties of Bernoulli numbers and new criteria for the monotonicity of quotient
of two power series.
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Theorem 1.1 Let 0 < x < π/2, a = 2/15 ≈ 0.13333 and b = 4/π2
≈ 0.40528. Then we have

(cos x)1–ax2
<

(
sin x

x

)3

< (cos x)1–bx2
, (1.5)

where a and b are the best constants in (1.5).

Theorem 1.2 Let 0 < x < π/2, c = 19/945 ≈ 0.02011 and d = 8(30 – π2)/(15π4) ≈ 0.11022.
Then we have

(cos x)1–2x2/15–cx4
<

(
sin x

x

)3

< (cos x)1–2x2/15–dx4
, (1.6)

where c and d are the best constants in (1.6).

Theorem 1.3 Let 0 < x < π/2, b = 4/π2
≈ 0.40528 and p = 1/(2 ln(4/π )) ≈ 2.0698. Then

we have

(
4π

π2 – 4x2

)bx2

< sec x <
(

4π

π2 – 4x2

)px2

, (1.7)

where b and p are the best constants in (1.7).

Theorem 1.4 Let 0 < x < π/2,

α =
1

12 ln 4
π

–
2

π2 ln2 4
π

≈ –3.1277, β =
16
π4

(
1 –

1
8

π2

ln 4
π

)
≈ –0.67462.

Then we have

(
4π

π2 – 4x2

)x2/(2 ln(4/π ))+αx4

< sec x <
(

4π

π2 – 4x2

)x2/(2 ln(4/π ))+βx4

, (1.8)

where α and β are the best constants in (1.8).

We note that the right-hand side of the inequality (1.5) is stronger than that one in (1.2)
due to

1 –
4
π2 x2 =

(
1 +

2x
π

)(
1 –

2x
π

)
> 1 –

2x
π

while the double inequality (1.6) and (1.8) are sharper than the (1.5) and (1.7), respectively.

2 Lemmas
Lemma 2.1 ([5–8]) Let B2n be the even-indexed Bernoulli numbers, n = 1, 2, . . . . Then

2(2n)!
(2π )2n

22n

22n – 1
< |B2n| <

2(2n)!
(2π )2n

22n

22n – 2
, (2.1)

22n–1 – 1
22n+1 – 1

(2n + 2)(2n + 1)
π2 <

|B2n+2|
|B2n| <

22n – 1
22n+2 – 1

(2n + 2)(2n + 1)
π2 . (2.2)
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Lemma 2.2 Let B2n be the even-indexed Bernoulli numbers. Then the following power se-
ries expansion:

ln
sin x

x
= –

∞∑
n=1

22n

2n(2n)!
|B2n|x2n, 0 < |x| < π , (2.3)

and

ln cos x = –
∞∑

n=1

22n – 1
2n(2n)!

22n|B2n|x2n, |x| <
π

2
, (2.4)

hold.

Proof The following power series expansions can be found in [9, 1.3.1.4(2)(3)]:

cot x =
1
x

–
∞∑

n=1

22n

(2n)!
|B2n|x2n–1, (2.5)

tan x =
∞∑

n=1

22n – 1
(2n)!

22n|B2n|x2n–1. (2.6)

By (2.5) and (2.6) we have

ln
sin x

x
=

∫ x

0

(
ln

sin t
t

)′
dt =

∫ x

0

(
cot t –

1
t

)
dt

= –
∞∑

n=1

22n

2n(2n)!
|B2n|x2n

and

ln cos x =
∫ x

0
(ln cos t)′ dt = –

∫ x

0
tan t dt

= –
∞∑

n=1

22n – 1
2n(2n)!

22n|B2n|x2n. �

Lemma 2.3 ([10]) Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the power series
A(t) =

∑∞
n=0 antn and B(t) =

∑∞
n=0 bntn be convergent for |t| < R (R ≤ +∞). If bn > 0 for

n = 0, 1, 2, . . . , and if εn = an/bn is strictly increasing (or decreasing) for n = 0, 1, 2, . . . , then
the function A(t)/B(t) is strictly increasing (or decreasing) on (0, R) (R ≤ +∞).

