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Abstract
In this investigation, some sufficient and necessary conditions of the complete
convergence for weighted sums of asymptotically negatively associated (ANA, in
short) random variables are presented without the assumption of identical
distribution. As an application of the main results, the Marcinkiewicz–Zygmund type
strong law of large numbers based on weighted sums of ANA cases is obtained. The
results of this paper extend and generalize some well-known corresponding ones.
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1 Introduction
The complete convergence is a very important research field in probability limit theory
of summation of random variables as well as weighted sums of random variables, which
was first introduced by Hsu and Robbins [1] as follows: A sequence {Xn; n ≥ 1} of random
variables converges completely to a constant λ if

∑∞
n=1 P(|Xn – λ| > ε) < ∞ for all ε > 0. In

view of the Borel–Cantelli lemma, this implies that Xn → λ almost surely (a.s., in short).
Hsu and Robbins [1] proved that the arithmetic means of independent and identically dis-
tributed (i.i.d., in short) random variables converges completely to the expected value of
the summands, provided the variance is finite. Erdös [2] showed the converse. The Hsu–
Robbins–Erdös theorem was generalized in different approaches. One of the most impor-
tant generalizations was given by Baum and Katz [3] for the following strong law of large
numbers.

Theorem 1.1 Let 1
2 < α ≤ 1 and αp ≥ 1. Suppose that {X, Xn; n ≥ 1} is a sequence of i.i.d.

random variables with EXn = 0. Then the following statements are equivalent:

(1) E|X|p < ∞;

(2)
∞∑

n=1

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣

> εnα

)

< ∞ for all ε > 0.
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Peligrad and Gut [4] extended the result of Baum and Katz [3] for i.i.d. random variables
to ρ̃-mixing cases.

Theorem 1.2 Let 1
2 < α ≤ 1 and αp > 1. Suppose that {X, Xn; n ≥ 1} is a sequence of iden-

tically distributed ρ̃-mixing random variables with EXn = 0. Then the above equations (1)
and (2) are also equivalent.

However, Peligrad and Gut [4] did not prove whether the result of Baum and Katz [3]
for the case αp = 1 holds for ρ̃-mixing random variables. Recently, Cai [5] complemented
the result of Peligrad and Gut [4] for the case αp = 1. For more details about this type of
complete convergence theorem, one can refer to Huang et al. [6], Wang and Hu [7], Deng
et al. [8], Ding et al. [9], Wu et al. [10] among others.

In the following, some concepts of dependent structures are restated.

Definition 1.1 Random variables X1, X2, . . . , Xn are said to be negatively associated (NA,
in short) if, for every pair of disjoint subsets A and B of {1, 2, . . . , n} and any real coordi-
natewise nondecreasing (or nonincreasing) functions f1 and f2,

Cov
(
f1(Xi, i ∈ A), f2(Xj, j ∈ B)

) ≤ 0, (1.1)

whenever this covariance exists. A sequence {Xn; n ≥ 1} of random variables is NA if every
finite subfamily is NA.

The notion of NA random variables was introduced by Alam and Saxena [11] and care-
fully studied by Joag-Dev and Proschan [12]. As pointed out and proved by Joag-Dev and
Proschan [12], a number of well-known multivariate distributions possess the NA prop-
erty.

Definition 1.2 A sequence {Xn; n ≥ 1} of random variables is called ρ̃-mixing if, for some
integer n ≥ 1, the mixing coefficient

ρ̃(n) = sup sup

{ |EXY – EXEY |√
Var X

√
Var Y

; X ∈ L2
(
σ (S)

)
, Y ∈ L2

(
σ (T)

)
}

< 1, (1.2)

where the outside sup is taken over all pairs of nonempty finite sets S and T of integers
such that min{|s – t|, s ∈ S, t ∈ T} ≥ n and σ (S) = σ {Xi; i ∈ S}.

