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Abstract
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1 Introduction
The past few decades have witnessed an explosion of research on inequalities, including
a large number of papers and many fruitful applications. The subject has evoked consid-
erable interest from many mathematicians, and an extensive number of new results have
been studied in the literature. It is recognized that in general some specific inequalities
provide a useful and essential gadget in the development of various branches of mathe-
matics.

As is notable, the Hermite–Hadamard inequality is one of the most important mathe-
matical inequalities. It states that if μ : [c, d] →R is a convex function, where c < d, then

μ

(
c + d

2

)
≤ 1

d – c

∫ d

c
μ(x) dx ≤ μ(c) + μ(d)

2
.

The importance of the Hermite–Hadamard inequality is due to its role in different
branches of modern mathematics such as numerical analysis, functional analysis, and
mathematical analysis. It was first observed by Hermite [3] and redeemed later by
Hadamard [2]. It is considered as one of the most distinguished results on convex func-
tions due to its strong geometrical significance and applications. Various refinements,
generalizations, and applications of the Hermite–Hadamard inequality have appeared in
the literature (see for instance [8, 14, 15], and the references therein).
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Most recently, Qi and Xi [13] established the Hermite–Hadamard type inequalities for
geometrically quasi-convex functions. Inspired and motivated by their work, in this paper,
we establish some new weighted Hermite–Hadamard type inequalities using the notion
of geometric quasi-convexity, which plays an important role in optimization theory, prob-
ability theory, and linear programming. Our inequalities are more general and unique in
relation to those given in [13] because of the usage of a weight function, which is assumed
to be geometrically symmetric with respect to the geometric mean of the end points of the
interval. For further information on quasi-convexity, we refer the reader to [1, 4, 6, 7], and
[16]. For further information on Hermite–Hadamard type inequalities for different kinds
of convexity assumptions, we refer the interested reader to [5, 6, 9–11], and [1, 12, 14, 15,
17].

Some applications of our results to special means of positive real numbers will also be
provided by constructing a geometrically quasi-convex function and a geometrically sym-
metric function.

Let us recall some important definitions and results before we present the main results
of this section.

Definition 1 ([5]) A function μ : W ⊆R+ = (0,∞) →R is said to be geometrically quasi-
convex on W if

μ
(
cθ d1–θ

) ≤ sup
{
μ(c),μ(d)

}

for all c, d ∈ W and θ ∈ [0, 1].

Definition 2 A function μ : W ⊆ R+ = (0,∞) → R is said to be geometrically symmetric
with respect to

√
cd if

μ

(
cd
x

)
= μ(x)

for every x ∈ W .

Lemma 1 For 0 < c < d, we have

�1(c, d) :=
∫ 1

0

∣∣ln(
c

1–θ
2 d

1+θ
2

)∣∣dθ

=

⎧⎪⎪⎨
⎪⎪⎩

–3(ln d)2+(ln c)2+2(ln c)(ln d)
4(ln d–ln c) , d ≤ 1,

3(ln d)2–(ln c)2–2(ln c)(ln d)
4(ln d–ln c) ,

√
cd ≥ 1,

5(ln d)2+(ln c)2+2(ln c)(ln d)
4(ln d–ln c) ,

√
cd < 1 < d,

and

�2(c, d) :=
∫ 1

0
c

1–θ
2 d

1+θ
2

∣∣ln(
c

1–θ
2 d

1+θ
2

)∣∣dθ

=

⎧⎪⎪⎨
⎪⎪⎩

2[d–
√

cd+
√

cd ln(
√

cd)–d ln d]
ln d–ln c , d ≤ 1,

2[–d+
√

cd–
√

cd ln(
√

cd)+d ln d]
ln d–ln c ,

√
cd ≥ 1,

2[2+
√

cd ln(
√

cd)–d–
√

cd+d ln d]
ln d–ln c ,

√
cd < 1 < d.
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Proof The proof can be done by simple computations. �

Throughout the manuscript, we will use the following notations for the sake of conve-
nience of the readers:

�1(θ ) = c
1–θ

2 d
1+θ

2 and �2(θ ) = c
1+θ

2 d
1–θ

2 .

The following result plays a key role in establishing the results of this manuscript.