In order to prove Theorem 1.4, we need the following lemma. We introduce a useful
auxiliary function Hf ,g . For –∞ ≤ a < b ≤ ∞, let f and g be differentiable on (a, b) and
g ′ �= 0 on (a, b). Then the function Hf ,g is defined by

Hf ,g =
f ′

g ′ g – f .

The function Hf ,g has some good properties and plays an important role in the proof of a
monotonicity criterion for the quotient of power series.
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Lemma 2.4 ([11]) Let A(t) =
∑∞

k=0 aktk and B(t) =
∑∞

k=0 bktk be two real power series con-
verging on (–r, r) and bk > 0 for all k. Suppose that, for certain m ∈ N , the non-constant
sequence {ak/bk} is increasing (resp. decreasing) for 0 ≤ k ≤ m and decreasing (resp. in-
creasing) for k ≥ m. Then the function A/B is strictly increasing (resp. decreasing) on (0, r)
if and only if HA,B(r–) ≥ (resp. ≤) 0. Moreover, if HA,B(r–) < (resp. >) 0, then there exists
t0 ∈ (0, r) such that the function A/B is strictly increasing (resp. decreasing) on (0, t0) and
strictly decreasing (resp. increasing) on (t0, r).

3 Proof of Theorem 1.1
Let

F1(x) =
3 ln sin x

x
ln cos x – 1

x2 =
3 ln sin x

x – ln cos x
x2 ln cos x

=
ln cos x – 3 ln sin x

x
–x2 ln cos x

=
A(x)
B(x)

, 0 < x <
π

2
,

where

A(x) = ln cos x – 3 ln
sin x

x
= –

∞∑
n=1

22n – 1
2n(2n)!

22n|B2n|x2n +
∞∑

n=1

3 · 22n

2n(2n)!
|B2n|x2n

= –
∞∑

n=1

22n – 4
2n(2n)!

22n|B2n|x2n = –
∞∑

n=2

22n – 4
2n(2n)!

22n|B2n|x2n

= –
∞∑

n=1

22n+2 – 4
(2n + 2)(2n + 2)!

22n+2|B2n+2|x2n+2 =
∞∑

n=1

anx2n

and

B(x) = –x2 ln cos x =
∞∑

n=1

22n – 1
2n(2n)!

22n|B2n|x2n+2 =
∞∑

n=1

bnx2n

by Lemma 2.2. Let

an

bn
= –

16n
(2n + 2)(2n + 1)(n + 1)

|B2n+2|
|B2n| = –en,

where

en =
16n

(2n + 2)(2n + 1)(n + 1)
|B2n+2|
|B2n| .

We now show that {en} is increasing for n ≥ 1. Since

en–1 =
16(n – 1)

(2n)(2n – 1)(n)
|B2n|

|B2n–2| <
16(n – 1)

(2n)(2n – 1)(n)
1

(2π )2
2n(2n – 1)22n–1

22n–1 – 1
,

en >
16n

(2n + 2)(2n + 1)(n + 1)
1

(2π )2
(2n + 2)(2n + 1)(22n–1 – 1)

22n–1

by Lemma 2.1, the proof of en–1 < en for n ≥ 2 can be completed when proving

n
n + 1

(22n–1 – 1)
22n–1 >

n – 1
n

22n–1

22n–1 – 1
.
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In fact,

n2(22n–1 – 1
)2 –

(
n2 – 1

)
22(2n–1) = 24n–2 – 4nn2 + n2 > 0

for n ≥ 2. So {an/bn}n≥1 is decreasing, and F1(x) is decreasing on (0,π/2) by Lemma 2.3.
In view of F1(0+) = –2/15, and F1((π/2)–) = –4/π2, the proof of Theorem 1.1 is complete.

4 Proof of Theorem 1.2
(i) We first prove the left-hand side inequality of (1.6). Let

F2(x) = 3 ln
sin x

x
–

(
1 –

2
15

x2 –
19

945
x4

)
ln cos x, 0 < x <

π

2
.

Then by Lemma 2.2 we have

F2(x) =
∞∑

n=3

in22n–2|B2n|x2n+2,

where

in =
16(22n+2 – 4)

(2n + 2)(2n + 2)!
|B2n+2|
|B2n| –

8(22n – 1)
30n(2n)!

–
19(22n–2 – 1)

945(2n – 2)(2n – 2)!
|B2n–2|
|B2n| .