Definition 1.3 A sequence {Xn; n ≥ 1} of random variables is called asymptotically nega-
tively associated (ANA, in short) if

ρ–(n) = sup
{
ρ–(S, T) : S, T ⊂ N, dist(S, T) ≥ n

} → 0 as n → ∞, (1.3)

where

ρ–(S, T) = 0 ∨
{

Cov(f (Xi, i ∈ S), g(Xj, j ∈ T))
√

Var(f (Xi, i ∈ S)) Var(g(Xj, j ∈ T))
, f , g ∈C

}

, (1.4)

and C is the set of nondecreasing for every variable functions.
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It is obvious that ρ–(n) ≤ ρ̃(n), and a sequence of ANA random variables is NA if and
only if ρ–(1) = 0. Compared with NA and ρ̃-mixing, ANA cases define a strictly larger
class of random variables (for detailed examples, see [13]). Consequently, extending and
improving the convergence theorems for NA and ρ̃-mixing random variables to the wider
ANA cases is highly desirable in the theory and applications.

In the past decade, many probabilists and statisticians studied and established a series
of important results for ANA random variables. For example, see Zhang and Wang [13],
Zhang [14, 15] for some moment inequalities of partial sums, the central limit theorems,
and the complete convergence, Kim et al. [16] for the strong law of large numbers, Wang
and Lu [17] for some moment inequalities of the maximum of partial sums, Wang and
Zhang [18] for a Berry–Esséen theorem and the law of the iterated logarithm, Liu and Liu
[19] for the moments of the maximum of normed partial sums, Budsaba et al. [20] for the
complete convergence for moving average process based on a sequence of ANA and NA
random variables, Yuan and Wu [21] for the limiting behavior for ANA random variables
under residual Cesàro alpha-integrability assumption, Huang et al. [22] for the complete
convergence and the complete moment convergence, Wu and Jiang [23] for the almost
sure convergence, and so forth.

Let {Xn; n ≥ 1} be a sequence of random variables defined on a fixed probability space
(Ω ,F , P), and let {an; n ≥ 1} be a sequence of real numbers. The probability limit behavior
of the maximum weighted sum max1≤j≤n

∑j
i=1 aiXi is very useful in applied probability

theory and mathematical statistics. In the theoretical statistical frameworks, many useful
linear statistics are based on weighted sums of random samples. For example, least-squares
estimators, nonparametric regression function estimators, jackknife estimators, and so
on. For that reason, studying the convergence properties for weighted sums of random
variables is of much interest.

In this paper, the authors discuss the strong convergence of ANA random variables with-
out identical distributions, and provide some equivalent conditions of Baum–Katz type
complete convergence theorem for weighted sums of ANA cases. As an application, the
Marcinkiewicz–Zygmund type strong law of large numbers for weighted sums of ANA
random variables is also obtained. The main results of this paper extend and improve the
known corresponding ones of Peligrad and Gut [4], Cai [5], and Wu and Jiang [23], respec-
tively.

The definition of stochastic domination, which is used frequently throughout this paper,
is as follows.

Definition 1.4 A sequence {Xn; n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xn| > x

) ≤ CP
(|X| > x

)
(1.5)

for all x ≥ 0 and n ≥ 1.

Throughout this paper, the symbols C, C1, C2, . . . will represent generic positive con-
stants which may be different in various places, and an = O(bn) will mean an ≤ Cbn for all
n ≥ 1. I(A) is the indicator function on the set A. [x] denotes the integer part of x.
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2 Main results and proofs
In this section, we will first restate some preliminary lemmas which are useful to proving
the main results of this paper.

Lemma 2.1 Increasing or decreasing functions defined on disjoint subsets of a sequence
of {Xn; n ≥ 1} of ANA random variables with the mixing coefficients ρ–(n) are also ANA
random variables with the mixing coefficients not greater than ρ–(n).

Lemma 2.2 (Wang and Lu [17]) For some positive integers n ∈ N and 0 ≤ s < 1
12 , sup-

pose that {Xn; n ≥ 1} is a sequence of ANA random variables with ρ–(n) ≤ s, EXn = 0, and
E|Xn|2 < ∞. Then there exists a positive constant C = C(2, n, s) for all n ≥ 1 such that

E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣

2)

≤ C
n∑

i=1

E|Xi|2. (2.1)

Lemma 2.3 For some positive integers n ∈ N and 0 ≤ s < 1
12 , suppose that {Xn; n ≥ 1} is a

sequence of ANA random variables with ρ–(n) ≤ s. Then there exists a positive constant C
such that, for all x > 0 and n ≥ 1,