Lemma 2 Let μ : W ⊆R+ = (0,∞) → R be a differentiable function on W ◦ and c, d ∈ W ◦

with c < d, and let λ : [c, d] → [0,∞) be a continuous positive mapping and geometrically
symmetric to

√
cd. If μ′ ∈ L[c, d] and μ : W ⊆R+ = (0,∞) →R is geometrically symmetric

with respect to
√

cd, then the following equality holds:

(ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx

=
(ln d – ln c)

2(ln d + ln c)

[∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

�1(θ ) ln
(
�1(θ )

)
μ′(�1(θ )

)
dθ

–
∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

�2(θ ) ln
(
�2(θ )

)
μ′(�2(θ )

)
dθ

]
. (1.1)

Proof Consider

W1 =
(ln d – ln c)

2(ln d + ln c)

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

�1(θ ) ln
(
�1(θ )

)
μ′(�1(θ )

)
dθ

which can be written as

W1 =
1

ln d + ln c

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

ln
(
�1(θ )

)
dμ

(
�1(θ )

)
.

By integration by parts, making use of the substitution �1(θ ) = x and using the geometric
symmetry of λ with respect to

√
cd, we have

W1 =
1

ln d + ln c

{(∫ d

c

(ln x)λ(x)
x

dx
)

(ln d)μ(d)

–
(∫ √

cd

√
cd

(ln x)λ(x)
x

dx
)

ln(
√

cd)μ(
√

cd)

–
(ln d – ln c)(ln d + ln c)

2

∫ 1

0
λ
(
�1(θ )

)
ln

(
�1(θ )

)
μ

(
�1(θ )

)
dθ

–
(ln d – ln c)

2

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

μ
(
�1(θ )

)
dθ

}

=
(ln d)μ(d)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
(ln d – ln c)

2

∫ 1

0
λ
(
�1(θ )

)
ln

(
�1(θ )

)
μ

(
�1(θ )

)
dθ
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–
(ln d – ln c)

2(ln d + ln c)

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

μ
(
�1(θ )

)
dθ

=
(ln d)μ(d)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

√
cd

(ln x)λ(x)μ(x)
x

dx

–
(ln d – ln c)

2(ln d + ln c)

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

μ
(
�1(θ )

)
dθ .

Similarly, we can also have

W2 =
(ln d – ln c)

2(ln d + ln c)

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

�2(θ ) ln
(
�2(θ )

)
μ′(�2(θ )

)
dθ

= –
(ln c)μ(c)

(ln d + ln c)

∫ d

c

(ln x)λ(x)
x

dx +
∫ √

cd

c

(ln x)λ(x)μ(x)
x

dx

–
(ln d – ln c)

2((ln d + ln c))

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

μ
(
�2(θ )

)
dθ .

Subtracting W2 from W1, we obtain

W1 – W2 =
(ln d)μ(d) + (ln c)μ(c)

ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx

–
(ln d – ln c)

2(ln d + ln c)

∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)[

μ
(
�1(θ )

)
– μ

(
�2(θ )

)]
dθ .

Since μ is geometrically symmetric with respect to
√

cd, we have

μ
(
�1(θ )

)
= μ

(
�2(θ )

)
,

and hence

(ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx

=
(ln d – ln c)

2(ln d + ln c)

[∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

�1(θ ) ln
(
�1(θ )

)
μ′(�1(θ )

)
dθ

–
∫ 1

0

(∫ �1(θ )

�2(θ )

(ln x)λ(x)
x

dx
)

�2(θ ) ln
(
�2(θ )

)
μ′(�2(θ )

)
dθ

]
. �

2 Main results
Based on the above lemmas and definitions, we are able to establish the results of this
paper.

Theorem 1 Let μ : W ⊆ R+ = (0,∞) → R be a differentiable function on W ◦ and c,
d ∈ W ◦ with c < d, and let λ : [c, d] → [0,∞) be a continuous positive mapping and ge-
ometrically symmetric to

√
cd. If μ′ ∈ L[c, d], μ : W ⊆ R+ = (0,∞) → R is geometrically
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symmetric with respect to
√

cd and |μ′| is geometrically quasi-convex on [c, d], then

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)2‖λ‖∞
8

[
�2(c, d)

(
sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣})

+ �2(d, c)
(
sup

{∣∣μ′(c)
∣∣, ∣∣μ′(

√
cd)

∣∣})], (2.1)

where ‖λ‖∞ = supx∈[c,d] |λ(x)|.