By Lemma 2.1, we have

in >
16(22n+2 – 4)

(2n + 2)(2n + 2)!
(2n + 2)(2n + 1)(22n–1 – 1)

π2(22n+1 – 1)
–

8(22n – 1)
30n(2n)!

–
19(22n–2 – 1)

945(2n – 2)(2n – 2)!
π2(22n–1 – 1)

(2n)(2n – 1)(22n–3 – 1)

=
1

(2n)!
jn

with

jn =
16(22n+2 – 4)

(2n + 2)
(22n–1 – 1)

π2(22n+1 – 1)
–

8
15

22n – 1
2n

–
19

945
22n–2 – 1
(2n – 2)

π2(22n–1 – 1)
(22n–3 – 1)

>
16(22n+2 – 4)

(2n + 2)
(22n–1 – 1)

79
8 (22n+1 – 1)

–
8

15
(22n – 1)

2n
–

19
945

· 79
8

(22n–2 – 1)
(2n – 2)

(22n–1 – 1)
(22n–3 – 1)

=
1

1,194,480
h(n)

n(2 · 22n – 1)(22n – 8)(n – 1)(n + 1)

due to π2 < 79/8, where

h(n) =
(
1,061,146n2 – 2,172,518n + 637,056

)
26n

–
(
13,695,401n2 – 22,830,487n + 6,052,032

)
24n

+
(
39,747,422n2 – 52,928,098n + 7,963,200

)
22n

–
(
27,468,904n2 – 31,914,392n + 2,548,224

)
= 24nh1(n) + h2(n).
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It is not difficult to verify

h1(n) =
(
1,061,146n2 – 2,172,518n + 637,056

)
22n

–
(
13,695,401n2 – 22,830,487n + 6,052,032

)
> 0

and

h2(n) =
(
39,747,422n2 – 52,928,098n + 7,963,200

)
22n

–
(
27,468,904n2 – 31,914,392n + 2,548,224

)
> 0

for n ≥ 3. So in > 0 for n ≥ 3, and F2(x) > 0 for x ∈ (0,π/2).
(ii) Then we prove the right-hand side inequality of (1.6). Let

F3(x) = 3 ln
sin x

x
–

(
1 –

2
15

x2 –
8

15
30 – π2

π4 x4
)

ln cos x, 0 < x <
π

2
.

Then by Lemma 2.2 we have

F3(x) =
∞∑

n=2

ln22n–2|B2n|x2n+2,

where

ln =
16(22n+2 – 4)

(2n + 2)(2n + 2)!
|B2n+2|
|B2n| –

8
15

22n – 1
2n(2n)!

–
8

15
30 – π2

π4
22n–2 – 1

(2n – 2)(2n – 2)!
|B2n–2|
|B2n| .

By Lemma 2.1 we have

ln <
16(22n+2 – 4)

(2n + 2)(2n + 2)!
22n – 1

22n+2 – 1
(2n + 2)(2n + 1)

π2 –
8

15
22n – 1
2n(2n)!

–
8

15
30 – π2

π4
22n–2 – 1

(2n – 2)(2n – 2)!
π2(22n – 1)

(2n)(2n – 1)(22n–2 – 1)
,

that is,

(2n)!ln <
16(22n+2 – 4)

(2n + 2)
(22n – 1)

π2(22n+2 – 1)
–

8
15

22n – 1
2n

–
8

15
30 – π2

π4
22n–2 – 1
(2n – 2)

π2(22n – 1)
(22n–2 – 1)

=
4

15
(
22n – 1

) t(n)
π2n(n2 – 1)(4 · 22n – 1)

,

where

t(n) = –
(
240n – 4π2n – 4π2)22n –

(
90n2 –

(
150 – π2)n + π2) < 0

for n ≥ 2. So ln < 0 for n ≥ 2 and F3(x) < 0 for x ∈ (0,π/2).
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(iii) Let

F4(x) =
3 ln sin x

x
ln cos x – (1 – 2

15 x2)
x4 , 0 < x <

π

2
.

Then

F4
(
0+)

= –
19

945
, F4

((
π

2

)–)
= –

8
15

30 – π2

π4 .

This complete the proof of Theorem 1.2.