(
1 – P

(
max
1≤i≤n

|Xi| > x
))2 n∑

i=1

P
(|Xi| > x

) ≤ CP
(

max
1≤i≤n

|Xi| > x
)

. (2.2)

Proof Denote Ai = (|Xi| > x) and αn = 1 – P(
⋃n

i=1 Ai) = 1 – P(max1≤i≤n |Xi| > x). Without
loss of generality, assume that αn > 0. It follows that {I(Xi < –x) – EI(Xi < –x); i ≥ 1} and
{I(Xi > x) – EI(Xi > x); i ≥ 1} are two sequences of ANA random variables with the mixing
coefficients not greater than ρ–(n) ≤ s by Lemma 2.1. Hence, by the Cr inequality and
Lemma 2.2, we can have

E

( n∑

i=1

(
I(Ai) – EI(Ai)

)
)2

≤ 2E

( n∑

i=1

(
I(Xi > x) – EI(Xi > x)

)
)2

+ 2E

( n∑

i=1

(
I(Xi < –x) – EI(Xi < –x)

)
)2

≤ C
n∑

i=1

P(Ai). (2.3)

Hence, by Hölder’s inequality and (2.3), we also have that

n∑

i=1

P(Ai) =
n∑

i=1

P

(

Ai

n⋃

j=1

Aj

)

=
n∑

i=1

E

(

I(Ai)I

( n⋃

j=1

Aj

))

= E

( n∑

i=1

(
I(Ai) – EI(Ai)

)
I

( n⋃

j=1

Aj

))

+
n∑

i=1

P(Ai)P

( n⋃

j=1

Aj

)
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≤
(

E

( n∑

i=1

(
I(Ai) – EI(Ai)

)
)2

E

(

I

( n⋃

j=1

Aj

))2)1/2

+ (1 – αn)
n∑

i=1

P(Ai)

≤
(

C(1 – αn)
n∑

i=1

P(Ai)

)1/2

+ (1 – αn)
n∑

i=1

P(Ai)

≤ 1
2

(
C(1 – αn)

αn
+ αn

n∑

i=1

P(Ai)

)1/2

+ (1 – αn)
n∑

i=1

P(Ai). (2.4)

By reorganizing the above inequality, the desired result (2.2) follows immediately. �

Lemma 2.4 Let {Xn; n ≥ 1} be a sequence of random variables which is stochastically domi-
nated by a random variable X. Then, for all α > 0, b > 0, and n ≥ 1, the following statements
hold:

E|Xn|αI
(|Xn| ≤ b

) ≤ C1
(
E|X|αI

(|X| ≤ b
)

+ bαP
(|X| > b

))
; (2.5)

E|Xn|αI
(|Xn| > b

) ≤ C2E|X|αI
(|X| > b

)
, (2.6)

where C1 and C2 represent different positive constants.

Now we state and prove the main results of this paper.

Theorem 2.1 Let 0 < p < 2, α > 1
2 , αp > 1, and 0 ≤ s < 1

12 . Suppose that {Xn; n ≥ 1} is a se-
quence of ANA random variables with the mixing coefficients ρ–(n) ≤ s, which is stochas-
tically dominated by a random variable X. Assume further that EXn = 0 if 1 ≤ p < 2 for
all n ≥ 1. Let {an; n ≥ 1} be a sequence of real numbers such that

∑n
i=1 |ai|2 = O(n). If

E|X|p < ∞, then for all ε > 0

∞∑

n=1

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα

)

< ∞. (2.7)

Proof of Theorem 2.1 The proof is primarily inspired by Wang and Wu [24]. Without loss
of generality, assume that an ≥ 0 for all n ≥ 1. For all 0 < γ ≤ 2,

1
n

n∑

i=1

|ai|γ ≤
(

1
n

n∑

i=1

|ai|2
)γ /2

,

which together with
∑n

i=1 |ai|2 = O(n) implies that

n∑

i=1

|ai|γ = O(n) for all 0 < γ ≤ 2. (2.8)

For all i ≥ 1 and n ≥ 1, define

Xni = –nαI
(
Xi < –nα

)
+ XiI

(|Xi| ≤ nα
)

+ nαI
(
Xi > nα

)
; Yni = Xi – Xni.



