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Abstract
Jensen’s inequality is important for obtaining inequalities for divergence between
probability distribution. By applying a refinement of Jensen’s inequality (Horváth et al.
in Math. Inequal. Appl. 14:777–791, 2011) and introducing a new functional based on
an f -divergence functional, we obtain some estimates for the new functionals, the
f -divergence, and Rényi divergence. Some inequalities for Rényi and Shannon
estimates are constructed. The Zipf–Mandelbrot law is used to illustrate the result. In
addition, we generalize the refinement of Jensen’s inequality and new inequalities of
Rényi Shannon entropies for anm-convex function using the Montgomery identity. It
is also given that the maximization of Shannon entropy is a transition from the
Zipf–Mandelbrot law to a hybrid Zipf–Mandelbrot law.
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1 Introduction and preliminary results
The most commonly used words, the largest cities of countries, income of a billionaire
can be described in terms of Zipf ’s law. The f -divergence means the distance between
two probability distributions by making an average value, which is weighted by a spec-
ified function. As f -divergence, there are other probability distributions like Csiszar f -
divergence [12, 13], some special case of which are Kullback–Leibler-divergence used to
find the appropriate distance between the probability distributions (see [20, 21]). The no-
tion of distance is stronger than that of divergence because it gives the properties of sym-
metry and triangle inequalities. Probability theory has applications in many fields, and the
divergence between probability distributions has many applications in these fields.

Many natural phenomena, like distribution of wealth and income in a society, distri-
bution of Facebook likes, distribution of football goals, follow the power law distribution
(Zipf ’s law). Like above phenomena, the distribution of city sizes also follows the power
law distribution. In [4] Auerbach was the first who gave the idea that the distribution of
city sizes can be well approximated by using the Pareto distribution (power law distribu-
tion). Many researchers refined this idea. However, Zipf [29] has done notable work in
this field. Rosen and Resnick [27], Black and Henderson [5], Ioannides and Overman [19],
Soo [28], Anderson and Ge [3], and Bosker et al. [6] investigated the distribution of city
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sizes of the urban economics. It means that the product of the rank appears and city sizes
are roughly constant. This shows that population of the nth city is 1

n of the largest city
population. This rule is named rank, size rule and is also called Zipf ’s law. Hence Zipf ’s
law does not only show that the city size distribution follows the Pareto distribution.

By using an f -divergence functional, Horváth et al. in [17] introduced a new functional
and obtained some estimates for that functional, the Rényi divergence, and f -divergence
applying a cyclic refinement of Jensen’s inequality. Also they obtained some new inequali-
ties for Shannon and Rényi entropies; also they used the Zipf–Mandelbrot law to illustrate
some results.

The inequalities involving higher order convexity are used by many physicists in higher
dimension problems since the founding of higher order convexity by Popoviciu (see [25,
p. 15]). It is quite an interesting fact that there are some results that are true for convex
functions, but when we discuss them in higher order convexity, they do not remain valid.

In [25, p. 16], the following criterion is given to check the m-convexity of the function:
If f (m) exists, then f is m-convex if and only if f (m) ≥ 0.
In recent years many researchers have generalized the inequalities for m-convex func-

tions; for example, Butt et al. generalized the Popoviciu inequality for an m-convex func-
tion using Taylor’s formula, Lidstone polynomial, Montgomery identity, Fink’s identity,
Abel–Gonstcharoff interpolation, and Hermite interpolating polynomial (see [7–11]).

Since many years Jensen’s inequality has received great interest. The researchers have
given the refinement of Jensen’s inequality by defining some new functions (see [16, 18]).
Like many researchers Horváth and Pec̆arić in [14, 18] (see also [15, p. 26]) gave a refine-
ment of Jensen’s inequality for convex functions. They defined some essential notions to
prove the refinement given as follows:

Suppose X to be a set, P(X) denotes the power set of X, |X| denotes the number of
elements of X, and N denotes the nonnegative integers.