Proof By applying the absolute value on both sides of (1.1) and using the properties of the
absolute value function, we have

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)‖λ‖∞
2(ln d + ln c)

[∫ 1

0

(∫ �1(θ )

�2(θ )

ln x
x

dx
)

�1(θ )
∣∣ln(

�1(θ )
)∣∣∣∣μ′(�1(θ )

)∣∣dθ

+
∫ 1

0

(∫ �1(θ )

�2(θ )

ln x
x

dx
)

�2(θ )
∣∣ln(

�2(θ )
)∣∣∣∣μ′(�1(θ )

)∣∣dθ

]

≤ (ln d – ln c)2‖λ‖∞
8

[∫ 1

0
�1(θ )

∣∣ln(
�1(θ )

)∣∣∣∣μ′(�1(θ )
)∣∣dθ

+
∫ 1

0
�2(θ )

∣∣ln(
�2(θ )

)∣∣∣∣μ′(�2(θ )
)∣∣dθ

]
. (2.2)

Since |μ′| is geometrically quasi-convex on [c, d], we have

∣∣μ′(�1(θ )
)∣∣ =

∣∣μ′(c
1–θ

2 d
1+θ

2
)∣∣ ≤ sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣}

and

∣∣μ′(�2(θ )
)∣∣ =

∣∣μ′(c
1+θ

2 d
1–θ

2
)∣∣ ≤ sup

{∣∣μ′(c)
∣∣, ∣∣μ′(

√
cd)

∣∣}.

Hence, by applying Lemma 1 and the above inequalities in (2.1), we have inequality (2.2).
Hence the proof of the theorem is accomplished. �

The following interesting result can be deduced from Theorem 1.

Corollary 1 If the assumptions of Theorem 1 are satisfied and if λ(x) = 1
(ln x)(ln d–ln c) for all

x ∈ [c, d] with 1 < c < d < ∞, the following inequality holds:

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

–
1

ln d – ln c

∫ d

c

μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)
8(ln c)

[
�2(c, d)

(
sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣})

+ �2(d, c)
(
sup

{∣∣μ′(c)
∣∣, ∣∣μ′(

√
cd)

∣∣})]. (2.3)
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A different approach leads us to the following theorem.

Theorem 2 Let μ : W ⊆ R+ = (0,∞) → R be a differentiable function on W ◦ and c,
d ∈ W ◦ with c < d, and let λ : [c, d] → [0,∞) be a continuous positive mapping and ge-
ometrically symmetric to

√
cd. If μ′ ∈ L[c, d], μ : W ⊆ R+ = (0,∞) → R is geometrically

symmetric with respect to
√

cd and |μ′|α is geometrically quasi-convex on [c, d] for α > 1,
then the following equality holds:

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)2‖λ‖∞
8

(
α – 1

α

)1– 1
α {[

�2
(
c

α
α–1 , d

α
α–1

)]1– 1
α
[
�1(c, d)

] 1
α

× (
sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣}) +
[
�2

(
d

α
α–1 , c

α
α–1

)]1– 1
α

× [
�1(d, c)

] 1
α
(
sup

{∣∣μ′(c)
∣∣, ∣∣μ′(

√
cd)

∣∣})}, (2.4)

where ‖λ‖∞ = supx∈[c,d] |λ(x)|.

Proof By applying the absolute value on both sides of (1.1), using the properties of the
absolute value function, and by using the Hölder inequality, we have

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)‖λ‖∞
2(ln d + ln c)

[∫ 1

0

(∫ �1(θ )

�2(θ )

ln x
x

dx
)

�1(θ )
∣∣ln(

�1(θ )
)∣∣∣∣μ′(�1(θ )

)∣∣dθ

+
∫ 1

0

(∫ �1(θ )

�2(θ )

ln x
x

dx
)

�2(θ )
∣∣ln(

�2(θ )
)∣∣∣∣μ′(�1(θ )

)∣∣dθ

]

≤ (ln d – ln c)2‖λ‖∞
8

[(
α – 1

α

∫ 1

0
�

α
α–1
1 (θ )

∣∣ln(
�1

α
α–1 (θ )

)∣∣dθ

)1– 1
α

×
(∫ 1

0

∣∣ln(
�1(θ )

)∣∣∣∣μ′(�1(θ )
)∣∣α dθ

) 1
α

+
(

α – 1
α

∫ 1

0
�

α
α–1
2 (θ )

∣∣ln(
�

α
α–1
2 (θ )

)∣∣dθ

)1– 1
α

×
(∫ 1

0

∣∣ln(
�2(θ )

