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Abstract
In this paper, inspired by Jitsupa et al. (J. Comput. Appl. Math. 318:293–306, 2017), we
propose a general iterative scheme for finding a solution of a split monotone
variational inclusion with the constraints of a variational inequality and a fixed point
problem of a finite family of strict pseudo-contractions in real Hilbert spaces. Under
very mild conditions, we prove a strong convergence theorem for this iterative
scheme. Our result improves and extends the corresponding ones announced by
some others in the earlier and recent literature.
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1 Introduction
It is known that variational inequality, as a greatly important tool, has already been stud-
ied for a wide class of unilateral, obstacle, and equilibrium problems arising in several
branches of pure and applied sciences in a unified and general framework. Many numer-
ical methods have been developed for solving variational inequalities and some related
optimization problems; see [2–5] and the references therein.

The split monotone variational inclusion problem, which is the core of the modeling
of many inverse problems arising in phase retrieval and other real-world problems, has
been widely studied in sensor networks, intensity-modulated radiation therapy treatment
planning, data compression, and computerized tomography in recent years; see, e.g., [6–
10] and the references therein.

Split monotone variational inclusion problem (in short, SMVIP) was firstly introduced
by Moudafi [11] as follows: find x∗ ∈ H1 such that

⎧
⎨

⎩

0 ∈ f1x∗ + B1x∗,

y∗ = Ax∗ ∈ H2 : 0 ∈ f2y∗ + B2y∗,
(1.1)
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where f1 : H1 → H1 and f2 : H2 → H2 are two given single-valued mappings, A : H1 → H2

is a bounded linear operator, B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal
monotone mappings.

If f1 = f2 ≡ 0, then problem (1.1) reduces to the following split variational inclusion prob-
lem (in short, SVIP): find x∗ ∈ H1 such that

⎧
⎨

⎩

0 ∈ B1x∗,

y∗ = Ax∗ ∈ H2 : 0 ∈ B2y∗.
(1.2)

Also, if f1 ≡ 0, then problem (1.1) reduces to the following split monotone variational
inclusion problem (in short, SMVIP): find x∗ ∈ H1 such that

⎧
⎨

⎩

0 ∈ B1x∗,

y∗ = Ax∗ ∈ H2 : 0 ∈ fy∗ + B2y∗.
(1.3)

We denote the solution sets of variational inclusions 0 ∈ B1x∗ and 0 ∈ fy∗ + B2y∗ by
SOLVIP(B1) and SOLVIP(f + B2), respectively. Thus, the solution set of problem (1.3) can
be denoted by Γ = {x∗ ∈ H1 : x∗ ∈ SOLVIP(B1), Ax∗ ∈ SOLVIP(f + B2)}.

In 2012, Byrne et al. [12] studied the following iterative scheme for SVIP (1.2): for given
x0 ∈ H1 and λ > 0,

xn+1 = JB1
λ

[
xn + εA∗(JB2

λ – I
)
Axn
]
. (1.4)

Recently, Kazmi and Rivi [13] introduced a new iterative scheme for SVIP (1.2) and the
fixed point problem of a nonexpansive mapping:

⎧
⎨

⎩

un = JB1
λ [xn + εA∗(JB2

λ – I)Axn],

xn+1 = αnf (xn) + (1 – αn)Tun,
(1.5)

where A is a bounded linear operator, A∗ is the adjoint of A, f is a contraction on H1, T is
a nonexpansive mapping of H1. They obtained a strong convergence theorem under some
mild restrictions on the parameters.

Very recently, Jitsupa et al. [1] modified algorithm (1.5) for SVIP (1.2) and the fixed point
problem of a finite family of strict pseudo-contractions:

⎧
⎪⎪⎨

⎪⎪⎩

un = JB1
λ [xn + γ A∗(JB2

λ – I)Axn],

yn = βnun + (1 – βn)
∑N

i=1 η
(n)
i Tiun,

xn+1 = αnτ f (xn) + (I – αnD)yn, n ≥ 1,

(1.6)

where A is a bounded linear operator, A∗ is the adjoint of A, {Ti}N
i=1 is a finite family of ki-

strictly pseudo-contractions, f is a contraction, D is a strong positive linear bounded op-
erator. They proved, under certain appropriate assumptions on the sequences {αn}, {βn},
and {η(n)

i }N
i=1, that {xn} defined by (1.6) converges strongly to a common solution of SVIP

(1.2) and a fixed point of a finite family of ki-strictly pseudo-contractions, which solves
some variational inequality problem.
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Remark 1.1
(1) We notice that Jitsupa et al. [1] did not define the domains and the ranges of B1 and

B2 in the iteration process (1.6) and Theorem 3.1 of [1]. Certainly, it is easy to
misunderstand that B1 is defined on H1 into 2H1 and B2 is defined on H2 into 2H2 . In
that case, {un} defined in (1.6) lies in H1. However, the domain of Ti is C but not H1,
which makes the iteration process (1.6) not well-defined. Thus, it is necessary to
give the definite domains and ranges of B1 and B2.

(2) Can the iterative scheme (1.6) be modified for solving more problems?

In this paper, we introduce a new general iterative scheme as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = JB1
λ1

[xn + γ A∗(JB2
λ2

(I – λ2f ) – I)Axn],

vn = PC(un – ξDun),

yn = βnvn + (1 – βn)
∑N

i=1 η
(n)
i Tivn,

xn+1 = PC[αnτF(xn) + γnxn + ((1 – γn)I – αnμV )yn], n ≥ 1,

(1.7)

where B1 : C → 2H1 , B2 : H2 → 2H2 are two multi-valued maximal monotone operators,
f : H2 → H2 is a ρ-inverse strongly monotone operator, A : H1 → H2 is a bounded linear
operator, and A∗ is the adjoint of A, D : C → H1 is a δ-inverse strongly monotone oper-
ator, {Ti}N

i=1 : C → C is a finite family of ki-strictly pseudo-contractions, PC is the metric
projection of H1 onto the closed convex set C, F is L-Lipschitzian on H1, and V is a η-
strongly monotone and K-Lipschitzian operator. Under some suitable assumptions on the
sequences {αn}, {βn}, and {η(n)

i }N
i=1, we prove that the sequence {xn} defined by (1.7) con-

verges strongly to a common solution of SMVIP (1.3) with the constraints of a variational
inequality and a fixed point problem of a finite family of strict pseudo-contractions, which
solves the following variational inequality:

〈μVq – τFq, q – p〉 ≤ 0, ∀p ∈F ,

where F denotes the set of common solutions of SMVIP (1.3), a variational inequality,
and a fixed point problem of a finite family of strict pseudo-contractions. Finally, we also
provide a numerical example to support our strong convergence result.

2 Preliminaries
Throughout this paper, let H1 and H2 be two real Hilbert spaces with the inner product
〈·, ·〉 and the norm ‖ · ‖. Let C be a nonempty closed convex subset of H1.

Recall that S : H1 → H1 is said to be a nonexpansive mapping if ‖Sx – Sy‖ ≤ ‖x – y‖,
∀x, y ∈ H1. It is also called firmly nonexpansive if 〈Sx – Sy, x – y〉 ≥ ‖Sx – Sy‖2, ∀x, y ∈ H1.
We can easily see that S is firmly nonexpansive if and only if S can be written as S = 1

2 (I +T),
where T : H1 → H1 is nonexpansive.

Moreover, S : H1 → H1 is called
(i) contractive if there exists a constant α ∈ (0, 1) such that

‖Sx – Sy‖ ≤ α‖x – y‖, ∀x, y ∈ H1; (2.1)
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(ii) L-Lipschitzian if there exists a positive constant L such that

‖Sx – Sy‖ ≤ L‖x – y‖, ∀x, y ∈ H1; (2.2)

(iii) η-strongly monotone if there exists a positive constant η such that

〈Sx – Sy, x – y〉 ≥ η‖x – y‖2, ∀x, y ∈ H1; (2.3)

(iv) β-inverse strongly monotone (in short, β-ism) if there exists a positive constant β

such that

〈Sx – Sy, x – y〉 ≥ β‖Sx – Sy‖2, ∀x, y ∈ H1; (2.4)

(v) averaged if it can be expressed as the average of the identity mapping and a
nonexpansive mapping, i.e.,

S := (1 – α)I + αT , (2.5)

where α ∈ (0, 1), I is the identity operator on H1 and T : H1 → H1 is nonexpansive.
It is easily seen that averaged mappings are nonexpansive. In the meantime, firmly non-

expansive mappings are averaged.
In addition, a mapping S : H1 → H1 is called k-strict pseudo-contractive if there exists a

constant k ∈ [0, 1) such that

‖Sx – Sy‖2 ≤ ‖x – y‖2 + k
∥
∥(I – S)x – (I – S)y

∥
∥2, ∀x, y ∈ H1. (2.6)

A linear operator D is said to be a strongly positive bounded linear operator on H1 if
there exists a positive constant τ such that

〈Dx, x〉 ≥ τ‖x‖2, ∀x ∈ H1.

From the definition above, we obtain easily that a strongly positive bounded linear op-
erator D is τ -strongly monotone and ‖D‖-Lipschitzian.

A multi-valued mapping M : D(M) ⊆ H1 → 2H1 is called monotone if, for all x, y ∈ D(M),
u ∈ Mx and v ∈ My such that

〈x – y, u – v〉 ≥ 0.