Consider q ≥ 1 and r ≥ 2 to be fixed integers. Define the functions

Fr,s : {1, . . . , q}r → {1, . . . , q}r–1, 1 ≤ s ≤ r,

Fr : {1, . . . , q}r → P
({1, . . . , q}r–1),

and

Tr : P
({1, . . . , q}r) → P

({1, . . . , q}r–1),

by

Fr,s(i1, . . . , ir) := (i1, i2, . . . , is–1, is+1, . . . , ir), 1 ≤ s ≤ r,

Fr(i1, . . . , ir) :=
r⋃

s=1

{
Fr,s(i1, . . . , ir)

}
,

and

Tr(I) =

⎧
⎨

⎩
φ, I = φ;
⋃

(i1,...,ir)∈I Fr(i1, . . . , ir), I �= φ.
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Next let the function

αr,i : {1, . . . , q}r → N, 1 ≤ i ≤ q,

be defined by

αr,i(i1, . . . , ir) is the number of occurences of in the sequence (i1, . . . , ir).

For each I ∈ P({1, . . . , q}r), let

αI,i :=
∑

(i1,...,ir)∈I

αr,i(i1, . . . , ir), 1 ≤ i ≤ q.

(H1) Let n, m be fixed positive integers such that n ≥ 1, m ≥ 2, and let Im be a subset of
{1, . . . , n}m such that

αIm ,i ≥ 1, 1 ≤ i ≤ n.

Introduce the sets Il ⊂ {1, . . . , n}l (m – 1 ≥ l ≥ 1) inductively by

Il–1 := Tl(Il), m ≥ l ≥ 2.

Obviously, the sets I1 = {1, . . . , n} by (H1) and this ensures that αI1,i = 1 (1 ≤ i ≤ n). From
(H1) we have αIl ,i ≥ 1 (m – 1 ≥ l ≥ 1, 1 ≤ i ≤ n).

For m ≥ l ≥ 2, and for any (j1, . . . , jl–1) ∈ Il–1, let

HIl (j1, . . . , jl–1) :=
{(

(i1, . . . , il), k
) × {1, . . . , l}|Fl,k(i1, . . . , il) = (j1, . . . , jl–1)

}
.

With the help of these sets, they define the functions ηIm ,l : Il → N (m ≥ l ≥ 1) inductively
by

ηIm ,m(i1, . . . , im) := 1, (i1, . . . , im) ∈ Im;

ηIm ,l–1(j1, . . . , jl–1) :=
∑

((i1,...,il),k)∈HIl (j1,...,jl–1)

ηIm ,l(i1, . . . , il).

They define some special expressions for 1 ≤ l ≤ m as follows:

Am,l = Am,l(Im, x1, . . . , xn, p1, . . . , pn; f ) :=
(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il),

( l∑

j=1

pij

αIm ,ij

)

f
(∑l

j=1
pij

αIm ,ij
xij

∑l
j=1

pij
αIm ,ij

)

and prove the following theorem.



Khan et al. Journal of Inequalities and Applications        (2018) 2018:318 Page 4 of 22

Theorem 1.1 Assume (H1), and let f : I → R be a convex function where I ⊂ R is an inter-
val. If x1, . . . , xn ∈ I and p1, . . . , pn are positive real numbers such that

∑n
i=1 pi = 1, then

f

( n∑

s=1

psxs

)

≤ Am,m ≤ Am,m–1 ≤ · · · ≤ Am,2 ≤ Am,1 =
n∑

s=1

psf (xs). (1)

By using the differences of inequalities in (1), we define some new functionals as follows:

Θ1(f ) = Am,r – f

( n∑

s=1

psxs

)

, r = 1, . . . , m, (2)

Θ2(f ) = Am,r – Am,k , 1 ≤ r < k ≤ m. (3)

Under the assumptions of Theorem 1.1, we have

Θi(f ) ≥ 0, i = 1, 2. (4)

Inequalities (4) are reversed if f is concave on I .
The Montgomery identity via Taylor’s formula is given in [1] and [2].