Huang et al. Journal of Inequalities and Applications        (2018) 2018:324 Page 6 of 13

Therefore, for fixed n ≥ 1, {Xni – EXni; i ≥ 1} is still a sequence of ANA random variables
by Lemma 2.1.

For all ε > 0, it easily follows that

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα

)

=

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα ,
n⋂

i=1

(Xi = Xni)

)

∪
(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα ,
n⋃

i=1

(Xi �= Xni)

)

⊂
(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXni

∣
∣
∣
∣
∣

> εnα

)

∪
( n⋃

i=1

(|Xi| > nα
)
)

,

which implies

P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα

)

≤ P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXni

∣
∣
∣
∣
∣

> εnα

)

+ P

( n⋃

i=1

(|Xi| > nα
)
)

.

In the following, we will proceed with three cases.
Case 1: For α > 1

2 , αp > 1, and 1 < p < 2. Firstly, we will show that

n–α max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaiXni

∣
∣
∣
∣
∣
→ 0 as n → ∞. (2.9)

Note that |Yni| ≤ |Xi|I(|Xi| > nα) and EXn = 0 for all n ≥ 1,

n–α max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaiXni

∣
∣
∣
∣
∣

= n–α max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaiYni

∣
∣
∣
∣
∣

≤ n–α

n∑

i=1

|ai|E|Xi|I
(|Xi| > nα

)

≤ n–α

n∑

i=1

|ai|E|X|I(|X| > nα
)

≤ n1–αE|X|I(|X| > nα
)

≤ Cn1–αpE|X|p → 0 as n → ∞. (2.10)

Hence, for n large enough and all ε > 0,

n–α max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaiXni

∣
∣
∣
∣
∣

<
ε

2
. (2.11)

To prove (2.7), it suffices to show that

I1
.=

∞∑

n=1

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

ai(Xni – EXni)

∣
∣
∣
∣
∣

>
εnα

2

)

< ∞; (2.12)
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I2
.=

∞∑

n=1

nαp–2P

( n⋃

i=1

(|Xi| > nα
)
)

< ∞. (2.13)

By some standard computations, we can easily have that

I2 ≤ C
∞∑

n=1

nαp–2
n∑

i=1

P
(|Xi| > nα

)

≤ C
∞∑

j=0

2j+1–1∑

n=2j

nαp–1P
(|X| > nα

)

≤ C
∞∑

j=1

2j(αp–1)2jP
(|X| > 2jα)

≤ C
∞∑

j=1

2jαp
∞∑

k=j

P
(
2αk < |X| ≤ 2α(k+1))

≤ C
∞∑

k=1

2kαpP
(
2αk < |X| ≤ 2α(k+1))

≤ CE|X|p < ∞. (2.14)

For I1, it follows from the Markov inequality, Lemma 2.2, (2.5) of Lemma 2.4 that

I1 ≤ C
∞∑

n=1

nαp–2–2αE

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

ai(Xni – EXni)

∣
∣
∣
∣
∣

2)

≤ C
∞∑

n=1

nαp–2–2α

n∑

i=1

aiE|Xni – EXni|2

≤ C
∞∑

n=1

nαp–2α–1E|X|2I
(|X| ≤ nα

)
+ C

∞∑

n=1

nαp–1P
(|X| > nα

)

= C
∞∑

n=1

nαp–2α–1
n∑

j=1

E|X|2I
(
j – 1 < |X|1/α ≤ j

)
+ CE|X|p

≤ C
∞∑

j=1

E|X|2I
(
j – 1 < |X|1/α ≤ j

) ∞∑

n=j

nαp–2α–1

≤ C
∞∑

j=1

jαp–2αE|X|2I
(
j – 1 < |X|1/α ≤ j

)

≤ CE|X|p < ∞. (2.15)

Case 2: For α > 1
2 , αp > 1, and p = 1. Note that α > 1 if αp > 1. By (2.8) and (2.6) of

Lemma 2.4, we have that

n–α max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaiXni

∣
∣
∣
∣
∣
≤ n–α

n∑

i=1

ai
(
E|Xi|I

(|Xi| > nα
)

+ nαP
(|Xi| > nα

))

≤ Cn1–αE|X|I(|X| > nα
) → 0. (2.16)



Huang et al. Journal of Inequalities and Applications        (2018) 2018:324 Page 8 of 13

Hence, by an argument similar to those in the proofs of (2.14) and (2.15), we also have
I1 < CE|X| < ∞ and I2 < CE|X| < ∞.