5 Proof of Theorem 1.3
(1) Let

G1(x) = ln sec x –
(

2x
π

)2

ln
4π

π2 – 4x2 , 0 < x <
π

2
.

Then we get

G1(x) =
∞∑

n=0

knx2n+2,

where

k0 =
1
2

–
4
π2 ln

4
π

> 0,

kn = –
((

2
π

)2n+2 1
n

–
22n+2 – 1

(2n + 2)(2n + 2)!
22n+2|B2n+2|

)
, n = 1, 2, . . . .

We now show

kn = –
((

2
π

)2n+2 1
n

–
22n+2 – 1

(2n + 2)(2n + 2)!
22n+2|B2n+2|

)
< 0 (5.1)

for n ≥ 1, that is,

(
2
π

)2n+2 1
n

–
22n+2 – 1

(2n + 2)(2n + 2)!
22n+2|B2n+2| > 0

or

|B2n+2| <
1

π2n+2
(2n + 2)!
22n+2 – 1

2n + 2
n

holds for n ≥ 1. In fact, by Lemma 2.1 we have

|B2n+2| <
2(2n + 2)!
(2π )2n+2

22n

22n – 2
,

so (5.1) holds as long as we can prove that

2(2n + 2)!
(2π )2n+2

22n

22n – 2
<

1
π2n+2

(2n + 2)!
22n+2 – 1

2n + 2
n

,
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that is,

n
(
22n+2 – 1

)
< 4(n + 1)

(
22n – 2

)
,

which is equivalent to

4(n + 1)
(
22n – 2

)
– n

(
22n+2 – 1

)
= 4 · 22n – 7n – 8 > 0

for n ≥ 1. So kn < 0 for n ≥ 1, which leads to G′′′
1 (x) =

∑∞
n=2 2n(2n – 1)(2n – 2)knx2n–3 < 0,

and G′′
1(x) is decreasing on (0,π/2). We can compute

G′
1(x) = tan x –

8
π2 x ln

(
–4

π

4x2 – π2

)
+

32
π2

x3

4x2 – π2 ,

G′′
1(x) = tan2 x –

8
π2 ln

(
–4

π

4x2 – π2

)
+

160
π2

x2

4x2 – π2 –
256
π2

x4

(4x2 – π2)2 + 1,

which give

G′′
1
(
0+)

= 1 –
8
π2 ln

4
π

≈ 0.80420 > 0, G′′
1

(
π

2
–
)

= –∞.

Then there exists an unique real number x1 ∈ (0,π/2) such that G′′
1(x) > 0 on (0, x1) and

G′′
1(x) < 0 on (x1,π/2). So G′

1(x) is increasing on (0, x1) and decreasing on (x1,π/2). Since

G′
1
(
0+)

= 0, G′
1

((
π

2

)–)
= –∞,

there exists an unique real number x2 ∈ (x1,π/2) such that G′
1(x) > 0 on (0, x2) and G′

1(x) <
0 on (x2,π/2). So G1(x) is increasing on (0, x2) and decreasing on (x2,π/2). In view of
G1(0+) = 0 = G1((π/2)–), the proof of the left-hand side inequality of (1.7) is complete.

(2) Let

G2(x) =
x2

2 ln 4
π

ln
4π

π2 – 4x2 – ln sec x, 0 < x <
π

2
.

Then we get

G2(x) =
∞∑

n=1

wnx2n+2,

where

wn =
1

2 ln 4
π

(
2
π

)2n 1
n

–
22n+2 – 1

(2n + 2)(2n + 2)!
22n+2|B2n+2|, n = 1, 2, . . . .

We now show wn > 0 for n ≥ 1, that is,

|B2n+2| <
(n + 1)(2n + 2)!

4n ln 4
π
π2n(22n+2 – 1)

(5.2)
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holds for n ≥ 1. In fact, by Lemma 2.1 we have

|B2n+2| <
2(2n + 2)!
(2π )2n+2

22n

22n – 2
,

so (5.2) holds as long as we can prove that
(

2n ln
4
π

)(
22n+2 – 1

)
< π2(n + 1)

(
22n – 2

)
,

which is true for n ≥ 1. So G′
2(x) > 0, and G2(x) is increasing on (0,π/2). We can compute

G2(0+) = 0 and G2((π/2)–) = +∞, the proof of the right-hand side inequality of (1.7) is
complete.