A monotone mapping M is maximal if the Graph(M) is not properly contained in the
graph of any other monotone mapping. It is well known that a monotone mapping M is
maximal if and only if for x ∈ D(M), u ∈ H1, 〈x – y, u – v〉 ≥ 0 for each (y, v) ∈ Graph(M)
implies that u ∈ Mx.

Let M : D(M) ⊆ H1 → 2H1 be a multi-valued maximal monotone mapping. Then the
resolvent operator JM

λ : H1 → D(M) is defined by

JM
λ x := (I + λM)–1(x), ∀x ∈ H1,
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for ∀λ > 0, where I stands for the identity operator on H1. We observe that JM
λ is single-

valued, nonexpansive, and firmly nonexpansive.
Let D : C → H1 be a nonlinear mapping. Then the variational inequality problem (VIP)

is to find u ∈ C such that

〈Du, v – u〉 ≥ 0, ∀v ∈ C. (2.7)

We denote the solution set of VIP (2.7) by VI(C, D). Many different approaches have been
studied for solving this problem; see, e.g., [14–17].

For each point x ∈ H1, there exists a unique nearest point in C denoted by PCx such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C. (2.8)

PC is called the metric projection of H1 onto C.
It is known that PC is nonexpansive and satisfies the following inequalities:

‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H1, (2.9)

〈x – PCx, y – PCx〉 ≤ 0, ∀x ∈ H1, y ∈ C. (2.10)

We note that each nonexpansive mapping S : H1 → H1 satisfies the following inequality
(see Theorem 3 in [18] and Theorem 1 in [19]):

〈
(x – Sx) – (y – Sy), Sy – Sx

〉≤ 1
2
∥
∥(Sx – x) – (Sy – y)

∥
∥2, ∀x, y ∈ H1, (2.11)

particularly, for ∀x ∈ H1, y ∈ F(S),

〈x – Sx, y – Sx〉 ≤ 1
2
‖Sx – x‖2. (2.12)

Proposition 2.1 ([11])
(i) If T = (1 – α)S + αV , where S : H1 → H1 is averaged, V : H1 → H1 is nonexpansive,

and α ∈ [0, 1], then T is averaged.
(ii) The composite of finitely many averaged mappings is averaged.

(iii) If the mappings {Ti}N
i=1 are averaged and have a nonempty common fixed point, then

N⋂

i=1

F(Ti) = F(T1 ◦ T2 ◦ · · · ◦ TN ).

(iv) If T is ν-ism, then for γ > 0, γ T is ν
γ

-ism.
(v) T is averaged if and only if its complement I – T is ν-ism for some ν > 1

2 .

Proposition 2.2 ([11]) Let λ > 0, h be an α-ism operator, and B be a maximal monotone
operator. If λ ∈ (0, 2α), then it is easily seen that the operator JB

λ (I – λh) is averaged.

Proposition 2.3 ([11]) Let λ > 0 and B1 be a maximal monotone operator. Then

x∗ solves (1.1) ⇔ x∗ = JB1
λ (I – λf1)

(
x∗) and Ax∗ = JB2

λ (I – λf2)Ax∗.
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Proposition 2.4 ([20]) Let D : C → H1 be an inverse strongly monotone operator. Then

u ∈ VI(C, D) ⇔ u = PC(u – λDu), ∀λ > 0.

Proposition 2.5 ([21]) Let D be an inverse strongly-monotone mapping of C into H1. Let
NCv be the normal cone to C at v ∈ C, i.e.,

NCv =
{

w ∈ H1|〈v – u, w〉 ≥ 0,∀u ∈ C
}

,

and define

Tv =

⎧
⎨

⎩

Dv + NCv, v ∈ C,

∅, v ∈ H1 \ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C, D).

In order to prove our main results, we need the following lemmas.

Lemma 2.1 ([22]) Let T : C → C be a k-strict pseudo-contraction. For λ ∈ [k, 1), define
S : C → C by Sx = λx + (1 – λ)Tx for each x ∈ C. Then S is a nonexpansive mapping such
that F(S) = F(T).

Lemma 2.2 ([23]) If T : C → C is a k-strict pseudo-contraction, then the fixed point set
F(T) is closed convex so that the projection PF(T) is well-defined.

Lemma 2.3 ([23]) Let C be a nonempty closed convex subset of the Hilbert space H1.
Given an integer N ≥ 1, assume that {Ti}N

i=1 : C → C is a finite family of ki-strict pseudo-
contractions. Suppose that {ηi}N

i=1 is a positive sequence such that
∑N

i=1 ηi = 1. Then
∑N

i=1 ηiTi : C → C is a k-strict pseudo-contraction with k = max{ki : 1 ≤ i ≤ N} and
F(
∑N

i=1 ηiTi) =
⋂N

i=1 F(Ti).

Lemma 2.4 ([24]) Let E be an inner product space. Then, for any x, y, z ∈ E and α,β ,γ ∈
[0, 1] with α + β + γ = 1, we have

‖αx + βy + γ z‖2 = α‖x‖2 + β‖y‖2 + γ ‖z‖2 – αβ‖x – y‖2 – αγ ‖x – z‖2 – βγ ‖y – z‖2.

Lemma 2.5 ([25]) Let {αn} be a sequence of nonnegative numbers satisfying the property

αn+1 ≤ (1 – γn)αn + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a real sequence in R such that
(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞.

Then limn→∞ αn = 0.

Lemma 2.6 ([26]) Assume that T is nonexpansive self-mapping of a closed convex subset
C of a Hilbert space H1. If T has a fixed point, then I – T is demiclosed, i.e., whenever {xn}
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weakly converges to some x and {(I –T)xn} converges strongly to y, it follows that (I –T)x = y.
Here I is the identity mapping on H1.

Lemma 2.7 ([27]) Let V be a K-Lipschitzian and η-strongly monotone operator on a
nonempty closed convex subset C of a Hilbert space H1 with 0 < η ≤ K and 0 < t < 2η/K2.
Then the mapping S : C → C defined by S := (I – tV ) is a contraction with coefficient
τt = 1 – t(η – tK2

2 ).

Lemma 2.8 ([28]) Let C be a nonempty closed convex subset of a Hilbert space H1 and
PC be the metric projection of H1 onto C. Let S : C → C be a nonexpansive mapping with
F(S) �= ∅ and F : C → H1 be an L-Lipschitzian mapping with constant L ≥ 0. Let V : C →
H1 be an η-strongly monotone and K-Lipschitzian mapping. Suppose that 0 < μ < 2η/K2

and 0 ≤ τL < τ0, where τ0 = 1 –
√

1 – μ(2η – μK2). Then the net {xt}t∈(0,1) defined by xt =
PC[tτFxt + (I – tμV )Sxt] converges strongly as t → 0 to a fixed point q of S which solves the
variational inequality

〈
(μV – τF)q, q – p

〉≤ 0, ∀p ∈ F(S).

3 Main results
Lemma 3.1 Let H1 and H2 be two real Hilbert spaces and C be a nonempty closed con-
vex subset of H1. Let A : H1 → H2 be a bounded linear operator, A∗ be the adjoint of
A, and r be the spectral radius of the operator A∗A. Let f : H2 → H2 be a ρ-inverse
strongly monotone operator and B1 : C → 2H1 , B2 : H2 → 2H2 be two multi-valued max-
imal monotone operators. Let D : C → H1 be a δ-inverse strongly monotone operator. As-
sume that {Ti}N

i=1 : C → C is a finite family of ki-strict pseudo-contraction mappings such
that F :=

⋂N
i=1 F(Ti) ∩ Γ ∩ VI(C, D) �= ∅. Let PC be the metric projection of H1 onto C, and

F : C → H1 be an L-Lipschitzian mapping with constant L ≥ 0. Suppose that V : C → H1

is an η-strongly monotone and K-Lipschitzian mapping with 0 < η ≤ K , 0 < μ < 2η/K2 and
0 ≤ τL < τ0, where τ0 = 1 –

√
1 – μ(2η – μK2). For x1 ∈ C, let {xn} be a sequence of C gen-

erated by (1.7). Assume that the following conditions hold:
(i) λ1 > 0, 0 < λ2 < 2ρ , 0 < γ < 1

r , 0 < ξ < 2δ;
(ii) 0 < αn < 1,

∑∞
i=1 αn = ∞, limn→∞ αn = 0;

(iii) max1≤i≤N ki ≤ βn ≤ l < 1, limn→∞ βn = l;
(iv)

∑N
i=1 η

(n)
i = 1, 0 < γn < 1, limn→∞ γn = 0;

(v)
∑∞

n=1(|αn+1 – αn| + |βn+1 – βn| + |γn+1 – γn| +
∑N

i=1 |η(n+1)
i – η

(n)
i |) < ∞.

Then limn→∞ ‖xn+1 – xn‖ = 0.

Proof Let Gn :=
∑N

i=1 η
(n)
i Ti. By Lemma 2.3, we obtain that, for each n ≥ 1, Gn is a k-strict

pseudo-contraction on C and F(Gn) =
⋂N

i=1 F(Ti), where k = max{ki : 1 ≤ i ≤ N}. Let U :=
JB2
λ2

(I – λ2f ). Then the iterative scheme (1.7) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = JB1
λ1

[xn + γ A∗(U – I)Axn],

vn = PC(un – ξDun),

yn = βnvn + (1 – βn)Gnvn,

xn+1 = PC[αnτFxn + γnxn + ((1 – γn)I – αnμV )yn], n ≥ 1.