Case 3: For α > 1
2 , αp > 1, and 0 < p < 1. By the Markov inequality, (2.5) of Lemma 2.4,

and (2.8), we have that

J1
.=

∞∑

n=1

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXiI
(|Xi| ≤ nα

)
∣
∣
∣
∣
∣

>
εnα

2

)

≤ C
∞∑

n=1

nαp–2–α

n∑

i=1

aiE|Xi|I
(|Xi| ≤ nα

)

≤ C
∞∑

n=1

nαp–2–α

n∑

i=1

ai
(
E|X|I(|X| ≤ nα

)
+ nαP

(|X| > nα
))

≤ C
∞∑

n=1

nαp–1–αE|X|I(|X| ≤ nα
)

+ C
∞∑

n=1

nαp–1P
(|X| > nα

)

≤ C
∞∑

n=1

nαp–1–α

n∑

j=1

E|X|I(j – 1 < |X|1/α ≤ j
)

+ C
∞∑

n=1

nαp–1
∞∑

j=n

P
(
j < |X|1/α ≤ j + 1

)

≤ C
∞∑

j=1

jαp–αE|X|I((j – 1)α < |X| ≤ jα
)

+ C
∞∑

j=1

jαpP
(
jα < |X| ≤ (j + 1)α

)

≤ C|X|p < ∞. (2.17)

Similarly, we also have that

J2
.=

∞∑

n=1

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXiI
(|Xi| ≥ nα

)
∣
∣
∣
∣
∣

>
εnα

2

)

≤ C
∞∑

n=1

nαp–2–(αp/2)E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXiI
(|Xi| > nα

)
∣
∣
∣
∣
∣

p/2)

≤ C
∞∑

n=1

n(αp/2)–2
n∑

i=1

ap/2
i E|Xi|p/2I

(|Xi| > nα
)

≤ C
∞∑

n=1

n(αp/2)–1E|X|p/2I
(|X| > nα

)

≤ C
∞∑

n=1

n(αp/2)–1
∞∑

j=n

E|X|p/2I
(
j < |X|1/α ≤ j + 1

)

= C
∞∑

j=1

E|X|p/2I
(
j < |X|1/α ≤ j + 1

)
j∑

n=1

n(αp/2)–1

≤ C
∞∑

j=1

j(αp/2)E|X|p/2I
(
j < |X|1/α ≤ j + 1

)

≤ C|X|p < ∞. (2.18)



Huang et al. Journal of Inequalities and Applications        (2018) 2018:324 Page 9 of 13

Hence, the desired result (2.7) can be implied from (2.17) and (2.18) for α > 1
2 , αp > 1,

and 0 < p < 1 immediately. The proof of Theorem 2.1 is completed. �

The following theorem provides the necessary condition of complete convergence for
weighted sums of ANA random variables.

Theorem 2.2 Let 0 < p < 2, α > 1
2 , αp > 1, and 0 ≤ s < 1

12 . Suppose that {Xn; n ≥ 1} is
a sequence of ANA random variables with the mixing coefficients ρ–(n) < s. Assume that
there exist a random variable X and some positive constant C1 such that C1P(|X| > x) ≤
infn≥1 P(|Xn| > x) for all x ≥ 0. Assume further that EXn = 0 if 1 ≤ p < 2. Let {an; n ≥ 1} be a
sequence of real numbers such that

∑n
i=1 |ai|2 = O(n). Then (2.7) implies E|X|p < ∞ for all

ε > 0.

Proof of Theorem 2.2 Noting that

max
1≤i≤n

|aiXi| ≤ max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

+ max
1≤j≤n

∣
∣
∣
∣
∣

j–1∑

i=1

aiXi

∣
∣
∣
∣
∣
.