(3) Let

G3(x) =
ln sec x

x2 ln 4π

π2–4x2
, 0 < x <

π

2
.

Then

G3
(
0+)

=
1

2 ln 4
π

≈ 2.0698, G3

((
π

2

)–)
=

4
π2 ≈ 0.40528,

this completes the proof of Theorem 1.3.

6 Proof of Theorem 1.4
Let

G4(x) =

ln sec x
ln 4π

π2–4x2
– 1

2
x2

ln 4
π

x4 =
ln sec x – 1

2
x2

ln 4
π

ln 4π

π2–4x2

x4 ln 4π

π2–4x2
=

f (x)
g(x)

, 0 < x <
π

2
,

where

f (x) = p1x4 +
∞∑

n=2

pnx2n+2

and

g(x) = q1x4 +
∞∑

n=2

qnx2n+2

with

p1 =
1

12
–

1
2

1
ln 4

π

(
2
π

)4

;

pn =
22n+2 – 1

(2n + 2)(2n + 2)!
22n+2|B2n+2| –

1
2

1
ln 4

π

(
2
π

)2n 1
n

, n ≥ 2.

q1 = ln
4
π

> 0;

qn =
(

2
π

)2n–2 1
n – 1

> 0, n ≥ 2.
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Since

p1

q1
=

1
12 – 1

2
1

ln 4
π

( 2
π

)4

ln 4
π

≈ –1.0624

and

pn

qn
=

2(n – 1)
π2

(
4π2n

(2n + 2)!
22n+2 – 1

n + 1
|B2n+2| –

1
ln 4

π

1
n

)
, n ≥ 2,

we can obtain

p1

q1
≈ –1.0624 <

p2

q2
=

1
π2

(
1

180
π4 –

1
ln 4

π

)
≈ –0.36461,

but

pn

qn
>

pn+1

qn+1
(6.1)

for n ≥ 2. The inequality (6.1) is equivalent to

2(n – 1)
π2

(
4π2n

(2n + 2)!
22n+2 – 1

n + 1
|B2n+2| –

1
ln 4

π

1
n

)

>
2n
π2

(
4π2n+2

(2n + 4)!
22n+4 – 1

n + 2
|B2n+4| –

1
ln 4

π

1
n + 1

)
, n ≥ 2.

By Lemma 2.1, we have

2(n – 1)
π2

(
4π2n

(2n + 2)!
22n+2 – 1

n + 1
|B2n+2| –

1
ln 4

π

1
n

)
>

2(n – 1)
π2

(
8

π2(n + 1)
–

1
ln 4

π

1
n

)

and

2n
π2

(
4π2n+2

(2n + 4)!
22n+4 – 1

n + 2
|B2n+4| –

1
ln 4

π

1
n + 1

)

<
2n
π2

(
1

π2(22n+3 – 1)
22n+6 – 4

n + 2
–

1
ln 4

π

1
n + 1

)
.

So (6.1) holds when we prove

n
(

1
π2(22n+3 – 1)

22n+6 – 4
n + 2

–
1

ln 4
π

1
n + 1

)
< (n – 1)

(
8

π2(n + 1)
–

1
ln 4

π

1
n

)
,

or

π2(22n+3 – 1
)
(n + 2) >

(
ln

4
π

)
n
(
22n+7 + 4n2 + 4n – 16

)
,

which is ensured for n ≥ 2.
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So

p1

q1
<

p2

q2
>

p3

q3
>

p4

q4
> · · · .

Since

Hf ,g

((
π

2

)–)
= lim

x→( π
2 )–

(
f ′

g ′ g – f
)

= 0,

we see that G4(x) is increasing on (0,π/2) by Lemma 2.4. In view of

G4
(
0+)

= α =
1

12 ln 4
π

–
2

π2 ln2 4
π

≈ –3.1277,

G4

((
π

2

)–)
= β =

16
π4

(
1 –

1
8

π2

ln 4
π

)
≈ –0.67462,

the proof of Theorem 1.4 is complete.

7 Remark
Remark 7.1 The results of inequalities in Theorems 1.1–1.4 can be validated by methods
and algorithms developed in [12, 13] and [14].
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