(3.1)

We divide the rest of the proof into two steps.
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Step 1. We claim that the sequence {xn} is bounded.
Indeed, take p ∈F . Then JB1

λ1
p = p, U(Ap) = Ap, Gnp = p, PC(I – ξD)p = p, and it is easily

seen that Wp = p, where W := I + γ A∗(U – I)A. From the definition of firm nonexpansion
and Proposition 2.2, we have that JB1

λ1
and U are averaged. Likewise W is also averaged

because it is ν
r -ism for some ν > 1

2 . Actually, by (v) of Proposition 2.1, we know that I – U
is ν-ism with ν > 1

2 . Hence, we have

〈
A∗(I – U)Ax – A∗(I – U)Ay, x – y

〉
=
〈
(I – U)Ax – (I – U)Ay, Ax – Ay

〉

≥ ν
∥
∥(I – U)Ax – (I – U)Ay

∥
∥2

≥ ν

r
∥
∥A∗(I – U)Ax – A∗(I – U)Ay

∥
∥2.

Thus γ A∗(I – U)A is ν
γ r -ism. Due to the condition 0 < γ < 1

r , the complement I – γ A∗(I –
U)A is averaged, and so is M := JB1

λ1
[I + γ A∗(U – I)A]. Therefore, JB1

λ1
, U , W , and M are

nonexpansive mappings.
From (3.1), we estimate

‖un – p‖2 =
∥
∥JB1

λ1

[
xn + γ A∗(U – I)Axn

]
– JB1

λ1
p
∥
∥2

≤ ∥∥xn + γ A∗(U – I)Axn – p
∥
∥2

= ‖xn – p‖2 + γ 2∥∥A∗(U – I)Axn
∥
∥2 + 2γ

〈
xn – p, A∗(U – I)Axn

〉
. (3.2)

Thus, we get

‖un –p‖2 ≤ ‖xn –p‖2 +γ 2〈(U – I)Axn, AA∗(U – I)Axn
〉
+2γ

〈
xn –p, A∗(U – I)Axn

〉
. (3.3)

Next, setting Λ1 := γ 2〈(U – I)Axn, AA∗(U – I)Axn〉, we estimate

Λ1 = γ 2〈(U – I)Axn, AA∗(U – I)Axn
〉

≤ rγ 2〈(U – I)Axn, (U – I)Axn
〉

= rγ 2∥∥(U – I)Axn
∥
∥2. (3.4)

Setting Λ2 := 2γ 〈xn – p, A∗(U – I)Axn〉, we obtain from (2.12)

Λ2 = 2γ
〈
xn – p, A∗(U – I)Axn

〉

= 2γ
〈
A(xn – p), (U – I)Axn

〉

= 2γ
〈
A(xn – p) + (U – I)Axn – (U – I)Axn, (U – I)Axn

〉

= 2γ
(〈

UAxn – Ap, (U – I)Axn
〉
–
∥
∥(U – I)Axn

∥
∥2)

≤ 2γ

(
1
2
∥
∥(U – I)Axn

∥
∥2 –

∥
∥(U – I)Axn

∥
∥2
)

≤ –γ
∥
∥(U – I)Axn

∥
∥2. (3.5)
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In view of (3.3)–(3.5), we have

‖un – p‖2 ≤ ‖xn – p‖2 + γ (rγ – 1)
∥
∥(U – I)Axn

∥
∥2. (3.6)

From 0 < γ < 1
r , we obtain

‖un – p‖ ≤ ‖xn – p‖. (3.7)

Since D is δ-inverse strongly monotone and 0 < ξ < 2δ, we estimate

‖vn – p‖2 =
∥
∥PC(I – ξD)un – PC(I – ξD)p

∥
∥2

≤ ∥∥(I – ξD)un – (I – ξD)p
∥
∥2

=
∥
∥(un – p) – ξ (Dun – Dp)

∥
∥2

= ‖un – p‖2 – 2ξ 〈Dun – Dp, un – p〉 + ξ 2‖Dun – Dp‖2

≤ ‖un – p‖2 – 2ξδ‖Dun – Dp‖2 + ξ 2‖Dun – Dp‖2

= ‖un – p‖2 + ξ (ξ – 2δ)‖Dun – Dp‖2

≤ ‖un – p‖2,

which implies

‖vn – p‖ ≤ ‖un – p‖. (3.8)

Define Snx := βnx + (1 – βn)Gnx, ∀x ∈ C. Using Lemma 2.1, we obtain that Sn : C → C is a
nonexpansive mapping and F(Sn) = F(Gn). It is clear that Snp = p, and hence

‖yn – p‖ = ‖Snvn – p‖ = ‖Snvn – Snp‖ ≤ ‖vn – p‖. (3.9)

By (3.7)–(3.9), we have

‖yn – p‖ ≤ ‖vn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (3.10)

It follows from (3.1) and Lemma 2.7 that

‖xn+1 – p‖
=
∥
∥PC
[
αnτFxn + γnxn +

(
(1 – γn)I – αnμV

)
yn
]

– PCp
∥
∥

≤ ∥∥αnτFxn + γnxn +
(
(1 – γn)I – αnμV

)
yn – p

∥
∥

=
∥
∥αn(τFxn – μVp) + γn(xn – p) +

[
(1 – γn)I – αnμV

]
yn –

[
(1 – γn)I – αnμV

]
p
∥
∥

≤ ∥∥[(1 – γn)I – αnμV
]
yn –

[
(1 – γn)I – αnμV

]
p
∥
∥ + γn‖xn – p‖ + αn‖τFxn – μVp‖

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – p‖ + γn‖xn – p‖ + αn‖τFxn – μVp‖

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖xn – p‖ + γn‖xn – p‖ + αn‖τFxn – μVp‖
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=
[

1 – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖xn – p‖ + αn‖τFxn – μVp‖

≤
[

1 – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖xn – p‖ + αn
[‖τFxn – τFp‖ + ‖τFp – μVp‖]

≤
[

1 – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖xn – p‖ + αnτL‖xn – p‖ + αn‖τFp – μVp‖

=
[

1 – αn

(

μη –
αnμK2

2(1 – γn)
– τL

)]

‖xn – p‖ + αn‖τFp – μVp‖.

By induction, we derive

‖xn – p‖ ≤ max
{‖x0 – p‖, M1

}
,

where M1 = supn≥1
‖τFp–μVp‖

μη– αnμK2
2(1–γn) –τL

. This shows that {xn} is bounded, and so are {yn}, {vn}, and

{un}.
Step 2. We claim ‖xn+1 – xn‖ → 0 as n → ∞.
Indeed, from (3.1), we have

‖xn+1 – xn‖
=
∥
∥PC
[
αnτFxn + γnxn +

(
(1 – γn)I – αnμV

)
yn
]

– PC
[
αn–1τFxn–1 + γn–1xn–1 +

(
(1 – γn–1)I – αn–1μV

)
yn–1
]∥
∥

≤ ∥∥αnτFxn + γnxn +
(
(1 – γn)I – αnμV

)
yn

– αn–1τFxn–1 – γn–1xn–1 –
(
(1 – γn–1)I – αn–1μV

)
yn–1
∥
∥

≤ ∥∥((1 – γn)I – αnμV
)
yn –

(
(1 – γn–1)I – αn–1μV

)
yn–1
∥
∥ + αnτ‖Fxn – Fxn–1‖

+ ‖γnxn – γn–1xn–1‖ + |αn – αn–1|‖τFxn–1‖
≤ ∥∥((1 – γn)I – αnμV

)
yn –

(
(1 – γn)I – αnμV

)
yn–1
∥
∥ +
∥
∥
(
(1 – γn)I – αnμV

)
yn–1

–
(
(1 – γn–1)I – αn–1μV

)
yn–1
∥
∥ + αnτL‖xn – xn–1‖ + ‖γnxn – γnxn–1‖

+ ‖γnxn–1 – γn–1xn–1‖ + |αn – αn–1|‖τFxn–1‖

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – yn–1‖

+ |γn – γn–1|‖yn–1‖ + |αn – αn–1|‖μVyn–1‖ + αnτL‖xn – xn–1‖
+ γn‖xn – xn–1‖ + |γn – γn–1|‖xn–1‖ + |αn – αn–1|‖τFxn–1‖

=
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – yn–1‖ + (γn + αnτL)‖xn – xn–1‖

+ |αn – αn–1|
(‖μVyn–1‖ + ‖τFxn–1‖

)
+ |γn – γn–1|

(‖xn–1‖ + ‖yn–1‖
)

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – yn–1‖ + (γn + αnτL)‖xn – xn–1‖

+ |αn – αn–1|M2 + |γn – γn–1|M3, (3.11)
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where M2 = supn≥1{‖μVyn–1‖ + ‖τFxn–1‖}, M3 = supn≥1{‖xn–1‖ + ‖yn–1‖}. Furthermore,
since yn = Snvn, we have

‖yn – yn–1‖
= ‖Snvn – Sn–1vn–1‖
≤ ‖Snvn – Snvn–1‖ + ‖Snvn–1 – Sn–1vn–1‖
≤ ‖vn – vn–1‖ +

∥
∥βnvn–1 + (1 – βn)Gnvn–1 –

[
βn–1vn–1 + (1 – βn–1)Gn–1vn–1

]∥
∥

= ‖vn – vn–1‖ +
∥
∥(βn – βn–1)(vn–1 – Gn–1vn–1) + (1 – βn)(Gnvn–1 – Gn–1vn–1)