By (2.7), we have that

∞∑

n=1

nαp–2P
(

max
1≤i≤n

|aiXi| > εnα
)

< ∞. (2.19)

For αp > 1, it follows that

P
(

max
1≤i≤n

|aiXi| > εnα
)

≤ Cnαp–1P
(

max
1≤i≤n

|aiXi| > εnα
)

≤ C
2n∑

i=n

iαp–2P
(

max
1≤j≤i

|ajXj| >
ε

2α
iα

)

,

which together with (2.19) and the Kronecker lemma implies that

P
(

max
1≤i≤n

|aiXi| > εnα
)

→ 0 as n → ∞. (2.20)

Hence, for n large enough,

P
(

max
1≤i≤n

|aiXi| > εnα
)

<
1
2

. (2.21)

By Lemma 2.3, (2.21), and C1P(|X| > x) ≤ infn≥1 P(|Xn| > x) for all x ≥ 0, we have that

nP
(|aiX| > εnα

) ≤
n∑

i=1

P
(|aiXi| > εnα

) ≤ CP
(

max
1≤i≤n

|aiXi| > εnα
)

. (2.22)
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Take ε = 1. By (2.8) for γ = 1 and some standard computations, we have that

∞ >
∞∑

n=1

nαp–2P
(

max
1≤i≤n

|aiXi| > nα
)

≥ C
∞∑

n=1

nαp–1P
(|aiX| > nα

)

= C
∞∑

n=1

nαp–1P

( n∑

i=1

|aiX| >
n∑

i=1

nα

)

= C
∞∑

n=1

nαp–1P
(|X| ≥ nα

)

≥ C
∞∑

n=1

nαp–1
∞∑

j=n

P
(
jα ≤ |X| < (j + 1)α

)

= C
∞∑

j=1

P
(
jα ≤ |X| < (j + 1)α

)
j∑

n=1

nαp–1

≥ C
∞∑

j=1

P
(
jα ≤ |X| < (j + 1)α

)
[log2j]∑

i=1

2i–1∑

n=2i–1

nαp–1

≥ C
∞∑

j=1

P
(
jα ≤ |X| < (j + 1)α

)
[log2j]∑

i=1

2iαp

≥ C
∞∑

j=1

P
(
jα ≤ |X| < (j + 1)α

)
2[log2j]αp

≥ C
∞∑

j=1

P
(
jα ≤ |X| < (j + 1)α

)
jαp

≥ CE|X|p. (2.23)

The proof of Theorem 2.2 is completed. �

The following two theorems treat the case αp = 1.

Theorem 2.3 Let 1
2 < α ≤ 1 and 0 ≤ s < 1

12 . Suppose that {Xn; n ≥ 1} is a sequence of mean
zero ANA random variables with the mixing coefficients ρ–(n) ≤ s, which is stochastically
dominated by a random variable X. Let {an; n ≥ 1} be a sequence of real numbers such that
∑n

i=1 |ai|2 = O(n). If E|X|p < ∞, then for all ε > 0,

∞∑

n=1

n–1P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα

)

< ∞. (2.24)

Proof of Theorem 2.3 By applying the same notations as those in the proof of Theorem 2.1,
we will first show (2.9). For 1

2 < α ≤ 1, note that 1 ≤ p = 1
α

< 2 if αp = 1. Therefore, by (2.6)
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of Lemma 2.4 and EXn = 0, we have that

n–α max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaiXni

∣
∣
∣
∣
∣
≤ n–α max

1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaiXiI
(|Xi| ≤ nα

)
∣
∣
∣
∣
∣

+
n∑

i=1

|ai|P
(|Xi| > nα

)

≤ n–α

n∑

i=1

|ai|E|Xi|I
(|Xi| > nα

)
+ nP

(|X| > nα
)

≤ 2n1–αE|X|I(|X| > nα
)

= 2n1–αE|X|1/α|X|1–(1/α)I
(|X| > nα

)

≤ 2E|X|pI
(|X| > nα

) → 0 as n → ∞. (2.25)

The rest of the proof is similar to those of Case 1 and Case 2 in Theorem 2.1, we also have
that I1 ≤ CE|X|p < ∞ and I2 ≤ CE|X|p < ∞. The proof of Theorem 2.3 is completed. �

Theorem 2.4 Let 1
2 < α ≤ 1 and 0 ≤ s < 1

12 . Suppose that {Xn; n ≥ 1} is a sequence of mean
zero ANA random variables with the mixing coefficients ρ–(n) ≤ s. Assume that there exist
a random variable X and some positive constant C1 such that C1P(|X| > x) ≤ infn≥1 P(|Xn| >
x) for all x ≥ 0. Let {an; n ≥ 1} be a sequence of real numbers such that

∑n
i=1 |ai|2 = O(n).