)∣∣∣∣μ′(�2(θ )
)∣∣α dθ

) 1
α
]

. (2.5)

By applying Lemma 1 and the geometric quasi-convexity of |μ′|α on [c, d] for α > 1, we
have

∣∣μ′(�1(θ )
)∣∣α ≤ sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣},
∣∣μ′(�2(θ )

)∣∣α ≤ sup
{∣∣μ′(c)

∣∣, ∣∣μ′(
√

cd)
∣∣},

∫ 1

0
�

α
α–1
1 (θ )

∣∣ln(
�

α
α–1
1 (θ )

)∣∣dθ = �2
(
c

α
α–1 , d

α
α–1

)
,
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∫ 1

0
�

α
α–1
2 (θ )

∣∣ln(
�

α
α–1
2 (θ )

)∣∣dθ = �2
(
d

α
α–1 , c

α
α–1

)
,

∫ 1

0

∣∣ln(
�1(θ )

)∣∣dθ = �1(c, d) and
∫ 1

0

∣∣ln(
�2(θ )

)∣∣dθ = �1(d, c).

By using the above facts in (2.5), we get inequality (2.4). This completes the proof of the
theorem. �

A consequence of Theorem 2 is the following corollary.

Corollary 2 If the conditions of Theorem 2 are satisfied and if λ(x) = 1
(ln x)(ln d–ln c) for all

x ∈ [c, d] with 1 < c < d < ∞, the following inequality holds:

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

–
1

ln d – ln c

∫ d

c

μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)
8(ln c)

(
α – 1

α

)1– 1
α {[

�2
(
c

α
α–1 , d

α
α–1

)]1– 1
α
[
�1(c, d)

] 1
α

× (
sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣}) +
[
�2

(
d

α
α–1 , c

α
α–1

)]1– 1
α

× [
�1(d, c)

] 1
α
(
sup

{∣∣μ′(c)
∣∣, ∣∣μ′(

√
cd)

∣∣})}. (2.6)

With slightly different assumptions of Theorem 2, one can get the following result.

Theorem 3 Let μ : W ⊆ R+ = (0,∞) → R be a differentiable function on W ◦ and c,
d ∈ W ◦ with c < d, and let λ : [c, d] → [0,∞) be a continuous positive mapping and ge-
ometrically symmetric to

√
cd. If μ′ ∈ L[c, d], μ : W ⊆ R+ = (0,∞) → R is geometrically

symmetric with respect to
√

cd and |μ′|α is geometrically quasi-convex on [c, d] for α > 1
and α > l > 0, then the following equality holds:

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)2‖λ‖∞
8

(
α – 1
α – l

)1– 1
α
(

1
l

) 1
α {[

�2
(
c

α–l
α–1 , d

α–l
α–1

)]1– 1
α
[
�2

(
cl, dl)] 1

α

× (
sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣}) +
[
�2

(
d

α–l
α–1 , c

α–l
α–1

)]1– 1
α

× [
�2

(
dl, cl)] 1

α
(
sup

{∣∣μ′(c)
∣∣, ∣∣μ′(

√
cd)

∣∣})}, (2.7)

where ‖λ‖∞ = supx∈[c,d] |λ(x)|.

Proof By applying the absolute value on both sides of (1.1), using the properties of the
absolute value function and by using the Hölder inequality, we have

∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)
ln d + ln c

∫ d

c

(ln x)λ(x)
x

dx –
∫ d

c

(ln x)λ(x)μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)‖λ‖∞
2(ln d + ln c)

[∫ 1

0

(∫ �1(θ )

�2(θ )

ln x
x

dx
)

�1(θ )
∣∣ln(

�1(θ )
)∣∣∣∣μ′(�1(θ )

)∣∣dθ
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+
∫ 1

0

(∫ �1(θ )

�2(θ )

ln x
x

dx
)

�2(θ )
∣∣ln(

�2(θ )
)∣∣∣∣μ′(�1(θ )

)∣∣dθ

]

≤ (ln d – ln c)2‖λ‖∞
8

[(
α – 1
α – l

∫ 1

0
�

α–l
α–1
1 (θ )

∣∣ln(
�1

α–l
α–1 (θ )

)∣∣dθ

)1– 1
α

×
(

1
l

∫ 1

0

∣∣ln(
�1

l(θ )
)∣∣�l

1(θ )
∣∣μ′(�1(θ )

)∣∣α dθ

) 1
α

+
(

α – 1
α – l

∫ 1

0
�

α–l
α–1
2 (θ )

∣∣ln(
�

α–l
α–1
2 (θ )

)∣∣dθ

)1– 1
α

×
(

1
l

∫ 1

0

∣∣ln(
�2

l(θ )
)∣∣�l

1(θ )
∣∣μ′(�2(θ )

)∣∣α dθ

) 1
α
]

. (2.8)

By using similar arguments as in proving (2.4), we get (2.8). �

As a natural consequence of Theorem 3, we get the following result.