∥
∥

≤ ‖vn – vn–1‖ + |βn – βn–1|‖vn–1 – Gn–1vn–1‖ + (1 – βn)‖Gnvn–1 – Gn–1vn–1‖

≤ ‖vn – vn–1‖ + |βn – βn–1|M4 +
N∑

i=1

∣
∣η

(n)
i – η

(n–1)
i

∣
∣‖Tivn–1‖, (3.12)

where M4 = supn≥1 ‖vn–1 – Gn–1vn–1‖.
By the nonexpansion of PC and I – ξD, we get

‖vn – vn–1‖ =
∥
∥PC(I – ξD)un – PC(I – ξD)un–1

∥
∥

≤ ∥∥(I – ξD)un – (I – ξD)un–1
∥
∥ = ‖un – un–1‖. (3.13)

Note that M := JB1
λ1

[I + γ A∗(U – I)A] is nonexpansive, we have

‖un – un–1‖ =
∥
∥JB1

λ1

[
I + γ A∗(U – I)A

]
xn – JB1

λ1

[
I + γ A∗(U – I)A

]
xn–1

∥
∥

≤ ‖xn – xn–1‖. (3.14)

Substituting (3.13) and (3.14) for (3.12), we have

‖yn – yn–1‖ ≤ ‖xn – xn–1‖ + |βn – βn–1|M4 +
N∑

i=1

∣
∣η

(n)
i – η

(n–1)
i

∣
∣‖Tivn–1‖. (3.15)

This together with (3.11) leads to

‖xn+1 – xn‖

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)][

‖xn – xn–1‖ + |βn – βn–1|M4

+
N∑

i=1

∣
∣η

(n)
i – η

(n–1)
i

∣
∣‖Tivn–1‖

]

+ (γn + αnτL)‖xn – xn–1‖

+ |αn – αn–1|M2 + |γn – γn–1|M3

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖xn – xn–1‖ + (γn + αnτL)‖xn – xn–1‖

+ |αn – αn–1|M2 + |γn – γn–1|M3 + |βn – βn–1|M4 +
N∑

i=1

∣
∣η

(n)
i – η

(n–1)
i

∣
∣‖Tivn–1‖
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=
[

1 – αn

(

μη –
αnμK2

2(1 – γn)
– τL

)]

‖xn – xn–1‖ + |αn – αn–1|M2

+ |γn – γn–1|M3 + |βn – βn–1|M4 +
N∑

i=1

∣
∣η

(n)
i – η

(n–1)
i

∣
∣‖Tivn–1‖. (3.16)

Noticing condition (v) and applying Lemma 2.5 to (3.16), we obtain

lim
n→∞‖xn+1 – xn‖ = 0. (3.17)

This completes the proof. �

Lemma 3.2 Let H1 and H2 be two real Hilbert spaces and C be a nonempty closed con-
vex subset of H1. Let A : H1 → H2 be a bounded linear operator, A∗ be the adjoint of A,
and r be the spectral radius of the operator A∗A. Let f : H2 → H2 be a ρ-inverse strongly
monotone operator and B1 : C → 2H1 , B2 : H2 → 2H2 be two multi-valued maximal mono-
tone operators. Let D : C → H1 be a δ-inverse strongly monotone operator. Assume that
{Ti}N

i=1 : C → C is a finite family of ki-strict pseudo-contraction mappings such that F �= ∅.
Let PC be the metric projection of H1 onto C, and F : C → H1 be an L-Lipschitzian map-
ping with constant L ≥ 0. Suppose that V : C → H1 is an η-strongly monotone and K-
Lipschitzian mapping, where η and μ satisfy the conditions of Lemma 3.1. For x1 ∈ C, let
{xn} be a sequence of C generated by (1.7). Assume that conditions (i)–(v) in Lemma 3.1
hold. Then {xn} converges strongly to q ∈F , which solves the following variational inequal-
ity:

〈μVq – τFq, q – p〉 ≤ 0, ∀p ∈F .

Proof The proof of the lemma is divided into four steps.
Step 1. We claim limn→∞ ‖xn – Gnxn‖ = 0.
Indeed, take ∀p ∈F . From (3.1) and (3.6), we have

‖xn+1 – p‖2

=
∥
∥PC
[
αnτFxn + γnxn +

(
(1 – γn)I – αnμV

)
yn
]

– p
∥
∥2

≤ ∥∥αnτFxn + γnxn +
(
(1 – γn)I – αnμV

)
yn – p

∥
∥2

=
∥
∥αn(τFxn – μVp) + γn(xn – p) +

[
(1 – γn)I – αnμV

]
yn –

[
(1 – γn)I – αnμV

]
p
∥
∥2

≤ ∥∥αn(τFxn – μVp) +
[
(1 – γn)I – αnμV

]
yn –

[
(1 – γn)I – αnμV

]
p
∥
∥2

+ γ 2
n ‖xn – p‖2 + 2γn‖xn – p‖∥∥αn(τFxn – μVp)

+
[
(1 – γn)I – αnμV

]
yn –

[
(1 – γn)I – αnμV

]
p
∥
∥

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖yn – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖τFxn – μVp‖‖yn – p‖

+ γ 2
n ‖xn – p‖2 + 2γn‖xn – p‖{αn‖τFxn – μVp‖
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+
∥
∥
[
(1 – γn)I – αnμV

]
yn –

[
(1 – γn)I – αnμV

]
p
∥
∥
}

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖un – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2

+ 2γn‖xn – p‖
{

αn‖τFxn – μVp‖ +
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – p‖
}

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2[‖xn – p‖2 + γ (rγ – 1)
∥
∥(U – I)Axn

∥
∥2]

+ α2
n‖τFxn – μVp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2

n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖), (3.18)

which implies

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

γ (1 – rγ )
∥
∥(U – I)Axn

∥
∥2

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖) – ‖xn+1 – p‖2

≤ ‖xn – p‖2 +
[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2 + 2γn‖xn – p‖(αn‖τFxn – μVp‖

+ ‖yn – p‖) – ‖xn+1 – p‖2

≤
[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖)

+ ‖xn – xn+1‖
(‖xn – p‖ + ‖xn+1 – p‖).

Since γ (1 – rγ ) > 0, limn→∞ αn = 0, limn→∞ γn = 0, and {xn}, {yn} are bounded, from (3.17)
we get

lim
n→∞

∥
∥(U – I)Axn

∥
∥ = 0. (3.19)

In addition, by the firm nonexpansion of JB1
λ1

, (3.2), (3.6), and γ ∈ (0, 1
r ), we estimate

‖un – p‖2 =
∥
∥JB1

λ1

[
xn + γ A∗(U – I)Axn

]
– JB1

λ1
p
∥
∥2

≤ 〈JB1
λ1

[
xn + γ A∗(U – I)Axn

]
– JB1

λ1
p, xn + γ A∗(U – I)Axn – p

〉

=
〈
un – p, xn + γ A∗(U – I)Axn – p

〉
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=
1
2
(‖un – p‖2 +

∥
∥xn + γ A∗(U – I)Axn – p

∥
∥2

–
∥
∥(un – p) –

[
xn + γ A∗(U – I)Axn – p

]∥
∥2)

≤ 1
2
[‖un – p‖2 + ‖xn – p‖2 + γ (rγ – 1)

∥
∥(U – I)Axn

∥
∥2

–
∥
∥un – xn – γ A∗(U – I)Axn

∥
∥2]

≤ 1
2
[‖un – p‖2 + ‖xn – p‖2 –

∥
∥un – xn – γ A∗(U – I)Axn

∥
∥2]

=
1
2
[‖un – p‖2 + ‖xn – p‖2 – ‖un – xn‖2 – γ 2∥∥A∗(U – I)Axn

∥
∥2

+ 2γ
〈
un – xn, A∗(U – I)Axn

〉]

≤ 1
2
[‖un – p‖2 + ‖xn – p‖2 – ‖un – xn‖2 + 2γ

〈
un – xn, A∗(U – I)Axn

〉]

=
1
2
[‖un – p‖2 + ‖xn – p‖2 – ‖un – xn‖2 + 2γ

〈
A(un – xn), (U – I)Axn

〉]

≤ 1
2
[‖un – p‖2 + ‖xn – p‖2 – ‖un – xn‖2 + 2γ

∥
∥A(un – xn)

∥
∥
∥
∥(U – I)Axn

∥
∥
]
,

and hence

‖un – p‖2 ≤ ‖xn – p‖2 – ‖un – xn‖2 + 2γ
∥
∥A(un – xn)

∥
∥
∥
∥(U – I)Axn

∥
∥. (3.20)

In view of (3.18) and (3.20), we obtain

‖xn+1 – p‖2

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖un – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2

+ 2γn‖xn – p‖
{

αn‖τFxn – μVp‖ +
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – p‖
}

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖un – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖)

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2[‖xn – p‖2 – ‖un – xn‖2

+ 2γ
∥
∥A(un – xn)

∥
∥
∥
∥(U – I)Axn

∥
∥
]

+ α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖)

≤ ‖xn – p‖2 +
[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2
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–
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖un – xn‖2

+ 2γ

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2∥
∥A(un – xn)

∥
∥
∥
∥(U – I)Axn

∥
∥

+ α2
n‖τFxn – Vp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2

n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖),

which hence implies that

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖un – xn‖2

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 +
[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2

+ 2γ

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2∥
∥A(un – xn)