Theorem 1 Let m ∈ N, f : I → R be such that f (m–1) is absolutely continuous, I ⊂ R be an
open interval, α1,α2 ∈ I , α1 < α2. Then the following identity holds:

ψ(x) =
1

α2 – α1

∫ α2

α1

ψ(u) du +
m–2∑

k=0

ψ (k+1)(α1)(x – α1)k+2

k!(k + 2)(α2 – α1)
–

m–2∑

k=0

ψ (k+1)(α2)(x – α2)k+2

k!(k + 2)(α2 – α1)

+
1

(m – 1)!

∫ α2

α1

Rm(x, u)ψ (m)(u) du, (5)

where

Rm(x, u) =

⎧
⎨

⎩
– (x–u)m

m(α2–α1) + x–α1
α2–α1

(x – u)m–1, α1 ≤ u ≤ x;

– (x–u)m

m(α2–α1) + x–α2
α2–α1

(x – u)m–1, x ≤ u ≤ α2.
(6)

Theorem 2 Let m ∈ N, f : I → R be such that f (m–1) is absolutely continuous, I ⊂ R be an
interval, α1,α2 ∈ I , α1 < α2. Then the following identity holds:

ψ(x) =
1

α2 – α1

∫ α2

α1

ψ(u) du +
m–2∑

k=0

ψ (k+1)(x)
(α1 – x)k+2 – (α2 – x)k+2

(k + 2)!(α2 – α1)

+
1

(m – 1)!

∫ α2

α1

R̂(x, u)ψ (m)(u) du, (7)

where

R̂(x, u) =

⎧
⎨

⎩
– 1

m(α2–α1) (α1 – u), α1 ≤ u ≤ x;

– 1
m(α2–α1) (α2 – u), x ≤ u ≤ α2.

(8)
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In case m = 1, the sum
∑m–2

k=0 . . . is empty, so (5) and (7) reduce to the well-known Mont-
gomery identity (see [24])

f (x) =
1

α2 – α1

∫ α2

α1

f (t) dt +
1

α2 – α1

∫ α2

α1

p(x, u)f ′(u) du,

where p(x, u) is the Peano kernel defined by

p(x, u) =

⎧
⎨

⎩

u–α1
α2–α1

, α1 ≤ u ≤ x;
u–α2
α2–α1

, x ≤ u ≤ α2.

2 Inequalities for Csiszár divergence
In [12, 13] Csiszár introduced the following notion.

Definition 1 Let f : R+ → R+ be a convex function, let r = (r1, . . . , rn) and q = (q1, . . . , qn)
be positive probability distributions. Then the f -divergence functional is defined by

If (r, q) :=
n∑

i=1

qif
(

ri

qi

)
. (9)

And he stated that by defining

f (0) := lim
x→0+

f (x); 0f
(

0
0

)
:= 0; 0f

(
a
0

)
:= lim

x→0+
xf

(
a
0

)
, a > 0, (10)

we can also use the nonnegative probability distributions.
In [17], Horv́ath et al. gave the following functional on the basis of previous definition.

Definition 2 Let I ⊂ R be an interval, and let f : I → R be a function, let r = (r1, . . . , rn) ∈ Rn

and q = (q1, . . . , qn) ∈ (0,∞)n such that

rs

qs
∈ I, s = 1, . . . , n.

Then we define the sum as Îf (r, q) as

Îf (r, q) :=
n∑

s=1

qsf
(

rs

qs

)
. (11)

We apply Theorem 1.1 to Îf (r, q).

Theorem 2.1 Assume (H1), let I ⊂ R be an interval, and let r = (r1, . . . , rn) and q =
(q1, . . . , qn) be in (0,∞)n such that

rs

qs
∈ I, s = 1, . . . , n.
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(i) If f : I → R is a convex function, then

Îf (r, q) =
n∑

s=1

qsf
(

rs

qs

)
= A[1]

m,1 ≥ A[1]
m,2 ≥ · · · ≥ A[1]

m,m–1

≥ A[1]
m,m ≥ f

( ∑n
s=1 rs∑n
s=1 qs

) n∑

s=1

qs, (12)

where

A[1]
m,l =

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

qij

αIm ,ij

)

f
(∑l

j=1
rij

αIm ,ij
∑l

j=1
qij

αIm ,ij

)
. (13)