Corollary 3 If the hypothesis of Theorem 3 is satisfied and if λ(x) = 1
(ln x)(ln d–ln c) for all x ∈

[c, d] with 1 < c < d < ∞, the following inequality holds:
∣∣∣∣ (ln d)μ(d) + (ln c)μ(c)

ln d + ln c
–

1
ln d – ln c

∫ d

c

μ(x)
x

dx
∣∣∣∣

≤ (ln d – ln c)
8(ln c)

(
α – 1
α – l

)1– 1
α
(

1
l

) 1
α {[

�2
(
c

α–l
α–1 , d

α–l
α–1

)]1– 1
α
[
�2

(
cl, dl)] 1

α

× (
sup

{∣∣μ′(
√

cd)
∣∣, ∣∣μ′(d)

∣∣}) +
[
�2

(
d

α–l
α–1 , c

α–l
α–1

)]1– 1
α

× [
�2

(
dl, cl)] 1

α
(
sup

{∣∣μ′(c)
∣∣, ∣∣μ′(

√
cd)

∣∣})}. (2.9)

3 Applications to special means
In this section, we show how the above established inequalities of Hermite–Hadamard
type can be used to obtain the inequalities for special means.

For positive numbers c > 0 and d > 0 with c �= d,

A(c, d) =
c + d

2
, L(c, d) =

d – c
ln d – ln c

, G(c, d) =
√

cd

and

Lp(c, d) =

⎧⎪⎪⎨
⎪⎪⎩

[ dp+1–cp+1

(p+1)(d–c) ]
1
p , p �= –1, 0,

L(c, d), p = –1,
1
e ( dd

cc )
1

d–c , p = 0

are the arithmetic mean, the logarithmic mean, the geometric mean, and the generalized
logarithmic mean of order p ∈R, respectively. For further information on means, we refer
the readers to [12] and [17], and the references therein.

Let us consider μ : (0,∞) →R defined by

μ(x) = x +
cd
x

.

It is clear that the function μ is geometrically symmetric about
√

cd.
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We observe that

μ′(x) = 1 –
cd
x2 .

Then

∣∣μ′(x)
∣∣ =

⎧⎨
⎩

cd
x2 – 1, c ≤ x ≤ √

cd,

1 – cd
x2 ,

√
cd ≤ x ≤ d.

Clearly

∣∣μ′(c)
∣∣ >

∣∣μ′(d)
∣∣.

Thus

sup
{∣∣μ′(c)

∣∣, ∣∣μ′(d)
∣∣} =

d
c

– 1.

Note that

∣∣μ′(c1–θ dθ
)∣∣ =

⎧⎨
⎩

( d
c )1–2θ – 1, θ ≤ 1

2 ,

( d
c )2θ–1 – 1, θ ≥ 1

2 .

If θ ≤ 1
2

∣∣μ′(c1–θ dθ
)∣∣ ≤ d

c
– 1 =

∣∣μ′(c)
∣∣.

Thus

∣∣μ′(c1–θ dθ
)∣∣ ≤ sup

{∣∣μ′(c)
∣∣, ∣∣μ′(d)

∣∣} for θ ≤ 1
2

.

If θ ≥ 1
2 , then

∣∣μ′(c1–θ dθ
)∣∣ =

(
d
c

)2θ–1

– 1.

Note that c
d < 1 implies

d
c

+
(

d
c

)2θ–1

>
d
c

+
c
d

> 2,

which implies that

∣∣μ′(c)
∣∣ >

∣∣μ′(c1–θ dθ
)∣∣.

Therefore, we have

sup
{∣∣μ′(c)

∣∣, ∣∣μ′(d)
∣∣} ≥ ∣∣μ′(c1–θ dθ

)∣∣ for θ ≥ 1
2

.