∥
∥
∥
∥(U – I)Axn

∥
∥

+ α2
n‖τFxn – μVp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2

n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖)

≤ ‖xn – xn+1‖
(‖xn – p‖ + ‖xn+1 – p‖) +

[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2

+ 2γ

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2∥
∥A(un – xn)

∥
∥
∥
∥(U – I)Axn

∥
∥

+ α2
n‖τFxn – μVp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2

n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖). (3.21)

From conditions (ii), (iv), (3.17), and (3.19), we get

lim
n→∞‖un – xn‖ = 0. (3.22)

According to (3.1) and (3.10), we obtain

‖xn+1 – p‖2 =
∥
∥PC
[
αnτFxn + γnxn +

(
(1 – γn)I – αnμV

)
yn
]

– p
∥
∥2

≤ ∥∥αnτFxn + γnxn +
(
(1 – γn)I – αnμV

)
yn – p

∥
∥2

=
∥
∥αn(τFxn – μVyn) + γn(xn – yn) + yn – p

∥
∥2

= ‖yn – p‖2 +
∥
∥αn(τFxn – μVyn) + γn(xn – yn)

∥
∥2

+ 2
〈
αn(τFxn – μVyn) + γn(xn – yn), yn – p

〉

≤ ‖vn – p‖2 +
∥
∥αn(τFxn – μVyn) + γn(xn – yn)

∥
∥2

+ 2
〈
αn(τFxn – μVyn) + γn(xn – yn), yn – p

〉

≤ ‖un – p‖2 + ξ (ξ – 2δ)‖Dun – Dp‖2 +
∥
∥αn(τFxn – μVyn) + γn(xn – yn)

∥
∥2

+ 2
〈
αn(τFxn – μVyn) + γn(xn – yn), yn – p

〉
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≤ ‖xn – p‖2 + ξ (ξ – 2δ)‖Dun – Dp‖2 +
∥
∥αn(τFxn – μVyn) + γn(xn – yn)

∥
∥2

+ 2
〈
αn(τFxn – μVyn) + γn(xn – yn), yn – p

〉
,

and hence

ξ (2δ – ξ )‖Dun – Dp‖2

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 +
∥
∥αn(τFxn – μVyn) + γn(xn – yn)

∥
∥2

+ 2
〈
αn(τFxn – μVyn) + γn(xn – yn), yn – p

〉

≤ ‖xn – xn+1‖
(‖xn – p‖ + ‖xn+1 – p‖) +

∥
∥αn(τFxn – μVyn) + γn(xn – yn)

∥
∥2

+ 2
〈
αn(τFxn – μVyn) + γn(xn – yn), yn – p

〉

≤ ‖xn – xn+1‖
(‖xn – p‖ + ‖xn+1 – p‖) +

(
αn‖τFxn – μVyn‖ + γn‖xn – yn‖

)2

+ 2
(
αn‖τFxn – μVyn‖ + γn‖xn – yn‖

)‖yn – p‖.

Since limn→∞ αn = 0, limn→∞ γn = 0, and {xn}, {yn} are bounded, by (3.17), we obtain

lim
n→∞‖Dun – Dp‖ = 0. (3.23)

It follows from (2.9), (3.1), and (3.10) that

‖vn – p‖2

=
∥
∥PC(I – ξD)un – PC(I – ξD)p

∥
∥2

≤ 〈PC(I – ξD)un – PC(I – ξD)p, (I – ξD)un – (I – ξD)p
〉

=
〈
vn – p, (I – ξD)un – (I – ξD)p

〉

=
1
2
{‖vn – p‖2 +

∥
∥un – p – ξ (Dun – Dp)

∥
∥2

–
∥
∥(vn – p) –

[
(I – ξD)un – (I – ξD)p

]∥
∥2}

≤ 1
2
{‖vn – p‖2 + ‖un – p‖2 + ξ (ξ – 2δ)‖Dun – Dp‖2 –

∥
∥(vn – un) + ξ (Dun – Dp)

∥
∥2}

≤ 1
2
{‖vn – p‖2 + ‖un – p‖2 + ξ (ξ – 2δ)‖Dun – Dp‖2

– ‖vn – un‖2 – ξ 2‖Dun – Dp‖2 – 2ξ 〈vn – un, Dun – Dp〉}

=
1
2
{‖vn – p‖2 + ‖un – p‖2 – 2ξδ‖Dun – Dp‖2

– ‖vn – un‖2 + 2ξ 〈un – vn, Dun – Dp〉}

≤ 1
2
(‖vn – p‖2 + ‖un – p‖2 – ‖vn – un‖2 + 2ξ 〈un – vn, Dun – Dp〉)

≤ 1
2
(‖vn – p‖2 + ‖xn – p‖2 – ‖vn – un‖2 + 2ξ‖un – vn‖‖Dun – Dp‖),

which implies

‖vn – p‖2 ≤ ‖xn – p‖2 – ‖vn – un‖2 + 2ξ‖un – vn‖‖Dun – Dp‖. (3.24)
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From (3.18) and (3.24), we have

‖xn+1 – p‖2

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖yn – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖τFxn – μVp‖‖yn – p‖

+ γ 2
n ‖xn – p‖2 + 2γn‖xn – p‖{αn‖τFxn – μVp‖

+
∥
∥
[
(1 – γn)I – αnμV

]
yn –

[
(1 – γn)I – αnμV

]
p
∥
∥
}

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖vn – p‖2 + α2
n‖τFxn – μVp‖2

+ 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2
n ‖xn – p‖2

+ 2γn‖xn – p‖
{

αn‖τFxn – μVp‖ +
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – p‖
}

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

× (‖xn – p‖2 – ‖vn – un‖2 + 2ξ‖un – vn‖‖Dun – Dp‖)

+ α2
n‖τFxn – μVp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖ + γ 2

n ‖xn – p‖2

+ 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖)

≤ ‖xn – p‖2 +
[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2

–
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖vn – un‖2

+ 2ξ‖un – vn‖‖Dun – Dp‖ + α2
n‖τFxn – μVp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖

+ γ 2
n ‖xn – p‖2 + 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖),

and hence

[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖vn – un‖2

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 +
[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2

+ 2ξ‖un – vn‖‖Dun – Dp‖ + α2
n‖τFxn – μVp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖

+ γ 2
n ‖xn – p‖2 + 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖)

≤ ‖xn – xn+1‖
(‖xn – p‖ – ‖xn+1 – p‖) +

[

γn + αnμ

(

η –
αnμK2

2(1 – γn)

)]2

‖xn – p‖2

+ 2ξ‖un – vn‖‖Dun – Dp‖ + α2
n‖τFxn – μVp‖2 + 2αn‖τFxn – μVp‖‖yn – p‖

+ γ 2
n ‖xn – p‖2 + 2γn‖xn – p‖(αn‖τFxn – μVp‖ + ‖yn – p‖).
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Since limn→∞ αn = 0, limn→∞ γn = 0, and {xn}, {yn} are bounded, we obtain from (3.17) and
(3.23)

lim
n→∞‖vn – un‖ = 0. (3.25)

Combining (3.22) with (3.25), we get

‖vn – xn‖ ≤ ‖vn – un‖ + ‖un – xn‖ → 0 as n → ∞. (3.26)

By (3.1) and the nonexpansion of Sn, we obtain

‖xn – Snxn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – Snxn‖
≤ ‖xn – xn+1‖ +

∥
∥αnτFxn + γnxn +

(
(1 – γn)I – αnμV

)
yn – Snxn

∥
∥

= ‖xn – xn+1‖ +
∥
∥αn(τFxn – μVyn) + yn – Snxn + γn(xn – yn)

∥
∥

≤ ‖xn – xn+1‖ + αn‖τFxn – μVyn‖ + ‖Snvn – Snxn‖ + γn‖xn – yn‖
≤ ‖xn – xn+1‖ + αn‖τFxn – μVyn‖ + ‖vn – xn‖ + γn‖xn – yn‖.

It follows from limn→∞ αn = 0, limn→∞ γn = 0, (3.17) and (3.26) that

lim
n→∞‖xn – Snxn‖ = 0. (3.27)

In the meantime, observe that

‖xn – Snxn‖ =
∥
∥βnxn + (1 – βn)Gnxn – xn

∥
∥

=
∥
∥βnxn + (1 – βn)Gnxn – βnxn – (1 – βn)xn

∥
∥

= (1 – βn)‖xn – Gnxn‖.

From condition (iii), we have

lim
n→∞‖xn – Gnxn‖ = 0. (3.28)

Step 2. We claim that q ∈F , for q any weak cluster point of {xn}.
Indeed, by condition (v), we know that limn→∞ η

(n)
i = ηi for every 1 ≤ i ≤ N . It is

easy to see that each ηi > 0 and
∑N

i=1 ηi = 1. Define G :=
∑N

i=1 ηiTi. Then it follows from
Lemma 2.3 that G : C → C is a k-strict pseudo-contraction and F(G) = F(Gn) =

⋂N
i=1 F(Ti).