If f is a concave function, then the inequality signs in (12) are reversed.
(ii) If f : I → R is a function such that x → xf (x) (x ∈ I) is convex, then

( n∑

s=1

rs

)

f

( n∑

s=1

rs∑n
s=1 qs

)

≤ A[2]
m,m ≤ A[2]

m,m–1 ≤ · · · ≤ A[2]
m,2 ≤ A[2]

m,1

=
n∑

s=1

rsf
(

rs

qS

)
= Îid f (r, q), (14)

where

A[2]
m,l =

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

qij

αIm ,ij

)(∑l
j=1

rij
αIm ,ij

∑l
j=1

qij
αIm ,ij

)
f
(∑l

j=1
rij

αIm ,ij
∑l

j=1
qij

αIm ,ij

)
.

Proof (i) Considering ps = qs∑n
s=1 qs

and xs = rs
qs

in Theorem 1.1, we have

f

( n∑

s=1

qs∑n
s=1 qs

rs

qs

)

≤ · · · ≤ (m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il),

( l∑

j=1

qij∑n
s=1 qs

αIm ,ij

)

f
(∑l

j=1

qij∑n
i=1 qi

αIm ,ij

rij
qij

∑l
j=1

qij∑n
i=1 qi

αIm ,ij

)
≤ · · · ≤

n∑

s=1

qs∑n
i=1 qs

f
(

rs

qs

)
.

(15)

And taking the sum
∑n

s=1 qi, we have (12).
(ii) Using f := id f (where “id” is the identity function) in Theorem 1.1, we have

n∑

s=1

psxsf

( n∑

s=1

psxs

)

≤ · · · ≤ (m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il),

( l∑

j=1

pij

αIm ,ij

)(∑l
j=1

pij
αIm ,ij

xij

∑l
j=1

pij
αIm ,ij

)
f
(∑l

j=1
pij

αIm ,ij
xij

∑l
j=1

pij
αIm ,ij

)
≤ · · · ≤

n∑

s=1

psxsf (xs).

(16)
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Now, on using ps = qs∑n
s=1 qs

and xs = rs
qs

, s = 1, . . . , n, we get

n∑

s=1

qs∑n
s=1 qs

rs

qs
f

( n∑

s=1

qs∑n
s=1 qs

rs

qs

)

≤ · · · ≤ (m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il),

( l∑

j=1

qij∑n
s=1 qs

αIm ,ij

)(∑l
j=1

qij∑n
s=1 qs

αIm ,ij

rij
qij

∑l
j=1

qij∑n
s=1 qs

αIm ,ij

)
f
(∑l

j=1

qij∑n
s=1 qs

αIm ,ij

rij
qij

∑l
j=1

qij∑n
s=1 qs

αIm ,ij

)

≤ · · · ≤
n∑

s=1

qs∑n
s=1 qs

rs

qs
f
(

rs

qS

)
.

(17)

On taking sum
∑n

s=1 qs on both sides, we get (14). �

3 Inequalities for Shannon entropy
Definition 3 (See [17]) Let r = (r1, . . . , rn) be a positive probability distribution, the Shan-
non entropy of r is defined by

S := –
n∑

s=1

rs log(rs). (18)

Corollary 3.1 Assume (H1).
(i) If q = (q1, . . . , qn) ∈ (0,∞)n, and suppose that the base of log is greater than 1, then

S ≤ A[3]
m,m ≤ A[3]

m,m–1 ≤ · · · ≤ A[3]
m,2 ≤ A[3]

m,1 = log

(
n

∑n
s=1 qs

) n∑

s=1

qs, (19)

where

A[3]
m,l = –

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

qij

αIm ,ij

)

log

( l∑

j=1

qij

αIm ,ij

)

. (20)

And in case log is between 0 and 1, then the reverse sign of inequalities holds in (19).
(ii) Suppose that the base of log is greater than 1, if q = (q1, . . . , qn) is a positive

probability distribution, then

S ≤ A[4]
m,m ≤ A[4]

m,m–1 ≤ · · · ≤ A[4]
m,2 ≤ A[4]

m,1 = log(n), (21)

where

A[4]
m,l = –

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

qij

αIm ,ij

)

log

( l∑

j=1

qij

αIm ,ij

)

.