Hence it is proved that |μ′(x)| is geometrically quasi-convex.
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Proposition 1 If 0 < c < d < ∞, then the following inequality of means holds true:

∣∣∣∣A((ln c)μ(c), (ln d)μ(d))
A(ln c, ln d)

– 2A(c, d)
∣∣∣∣

≤ (ln d – ln c)
8(ln c)

[
d�2(c, d) + c�2(d, c)

]
. (3.1)

Proof The function μ : (0,∞) →R defined by

μ(x) = x +
cd
x

is geometrically symmetric about
√

cd and |μ′(x)| is geometrically quasi-convex. By con-
sidering the above defined function for Corollary 1, we get inequality (3.1). �

Proposition 2 If 0 < c < d < ∞, then the following inequality of means holds true:

∣∣2A
(
(ln c)μ(c), (ln d)μ(d)

)[
G(c, d) – c

]
+ cA(c ln c, d ln d) + cA(c, d) ln d + G(c, d) ln d2∣∣

≤ G(c, d)(ln d – ln c)2

8
[
d�2(c, d) + c�2(d, c)

]
. (3.2)

Proof The function μ : (0,∞) →R defined by

μ(x) = x +
cd
x

is geometrically symmetric about
√

cd and |μ′(x)| is geometrically quasi-convex. The
function λ : [c, d] → [0,∞) defined by

λ(x) =

⎧⎨
⎩

cd
x , x ≥ √

cd,

x, x ≤ √
cd

is geometrically symmetric about
√

cd. By considering the above defined functions for
Theorem 1, we get inequality (3.1). �

Remark 1 A number of interesting inequalities can be obtained from the other results of
this manuscript if we use the functions defined in Proposition 1 and Proposition 2.

4 Conclusion
In this paper, a new weighted identity, which involves a continuous positive mapping ge-
ometrically symmetric about

√
cd and a differentiable mapping also geometrically sym-

metric about
√

cd, is presented. Some new inequalities are developed by applying mathe-
matical analysis and the geometric symmetry of a continuous positive mapping and a dif-
ferentiable mapping whose derivatives in absolute value are geometrically quasi-convex.
Some applications of the proved results are given for special means of positive real num-
bers. The results of this paper may stimulate further research for the researchers working
in this filed.



Obeidat and Latif Journal of Inequalities and Applications        (2018) 2018:307 Page 11 of 11

Funding
This research work is supported by the Deanship of Scientific Research at University of Hail.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors jointly worked on the results and they read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 April 2018 Accepted: 6 November 2018

References
1. Guo, X.-Y., Qi, F., Xi, B.-Y.: Some new Hermite–Hadamard type inequalities for geometrically quasi-convex functions on

co-ordinates. J. Nonlinear Sci. Appl. 8(5), 740–749 (2015)
2. Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann.

J. Math. Pures Appl. 58, 171–215 (1883)
3. Hermite, C.: Sur deux limites d’une intégrale définie. Mathesis 3, 82 (1883)
4. Ion, D.A.: Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. An. Univ. Craiova,

Ser. Mat. Inform. 34, 83–88 (2007)
5. İşcan, İ.: New general integral inequalities for quasi-geometrically convex functions via fractional integrals. J. Inequal.

Appl. 2013, 491 (2013). https://doi.org/10.1186/1029-242X-2013-491
6. Latif, M.A.: New Hermite–Hadamard type integral inequalities for GA-convex functions with applications. Analysis

34(4), 379–389 (2014). https://doi.org/10.1515/anly-2012-1235
7. Latif, M.A., Dragomir, S.S., Momoniat, E.: Some estimates on the Hermite–Hadamard inequality through geometrically

quasi-convex functions. Miskolc Math. Notes 18(2), 933–946 (2017). https://doi.org/10.18514/MMN.2017.1819
8. Niculescu, C.P., Persson, L.-E.: Convex Functions and Their Applications. CMS Books in Mathematics. Springer, Berlin

(2005)
9. Noor, M.A., Noor, K.I., Awan, M.U.: Geometrically relative convex functions. Appl. Math. Inf. Sci. 8(2), 607–616 (2014)
10. Noor, M.A., Noor, K.I., Awan, M.U.: Some inequalities for geometrically–arithmetically h-convex functions. Creative

Math. Inform. 23(1), 91–98 (2014)
11. Noor, M.A., Postolache, M., Noor, K.I., Awan, M.U.: Geometrically nonconvex functions and integral inequalities. Appl.

Math. Inf. Sci. 9(3), 1273–1282 (2015)
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