Furthermore, Gnx → Gx as n → ∞ for all x ∈ C. In addition, S : C → C is defined as
Sx := lx + (1 – l)Gx. Then S is nonexpansive and F(S) = F(G) by Lemma 2.1. Observe that

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖
= ‖xn – Snxn‖ +

∥
∥βnxn + (1 – βn)Gnxn – lxn – (1 – l)Gxn

∥
∥

≤ ‖xn – Snxn‖ + |βn – l|‖xn – Gnxn‖ + (1 – βn)‖Gnxn – Gxn‖

≤ ‖xn – Snxn‖ + |βn – l|‖xn – Gnxn‖ + (1 – βn)
N∑

i=1

∣
∣η

(n)
i – ηi

∣
∣‖Tixn‖.
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From (3.27) and (3.28), we obtain

lim
n→∞‖xn – Sxn‖ = 0. (3.29)

Since {xn} is bounded, we may assume that q is any weak cluster point of {xn}. Hence,
there exists a subsequence {xnk } of {xn}, which converges weakly to q. Now, since S is
nonexpansive, by (3.29) and Lemma 2.6, we obtain that q ∈ F(S). Thus, we have q ∈ F(G) =
F(Gn) =

⋂N
i=1 F(Ti).

In addition, we rewrite unk = JB1
λ1

[xnk + γ A∗(U – I)Axnk ] as

xnk – unk + γ A∗(U – I)Axnk

λ1
∈ B1unk . (3.30)

Letting k → ∞ in (3.30) and using (3.19), (3.22) and the fact that the graph of a maximal
monotone operator is weakly-strongly closed, we have 0 ∈ B1q, i.e., q ∈ SOLVIP(B1). Fur-
thermore, since xn and un have the same asymptotical behavior, Axnk weakly converges
to Aq. It follows from (3.19), the nonexpansion of U , and Lemma 2.6 that (I – U)Aq = 0.
Thus, by Proposition 2.3, we have 0 ∈ f (Aq) + B2(Aq), i.e., Aq ∈ SOLVIP(B2). As a result,
q ∈ Γ .

Moreover, it follows from (3.25) that vnk weakly converges to q. Define

Hv =

⎧
⎨

⎩

Dv + NCv, v ∈ C,

∅, v ∈ H1 \ C.

Then H is maximal monotone by Proposition 2.5. Take ∀(v, w) ∈ Graph(H). It is easy to
see that w – Dv ∈ NCv. Since vn ∈ C, we have

〈v – vn, w – Dv〉 ≥ 0. (3.31)

Combining (2.10) with vn = PC(un – ξDun), we get

〈un – ξDun – vn, vn – v〉 ≥ 0, (3.32)

and hence

〈

v – vn,
vn – un

ξ
+ Dun

〉

≥ 0. (3.33)

Thus, from (3.31) and (3.33), we obtain

〈v – vnk , w〉 ≥ 〈v – vnk , Dv〉

≥ 〈v – vnk , Dv〉 –
〈

v – vnk , Dunk +
vnk – unk

ξ

〉

= 〈v – vnk , Dv – Dvnk 〉 + 〈v – vnk , Dvnk – Dunk 〉 –
〈

v – vnk ,
vnk – unk

ξ

〉
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≥ δ‖Dv – Dvnk ‖2 + 〈v – vnk , Dvnk – Dunk 〉 –
〈

v – vnk ,
vnk – unk

ξ

〉

≥ 〈v – vnk , Dvnk – Dunk 〉 –
〈

v – vnk ,
vnk – unk

ξ

〉

.

Letting k → ∞, we have 〈v – q, w〉 ≥ 0 as k → ∞. Since H is maximal monotone, we get
q ∈H–10. So it follows from Proposition 2.5 that q ∈ VI(C, D). Therefore, q ∈⋂N

i=1 F(Ti) ∩
Γ ∩ VI(C, D) = F .

Step 3. We claim that

lim sup
n→∞

〈
(μV – τF)q, q – xn

〉≤ 0,

where q = limt→0 xt with xt being the fixed point of the contraction Ψt on C defined by

Ψtx := PC
[
tτFx + (I – tμV )Tx

]
, ∀x ∈ C,

here t ∈ (0, 2η/K2) and Tx := SPC(I – ξD)JB1
λ [I + γ A∗(U – I)A]x, ∀x ∈ C.

Indeed, first, for each x, y ∈ C, note that

‖Tx – Ty‖
=
∥
∥SPC(I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
x – SPC(I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
y
∥
∥

≤ ∥∥PC(I – ξD)JB1
λ1

[
I + γ A∗(U – I)A

]
x – PC(I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
y
∥
∥

≤ ∥∥(I – ξD)JB1
λ1

[
I + γ A∗(U – I)A

]
x – (I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
y
∥
∥

≤ ∥∥JB1
λ1

[
I + γ A∗(U – I)A

]
x – JB1

λ1

[
I + γ A∗(U – I)A

]
y
∥
∥

≤ ‖x – y‖,

which implies that T is nonexpansive. Further, we estimate

‖Txn – xn‖
=
∥
∥SPC(I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
xn – xn

∥
∥

=
∥
∥SPC(I – ξD)un – xn

∥
∥

= ‖Svn – xn‖
≤ ‖Svn – Snvn‖ + ‖Snvn – xn‖
=
∥
∥βnvn + (1 – βn)Gnvn – lvn – (1 – l)Gvn

∥
∥ + ‖Snvn – Snxn + Snxn – xn‖

≤ |βn – l|‖vn – Gvn‖ + (1 – βn)‖Gnvn – Gvn‖ + ‖Snvn – Snxn‖ + ‖Snxn – xn‖

≤ |βn – l|‖vn – Gvn‖ + (1 – βn)
N∑

i=1

∣
∣η

(n)
i – ηi

∣
∣‖Tivn‖ + ‖vn – xn‖ + ‖Snxn – xn‖.

From condition (iii), (3.26), and (3.27), we obtain

lim
n→∞‖Txn – xn‖ = 0. (3.34)



Guan et al. Journal of Inequalities and Applications        (2018) 2018:311 Page 21 of 29

Also, for each x, y ∈ C, it follows from Lemma 2.8 that Ψt has a unique fixed point xt ∈ C
such that xt = PC[tτFx + (I – tμV )Txt], and the net {xt}t∈(0,1) converges strongly as t → 0
to a fixed point q of T which solves the variational inequality 〈(μV – τF)q, q – p〉 ≤ 0,
∀p ∈ F(T).

Next, from the above arguments, we know that F(S) ∩ Γ ∩ VI(C, D) =
⋂N

i=1 F(Ti) ∩ Γ ∩
VI(C, D) = F . Further, for ∀q1 ∈ F(T) = F(SPC(I – ξD)JB1

λ1
[I + γ A∗(U – I)A]) and ∀q2 ∈

F(S) ∩ Γ ∩ VI(C, D). Then we have q2 = JB1
λ1

q2, Aq2 = UAq2, q2 = JB1
λ1

[I + γ A∗(U – I)A]q2,
and q2 = PC(I – ξD)q2. By the nonexpansion of S, PC(I – ξD) and JB1

λ1
, we get

‖q1 – q2‖2

=
∥
∥SPC(I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
q1 – SPC(I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
q2
∥
∥2

≤ ∥∥PC(I – ξD)JB1
λ1

[
I + γ A∗(U – I)A

]
q1 – PC(I – ξD)JB1

λ1

[
I + γ A∗(U – I)A

]
q2
∥
∥2

≤ ∥∥JB1
λ1

[
I + γ A∗(U – I)A

]
q1 – JB1

λ1

[
I + γ A∗(U – I)A

]
q2
∥
∥2

≤ ∥∥[I + γ A∗(U – I)A
]
q1 –

[
I + γ A∗(U – I)A

]
q2
∥
∥2

=
∥
∥q1 + γ A∗(U – I)Aq1 – q2

∥
∥2

≤ ‖q1 – q2‖2 + γ (rγ – 1)
∥
∥(U – I)Aq1

∥
∥2.

Since γ ∈ (0, 1
r ), we infer that

(U – I)Aq1 = 0, (3.35)

it follows from Proposition 2.3 that Aq1 ∈ SOLVIP(B2). In addition, since JB1
λ1

is firmly non-
expansive, from (3.35) we estimate

‖q1 – q2‖2

≤ ∥∥JB1
λ1

[
I + γ A∗(U – I)A

]
q1 – JB1

λ1

[
I + γ A∗(U – I)A

]
q2
∥
∥2

≤ 〈JB1
λ1

[
I + γ A∗(U – I)A

]
q1 – JB1

λ1

[
I + γ A∗(U – I)A

]
q2,

[
I + γ A∗(U – I)A

]
q1 –

[
I + γ A∗(U – I)A

]
q2
〉

=
〈
JB1
λ1

[
I + γ A∗(U – I)A

]
q1 – q2,

[
I + γ A∗(U – I)A

]
q1 –

[
I + γ A∗(U – I)A

]
q2
〉

=
〈
JB1
λ1

q1 – q2, q1 – q2
〉≤ ∥∥JB1

λ1
q1 – q2

∥
∥‖q1 – q2‖

=
∥
∥JB1

λ1
q1 – JB1

λ1
q2
∥
∥‖q1 – q2‖ ≤ ‖q1 – q2‖2,

which implies

‖q1 – q2‖2 =
〈
JB1
λ1

q1 – q2, q1 – q2
〉
, (3.36)

hence

〈
JB1
λ1

q1 – q1, q1 – q2
〉

= 0. (3.37)
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Meanwhile, by (3.35) and (3.37), we have

‖q1 – q2‖2 ≥ ∥∥JB1
λ1

[
I + γ A∗(U – I)A

]
q1 – JB1

λ1

[
I + γ A∗(U – I)A

]
q2
∥
∥2

=
∥
∥JB1

λ1

[
I + γ A∗(U – I)A

]
q1 – q2

∥
∥2

=
∥
∥JB1

λ1
q1 – q1 + q1 – q2

∥
∥2

=
∥
∥JB1

λ1
q1 – q1

∥
∥2 + ‖q1 – q2‖2 + 2

〈
JB1
λ1

q1 – q1, q1 – q2
〉

=
∥
∥JB1

λ1
q1 – q1

∥
∥2 + ‖q1 – q2‖2,

and hence JB1
λ1

q1 = q1. Thus, 0 ∈ B1q1, i.e., q1 ∈ SOLVIP(B1). As a result, we get q1 ∈ Γ . By
the assumption q1 = Tq1 = SPC(I – ξD)JB1

λ1
[I + γ A∗(U – I)A]q1, we have q1 = SPC(I – ξD)q1.