Proof
(i) Using f := log and r = (1, . . . , 1) in Theorem 2.1(i), we get (19).

(ii) It is the special case of (i). �
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Definition 4 (See [17]) Let r = (r1, . . . , rn) and q = (q1, . . . , qn) be positive probability dis-
tributions, the Kullback–Leibler divergence between r and q is defined by

D(r, q) :=
n∑

s=1

ri log

(
ri

qi

)
. (22)

Corollary 3.2 Assume (H1).
(i) Let r = (r1, . . . , rn) ∈ (0,∞)n and q := (q1, . . . , qn) ∈ (0,∞)n. If the base of log is greater

than 1, then

n∑

s=1

rs log

( n∑

s=1

rs∑n
s=1 qs

)

≤ A[5]
m,m ≤ A[5]

m,m–1 ≤ · · · ≤ A[5]
m,2 ≤ A[5]

m,1

=
n∑

s=1

rs log

(
rs

qs

)
= D(r, q), (23)

where

A[5]
m,l =

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

qij

αIm ,ij

)(∑l
j=1

rij
αIm ,ij

∑l
j=1

qij
αIm ,ij

)
log

(∑l
j=1

rij
αIm ,ij

∑l
j=1

qij
αIm ,ij

)
.

And in case log is between 0 and 1, then the reverse sign of inequalities holds in (23).
(ii) Suppose that the base of log is greater than 1, if r = (r1, . . . , rn) and q = (q1, . . . , qn) are

two positive probability distributions, then

D(r, q) = A[6]
m,1 ≥ A[6]

m,2 ≥ · · · ≥ A[6]
m,m–1 ≥ A[6]

m,m ≥ 0, (24)

where

A[6]
m,l =

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

qij

αIm ,ij

)(∑l
j=1

rij
αIm ,ij

∑l
j=1

qij
αIm ,ij

)
log

(∑l
j=1

rij
αIm ,ij

∑l
j=1

qij
αIm ,ij

)
.

And in case log is between 0 and 1, then the reverse sign of inequalities holds in (24).

Proof
(i) On taking f := log in Theorem 2.1(ii), we get (23).

(ii) It is a special case of (i). �

4 Inequalities for Rényi divergence and entropy
In [26] Rényi divergence and entropy is given as follows.

Definition 5 Let r := (r1, . . . , rn) and q := (q1, . . . , qn) be positive probability distributions,
and let λ ≥ 0, λ �= 1.

(a) The Rényi divergence of order λ is defined by

Dλ(r, q) :=
1

λ – 1
log

( n∑

i=1

qi

(
ri

qi

)λ
)

. (25)
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(b) The Rényi entropy of order λ of r is defined by

Hλ(r) :=
1

1 – λ
log

( n∑

i=1

rλ
i

)

. (26)

The Rényi divergence (25) and the Rényi entropy (26) can also be extended to nonneg-
ative probability distributions. Note that limλ→1 Dλ(r, q) = D(r, q) and limλ→1 Hλ(r) = S.

The next two results are given for Rényi divergence.

Theorem 4.1 Assume (H1), let r = (r1, . . . , rn) and q = (q1, . . . , qn) be probability distribu-
tions.

(i) If 0 ≤ λ ≤ μ such that λ,μ �= 1, and the base of log is greater than 1, then

Dλ(r, q) ≤ A[7]
m,m ≤ A[7]

m,m–1 ≤ · · · ≤ A[7]
m,2 ≤ A[7]

m,1 = Dμ(r, q), (27)

where

A[7]
m,l =

1
μ – 1

log

(
(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

×
(∑l

j=1
rij

αIm ,ij
(

rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)μ–1
λ–1

)

.