Then (2.24) implies E|X|p < ∞ for all ε > 0.

Corollary 2.1 Under the conditions of Theorem 2.1, if (2.7) holds for all ε > 0, then

∞∑

n=1

nαp–2P

(

max
j≥n

∣
∣
∣
∣
∣
j–α

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> ε

)

< ∞. (2.26)

Proof of Corollary 2.1 Inspired by the proof of Theorem 12.1 of Gut [25], we can check
that by (2.7), for all ε > 0,

∞∑

n=1

nαp–2P

(

max
j≥n

∣
∣
∣
∣
∣
j–α

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> ε

)

≤ C
∞∑

n=1

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα

)

< ∞. �

Corollary 2.2 Under the conditions of Theorem 2.1 or Theorem 2.3,

lim
n→∞

1
nα

n∑

i=0

aiXi = 0 a.s. (2.27)

Proof of Corollary 2.2 Here, we will only prove (2.27) under the conditions of Theorem 2.1.
By (2.7), we have that

∞ >
∞∑

n=1

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα

)

=
∞∑

i=0

2i+1–1∑

n=2i

nαp–2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aiXi

∣
∣
∣
∣
∣

> εnα

)

≥
⎧
⎨

⎩

∑∞
i=0 (2i)αp–1P(max1≤j≤2i |∑j

i=1 aiXi| > ε2(i+1)α), if αp ≥ 2,
∑∞

i=0 (2i+1)αp–22iP(max1≤j≤2i |∑j
i=1 aiXi| > ε2(i+1)α), if 1 < αp < 2
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≥
⎧
⎨

⎩

∑∞
i=0 P(max1≤j≤2i |∑j

i=1 aiXi| > ε2(i+1)α), if αp ≥ 2,
1
2
∑∞

i=0 P(max1≤j≤2i |∑j
i=1 aiXi| > ε2(i+1)α), if 1 < αp < 2.

(2.28)

In view of the Borel–Cantelli lemma, we also have that

lim
i→∞

max1≤j≤2i |∑j
i=1 aiXi|

2(i+1)α = 0 a.s. (2.29)

For all positive integers n, there exists a nonnegative integer i0 such that 2i0–1 ≤ n < 2i0 .
Thus

1
nα

n∑

i=0

aiXi ≤ max
2i0–1≤n≤2i0

1
nα

n∑

i=0

aiXi ≤ 2α
max1≤j≤2i0 |∑j

i=1 aiXi|
2(i0+1)α → 0 a.s., (2.30)

which implies

lim
n→∞

1
nα

n∑

i=0

aiXi = 0 a.s.

The proof of Corollary 2.2 is completed. �

Remark 2.1 Taking an = 1 for all n ≥ 1 in Theorems 2.1–2.4 above, we can also obtain the
Baum and Katz type complete convergence theorem for ANA random variables under the
cases of 0 < p < 2, α > 1

2 , αp > 1 and 1
2 < α ≤ 1, αp = 1, respectively. Since ANA random

variables include ρ̃-mixing random variables and NA random variables, the main results
of this paper also hold for ρ̃-mixing and NA cases. Hence, Theorems 2.1–2.4 extend the
corresponding ones of Peligrad and Gut [4] and Cai [5] to the weighted sums.

Remark 2.2 Wu and Jiang [23] also investigated the almost sure convergence for identi-
cally distributed ANA random variables and obtained the Marcinkiewicz–Zygmund type
strong law of large numbers under E|X|p < ∞ for 0 < p < 2. Compared with their result, it is
worth pointing out that we establish some much stronger convergence results for weighted
sums of ANA random variables without the assumption of identical distribution, which
can imply the corresponding one of Wu and Jiang [23].
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