Moreover, from the above arguments, we get

‖q1 – q2‖2 =
∥
∥SPC(I – ξD)q1 – SPC(I – ξD)q2

∥
∥2

≤ ∥∥PC(I – ξD)q1 – PC(I – ξD)q2
∥
∥2

≤ ∥∥(I – ξD)q1 – (I – ξD)q2
∥
∥2

=
∥
∥q1 – q2 – ξ (Dq1 – Dq2)

∥
∥2

≤ ‖q1 – q2‖2 + ξ (ξ – 2δ)‖Dq1 – Dq2‖2

≤ ‖q1 – q2‖2,

thus, we have

Dq1 – Dq2 = 0. (3.38)

From (3.38), we obtain

‖q1 – q2‖2 =
∥
∥SPC(I – ξD)q1 – SPC(I – ξD)q2

∥
∥2

≤ ∥∥PC(I – ξD)q1 – PC(I – ξD)q2
∥
∥2

≤ 〈PC(I – ξD)q1 – PC(I – ξD)q2, (I – ξD)q1 – (I – ξD)q2
〉

=
〈
PC(I – ξD)q1 – q2, q1 – q2 – ξ (Dq1 – Dq2)

〉

=
〈
PC(I – ξD)q1 – q2, q1 – q2

〉

≤ ∥∥PC(I – ξD)q1 – q2
∥
∥‖q1 – q2‖

=
∥
∥PC(I – ξD)q1 – PC(I – ξD)q2

∥
∥‖q1 – q2‖

≤ ‖q1 – q2‖2,

and hence

‖q1 – q2‖2 =
〈
PC(I – ξD)q1 – q2, q1 – q2

〉
, (3.39)
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that is,

〈
PC(I – ξD)q1 – q1, q1 – q2

〉
= 0. (3.40)

Meanwhile, from (3.40), we get

‖q1 – q2‖2 ≥ ∥∥PC(I – ξD)q1 – PC(I – ξD)q2
∥
∥2

=
∥
∥PC(I – ξD)q1 – q2

∥
∥2

=
∥
∥PC(I – ξD)q1 – q1 + q1 – q2

∥
∥2

=
∥
∥PC(I – ξD)q1 – q1

∥
∥2 + ‖q1 – q2‖2 + 2

〈
PC(I – ξD)q1 – q1, q1 – q2

〉

=
∥
∥PC(I – ξD)q1 – q1

∥
∥2 + ‖q1 – q2‖2

≥ ‖q1 – q2‖2,

which immediately implies PC(I – ξD)q1 = q1, and so q1 ∈ VI(C, D). It follows from q1 =
SPC(I – ξD)q1 that q1 = Sq1, i.e., q1 ∈ F(S). Thus, q1 ∈ F(S) ∩ VI(C, D). Since q1 ∈ Γ , we
obtain that q1 ∈ F(S) ∩ Γ ∩ VI(C, D), which implies that F(T) ⊂ F(S) ∩ Γ ∩ VI(C, D). In
addition, it is easy to see that F(S) ∩ Γ ∩ VI(C, D) ⊂ F(T). Therefore, F(T) = F(S) ∩ Γ ∩
VI(C, D) =

⋂N
i=1 F(Ti) ∩ Γ ∩ VI(C, D) = F .

Finally, we take a subsequence {xnk } of {xn}, assume that xnk ⇀ ω, where ω ∈ F(T) = F .
By using Lemma 2.6 and (3.34), we have

lim sup
n→∞

〈
(μV – τF)q, q – xn

〉
= lim sup

k→∞

〈
(μV – τF)q, q – xnk

〉
=
〈
(μV – τF)q, q – ω

〉≤ 0.

Step 4. We claim limn→∞ ‖xn – q‖ = 0.
Indeed, we put

zn = αnτFxn + γnxn +
[
(1 – γn)I – αnμV

]
yn. (3.41)

From (2.10), (3.1), (3.9), and (3.41), we obtain

‖xn+1 – q‖2

= 〈PCzn – zn, xn+1 – q〉 + 〈zn – q, xn+1 – q〉
= 〈PCzn – zn, PCzn – q〉 + 〈zn – q, xn+1 – q〉
≤ 〈zn – q, xn+1 – q〉
=
〈
αnτFxn + γnxn +

[
(1 – γn)I – αnμV

]
yn – q, xn+1 – q

〉

=
〈[

(1 – γn)I – αnμV
]
yn –

[
(1 – γn)I – αnμV

]
q

+ αn(τFxn – μVq) + γn(xn – q), xn+1 – q
〉

=
〈[

(1 – γn)I – αnμV
]
yn –

[
(1 – γn)I – αnμV

]
q, xn+1 – q

〉

+
〈
αn(τFxn – τFq), xn+1 – q

〉
+ αn〈τFq – μVq, xn+1 – q〉 + γn〈xn – q, xn+1 – q〉

≤ ∥∥[(1 – γn)I – αnμV
]
yn –

[
(1 – γn)I – αnμV

]
q
∥
∥‖xn+1 – q‖
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+ αnτL‖xn – q‖‖xn+1 – q‖ + αn〈τFq – μVq, xn+1 – q〉 + γn‖xn – q‖‖xn+1 – q‖

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖yn – q‖‖xn+1 – q‖ + αnτL‖xn – q‖‖xn+1 – q‖

+ αn〈τFq – μVq, xn+1 – q〉 + γn‖xn – q‖‖xn+1 – q‖

≤
[

1 – γn – αnμ

(

η –
αnμK2

2(1 – γn)

)]

‖xn – q‖‖xn+1 – q‖ + αnτL‖xn – q‖‖xn+1 – q‖

+ αn〈τFq – μVq, xn+1 – q〉 + γn‖xn – q‖‖xn+1 – q‖

=
[

1 – αn

(

μη –
αnμK2

2(1 – γn)
– τL

)]

‖xn – q‖‖xn+1 – q‖ + αn〈τFq – μVq, xn+1 – q〉

≤ 1
2

[

1 – αn

(

μη –
αnμK2

2(1 – γn)
– τL

)]
(‖xn – q‖2 + ‖xn+1 – q‖2)

+ αn〈τFq – μVq, xn+1 – q〉

≤ 1
2

[

1 – αn

(

μη –
αnμK2

2(1 – γn)
– τL

)]

‖xn – q‖2 +
1
2
‖xn+1 – q‖2

+ αn〈τFq – μVq, xn+1 – q〉,

which implies that

‖xn+1 – q‖2 ≤
[

1 – αn

(

μη –
αnμK2

2(1 – γn)
– τL

)]

‖xn – q‖2

+ 2αn〈τFq – μVq, xn+1 – q〉. (3.42)

Put an = αn(μη – αnμK2

2(1–γn) – τL) and cn = 2〈τFq–μVq,xn+1–q〉
μη– αnμK2

2(1–γn) –τL
. Applying Lemma 2.5 to (3.42), we

obtain limn→∞ ‖xn – q‖ = 0. This completes the proof. �

Theorem 3.1 Let H1 and H2 be two real Hilbert spaces and C be a nonempty closed con-
vex subset of H1. Let A : H1 → H2 be a bounded linear operator, A∗ be the adjoint of A,
and r be the spectral radius of the operator A∗A. Let f : H2 → H2 be a ρ-inverse strongly
monotone operator and B1 : C → 2H1 , B2 : H2 → 2H2 be two multi-valued maximal mono-
tone operators. Let D : C → H1 be a δ-inverse strongly monotone operator. Assume that
{Ti}N

i=1 : C → C is a finite family of ki-strict pseudo-contraction mappings such that F �= ∅.
Let PC be the metric projection of H1 onto C, and F : C → H1 be an L-Lipschitzian map-
ping with constant L ≥ 0. Suppose that V : C → H1 is an η-strongly monotone and K-
Lipschitzian mapping, where η and μ satisfy the conditions of Lemma 3.1. For x1 ∈ C, let
{xn} be a sequence of C generated by (1.7). Assume that conditions (i)–(v) in Lemma 3.1
hold. Then {xn} converges strongly to q ∈F , which solves the following variational inequal-
ity:

〈μVq – τFq, q – p〉 ≤ 0, ∀p ∈F .

Proof Combining the proof of Lemma 3.1 with the proof of Lemma 3.2, we can obtain the
conclusion. �
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Remark 3.1 Compared with Theorem 3.1 of Jitsupa et al. [1], our result is different from
it in the following aspects:

(i) We not only change the parameter λ of resolvent operators JB1
λ and JB2

λ into different
parameters λ1 and λ2, but also change the resolvent operator JB2

λ into JB2
λ2

(I – λ2f )
which is more general than JB2

λ . It is worth stressing that the parameter λ of
resolvent operators JB1

λ and JB2
λ in many results is the same λ; see, e.g., [1, 11–13].