And in case log is between 0 and 1, then the reverse sign of inequalities holds in (27).
(ii) If the base of log is greater than 1 and μ > 1, then

D1(r, q) = D(r, q) =
n∑

s=1

rs log

(
rs

qs

)
≤ A[8]

m,m ≤ A[8]
m,m–1 ≤ · · · ≤ A[8]

m,2 ≤ A[8]
m,1

= Dμ(r, q), (28)

where

A[8]
m,l =

1
μ – 1

log

(
(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

× exp

( (μ – 1)
∑l

j=1
rij

αIm ,ij
log(

rij
qij

)
∑l

j=1
rij

αIm ,ij

))

.

Here, the exp and log functions have the same bases, and if the base of log is in the
interval (0, 1), then the reverse sign of inequalities holds in (28).

(iii) If 0 ≤ λ < 1, and the base of log is greater than 1, then

Dλ(r, q) ≤ A[9]
m,m ≤ A[9]

m,m–1 ≤ · · · ≤ A[9]
m,2 ≤ A[9]

m,1 = D1(r, q), (29)
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where

A[9]
m,l =

1
λ – 1

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

× log

(∑l
j=1

rij
αIm ,ij

(
rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)
. (30)

Proof By taking I = (0,∞), f : (0,∞) → R, f (t) := t
μ–1
λ–1

ps := rs, xs :=
(

rs

qs

)λ–1

, s = 1, . . . , n,

in Theorem 1.1, we have

( n∑

s=1

qs

(
rs

qs

)λ
)μ–1

λ–1

=

( n∑

s=1

rs

(
rs

qs

)λ–1
)μ–1

λ–1

≤ . . . ≤ (m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)(∑l
j=1

rij
αIm ,ij

(
rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)μ–1
λ–1

≤ · · · ≤
n∑

s=1

rs

((
rs

qs

)λ–1)μ–1
λ–1

, (31)

if either 0 ≤ λ < 1 < β or 1 < λ ≤ μ, and the reverse inequality in (31) holds if 0 ≤ λ ≤
β < 1. By raising to power 1

μ–1 , we have from all

( n∑

s=1

qs

(
rs

qs

)λ
) 1

λ–1

≤ . . . ≤
(

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

×
(∑l

j=1
rij

αIm ,ij
(

rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)μ–1
λ–1

) 1
μ–1

≤ · · · ≤
( n∑

s=1

rs

((
rs

qs

)λ–1)μ–1
λ–1

) 1
μ–1

=

( n∑

s=1

qs

(
rs

qs

)μ
) 1

μ–1

. (32)

Since the log function is increasing for the base greater than 1, therefore on taking log in
(32) we get (29). And the log function is decreasing for the base between 0 and 1, in this
case on taking log in (32) we get the reverse sign in (27). If λ = 1 and β = 1, we have (ii)
and (iii) respectively by taking limit. �
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Theorem 4.2 Assume (H1), let r = (r1, . . . , rn) and q = (q1, . . . , qn) be probability distribu-
tions. If either 0 ≤ λ < 1 and the base of log is greater than 1, or 1 < λ and the base of log is
between 0 and 1, then

1
∑n

s=1 qs( rs
qs

)λ

n∑

s=1

qs

(
rs

qs

)λ

log

(
rs

qs

)
= A[10]

m,1 ≤ A[10]
m,2 ≤ · · · ≤ A[10]

m,m–1 ≤ A[10]
m,m

≤ Dλ(r, q) ≤ A[11]
m,m

≤ A[11]
m,m ≤ · · · ≤ A[11]

m,2 ≤ A[11]
m,1 = D1(r, q), (33)

where

A[10]
m,m =

1
(λ – 1)

∑n
s=1 qs( rs

qs
)λ

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

( rij

qij

)λ–1
)

× log

(∑l
j=1

rij
αIm ,ij

(
rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)

and

A[11]
m,m =

1
λ – 1

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

× log

(∑l
j=1

rij
αIm ,ij

(
rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)
.

The inequalities in (33) are reversed if either 0 ≤ λ < 1 and the base of log is between 0
and 1, or 1 < λ and the base of log is greater than 1.