Thus our result improves and extends these results and other related results.
(ii) We improve and extend Theorem 3.1 of Jitsupa et al. [1]. Especially, we use the

Lipschitzian instead of the contraction, and also use the η-strongly monotone and
K-Lipschitzian operator instead of the strong positive linear bounded operator to
construct our iteration process.

(iii) It is worth mentioning here that our result in this paper is more applicable and
efficient than the result of Jitsupa et al. [1]. We give the definite domains and ranges
of B1 and B2 to make the iterative scheme (1.6) well-defined. We also modify the
iterative scheme (1.6) by adding the projection operator. As a result, our result can
be applied to finding a common solution of SMVIP (1.3) and VIP (2.7) and fixed
point problem of a finite family of strict pseudo-contraction mappings instead of
SVIP (1.2) and fixed point problem of a finite family of strict pseudo-contraction
mappings.

In Theorem 3.1, if λ1 = λ2, f = D ≡ 0, γn = 0, F is a contraction mapping, and V is a
strongly positive bounded linear operator, then we get the following corollary immediately.

Corollary 3.1 Let H1 and H2 be two real Hilbert spaces and C be a nonempty closed con-
vex subset of H1. Let A : H1 → H2 be a bounded linear operator, A∗ be the adjoint of A,
and r be the spectral radius of the operator A∗A. Let B1 : C → 2H1 , B2 : H2 → 2H2 be two
multi-valued maximal monotone operators. Assume that {Ti}N

i=1 : C → C is a finite family
of ki-strict pseudo-contraction mappings such that F̃ :=

⋂N
i=1 F(Ti) ∩Γ �= ∅. Let f : C → H1

be a contraction mapping with constant ρ ∈ (0, 1) and D : C → H1 be a strongly positive
bounded linear operator with coefficient τ > 0. For x1 ∈ C, let {xn} be a sequence generated
by the following scheme:

⎧
⎪⎪⎨

⎪⎪⎩

un = JB1
λ [xn + γ A∗(JB2

λ – I)Axn],

yn = βnun + (1 – βn)
∑N

i=1 η
(n)
i Tiun,

xn+1 = αnτ f (xn) + (I – αnD)yn, n ≥ 1.

Assume that conditions (ii), (iii) in Lemma 3.1 and the following conditions hold:
(i) λ > 0, 0 < γ < 1

r ;
(ii)

∑N
i=1 η

(n)
i = 1,

∑∞
n=1(|αn+1 – αn| + |βn+1 – βn| +

∑N
i=1 |η(n+1)

i – η
(n)
i |) < ∞.

Then the sequence {xn} converges strongly to q ∈ F̃ , which solves the following variational
inequality:

〈Dq – τ fq, q – p〉 ≤ 0, ∀p ∈ F̃ .

4 Numerical examples
The purpose of this section is to give an example and numerical results to support Theo-
rem 3.1.
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Example 4.1 Let H1 = H2 = R
3 and C = [0, +∞)× [0, +∞)× [0, +∞). Let the inner product

〈·, ·〉 : R3 × R
3 → R be defined by 〈x, y〉 = x · y = x1y1 + x2y2 + x3y3 and the usual norm

‖·‖ : R3 →R be defined by ‖x‖ =
√

x2
1 + x2

2 + x2
3. Let two operators of matrix multiplication

B1 : C → R
3, B2 : R3 →R

3 be defined by

B1 =

⎡

⎢
⎣

1 0 0
0 2 0
0 0 3

⎤

⎥
⎦ and B2 =

⎡

⎢
⎣

2 0 0
0 5 0
0 0 3

⎤

⎥
⎦ .

Then we can define the resolvent operators JB1
λ1

and JB2
λ2

on R
3 associated with B1 and B2

where λ1,λ2 > 0. Let

A =

⎡

⎢
⎣

1 0 0
0 2 0
0 0 1

⎤

⎥
⎦ ∈R

3×3

be a singular matrix operator and A∗ be the adjoint of A. It is easy to calculate that

A∗ =

⎡

⎢
⎣

2 0 0
0 1 0
0 0 2

⎤

⎥
⎦ .

The mappings Ti : C → C defined by T1x = ( x1
10(1+x1) , x2

10(1+x2) , x3
10(1+x3) ), T2x = ( | sin x1|

20(1+x1) ,
| sin x2|

20(1+x2) , | sin x3|
20(1+x3) ), and T3x = ( x1

30+x1
, x2

30+x2
, x3

30+x3
) are ki-strict pseudo-contractions for i =

1, 2, 3 (see [29]). Let fx = 1
2 x (∀x ∈ R

3), Dx = 1
3 x (∀x ∈ C), Vx = 1

2 x (∀x ∈ C), and Fx = 3
2 x

(∀x ∈ C). Now, we present the following algorithm.

Algorithm 4.2
Step 0. Choose the initial point x1 = (2, 3, 4) ∈ C. Put λ1 = 1

2 , λ2 = 1
3 , γ = 1

2 , ξ = 1
2 , βn = 1

10 ,
ηn

1 = ηn
2 = ηn

3 = 1
3 , αn = 1

8n , τ = 1
6 , γn = 1

10n , μ = 2
3 which satisfy the all assumed

conditions of Theorem 3.1, and let n = 1.
Step 1. Given xn ∈ C, compute xn+1 ∈ C as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = JB1
1
2

[xn + 1
2 A∗(JB2

1
3

(I – 1
3 f ) – I)Axn],

vn = PC(un – 1
2 Dun),

yn = 1
10 vn + 9

10
∑3

i=1
1
3 Tivn,

xn+1 = PC[ 1
8n

1
6 Fxn + 1

10n xn + ((1 – 1
10n )I – 1

8n
2
3 V )yn], n ≥ 1.

Step 2. Put n := n + 1 and go to Step 1.

Setting ‖xn+1 – xn‖ ≤ 10–8 as a stop criterion, we get the numerical results of Algo-
rithm 4.2.

Table 1 shows the values of the components of sequence xn and ‖xn+1 – xn‖.
Figure 1 shows the convergence of the iterative sequence of Algorithm 4.2.
Solution: We can see from both Table 1 and Fig. 1 that the sequence {xn} converges

to (0, 0, 0), that is, (0, 0, 0) is the solution in Example 4.1. In addition, it is also easy to
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Table 1 Values of the components of xn and ‖xn+1 – xn‖
n x1n x2n x3n ‖xn+1 – xn‖
1 2.0000 3.0000 4.0000 4.5762
2 3.3463× 10–1 4.4135× 10–1 5.9093× 10–1 6.8947× 10–1

3 5.4164× 10–2 6.4209× 10–2 8.6473× 10–2 1.0297× 10–1

4 8.4481× 10–3 9.1707× 10–3 1.2416× 10–2 1.5088× 10–2

5 1.2664× 10–3 1.2838× 10–3 1.7454× 10–3 2.1608× 10–3

6 1.8212× 10–4 1.7606× 10–4 2.4004× 10–4 3.0176× 10–4

7 2.5079× 10–5 2.3641× 10–5 3.2281× 10–5 4.1013× 10–5

8 3.3006× 10–6 3.1068× 10–6 4.2426× 10–6 5.4163× 10–6

9 4.1426× 10–7 3.9941× 10–7 5.4467× 10–7 6.9425× 10–7

10 4.9466× 10–8 5.0206× 10–8 6.8263× 10–8 8.6332× 10–8

11 5.6050× 10–9 6.1673× 10–9 8.3472× 10–9 1.0419× 10–8

12 6.0092× 10–10 7.3997× 10–10 9.9524× 10–10 1.2216× 10–9

Figure 1 The convergence of xn with initial x1 = (2, 3, 4)

check from Example 4.1 that
⋂N

i=1 F(Ti)∩Γ ∩VI(C, D) = {(0, 0, 0)}. Therefore, the iterative
algorithm of Theorem 3.1 is well-defined and efficient.

5 Results and discussion
In this paper, we propose a new iterative scheme for finding a solution of SMVIP (1.3)
with the constraints of a variational inequality and a fixed point problem of a finite family
of strict pseudo-contractions in real Hilbert spaces. Moreover, we prove a strong conver-
gence theorem for this iterative scheme.

In our main result, we not only give the definite domains and ranges of B1 and B2 to
make sure our iterative scheme (1.7) well-defined, but also modify the iterative scheme
(1.6) of Jitsupa et al. by adding the projection operator. Our result can be applied to finding
a common solution of SMVIP (1.3), VIP (2.7), and fixed point problem of a finite family
of strict pseudo-contraction mappings instead of SVIP (1.2) and fixed point problem of a
finite family of strict pseudo-contraction mappings. Thus, our result improves and extends
the result in [1].
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6 Conclusions
In this paper, we first propose a modified iterative scheme (1.7) and then prove the strong
convergence of the sequence {xn} generated by (1.7) to a common solution of SMVIP (1.3),
VIP (2.7), and a fixed point problem under suitable conditions. Finally, we give a numer-
ical example to support our strong convergence result. As a result, our result includes,
improves, and enriches the corresponding ones announced by some others, see, e.g., [1,
12, 13].

7 Experimental
A numerical experiment is provided to support our iterative scheme in Algorithm 4.2,
Table 1 and Fig. 1 above indicate the strong convergence of Algorithm 4.2. Therefore, our
the iterative algorithm of Theorem 3.1 is well-defined and valid.
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