Proof Here we prove for 0 ≤ λ < 1 and base when the base of logis greater than 1, the
other case can be proved by following similar steps. Since 1

λ–1 < 0 and the function log is
concave, then choosing I = (0,∞), f := log, ps = rs, xs := ( rs

qs
)λ–1 in Theorem 1.1, we have

Dλ(r, q) =
1

λ – 1
log

( n∑

s=1

qs

(
rs

qs

)λ
)

=
1

λ – 1
log

( n∑

s=1

rs

(
rs

qs

)λ–1
)

≤ · · · ≤ 1
λ – 1

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

× log

(∑l
j=1

rij
αIm ,ij

(
rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)

≤ · · · ≤ 1
λ – 1

n∑

s=1

rs log

((
rs

qs

)λ–1)
=

n∑

s=1

rs log

(
rs

qs

)
= D1(r, q) (34)

and this gives the upper bound for Dλ(r, q).
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Since x 
→ x log(x) (x > 0) is a convex function for base of log log log log greater than 1,
also 1

1–λ
< 0, therefore using Theorem 1.1, we have

Dλ(r, q) =
1

λ – 1
log

( n∑

s=1

qs

(
rs

qs

)λ
)

=
1

λ – 1(
∑n

s=1 qs( rs
qs

)λ)

( n∑

s=1

qs

(
rs

qs

)λ
)

log

( n∑

s=1

qs

(
rs

qs

)λ
)

≥ · · · ≥ 1
λ – 1(

∑n
s=1 qs( rs

qs
)λ)

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

×
(∑l

j=1
rij

αIm ,ij
(

rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)
log

(∑l
j=1

rij
αIm ,ij

(
rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)

=
1

λ – 1(
∑n

s=1 qs( rs
qs

)λ)
(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

×
( l∑

j=1

rij

αIm ,ij

( rij

qij

)λ–1
)

log

(∑l
j=1

rij
αIm ,ij

(
rij
qij

)λ–1

∑l
j=1

rij
αIm ,ij

)

≥ · · ·

≥ 1
λ – 1

n∑

s=1

rs

(
rs

qs

)λ–1

log

(
rs

qs

)λ–1 1
∑n

s=1 rs( rs
qs

)λ–1

=
1

∑n
s=1 qs( rs

qs
)λ

n∑

s=1

qs

(
rs

qs

)λ

log

(
rs

qs

)
(35)

which gives the lower bound of Dλ(r, q).
By using the previous results, some inequalities of Rényi entropy are obtained. Let 1

n =
( 1

n , . . . , 1
n ) be a discrete probability distribution. �

Corollary 4.3 Assume (H1), let r = (r1, . . . , rn) and q = (q1, . . . , qn) be positive probability
distributions.

(i) If 0 ≤ λ ≤ μ, λ,μ �= 1, and the base of log is greater than 1, then

Hλ(r) = log(n) – Dλ

(
r,

1
n

)
≥ A[12]

m,m ≥ A[12]
m,m ≥ · · · ≥ A[12]

m,2 ≥ A[12]
m,1 = Hμ(r), (36)

where

A[12]
m,l =

1
1 – μ

log

(
(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

×
( l∑

j=1

rij

αIm ,ij

)(∑l
j=1

rλij
αIm ,ij

∑l
j=1

rij
αIm ,ij

)μ–1
λ–1

)

.

The reverse inequalities hold in (36) if the base of log is between 0 and 1.
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(ii) If 1 < μ and the base of log is greater than 1, then

S = –
n∑

s=1

pi log(pi) ≥ A[13]
m,m ≥ A[13]

m,m–1 ≥ · · · ≥ A[13]
m,2 ≥ A[13]

m,1 = Hμ(r), (37)

where

A[13]
m,l = log(n) +

1
1 – μ

log

(
(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

× exp

( (μ – 1)
∑l

j=1
rij

αIm ,ij
log(nrij )

∑l
j=1

rij
αIm ,ij

))

,

the exp and log functios have the same bases. If the base of log is between 0 and 1,
the sign of inequalities in (37) is reversed.

(iii) If 0 ≤ λ < 1 and the base of log is greater than 1, then

Hλ(r) ≥ A[14]
m,m ≥ A[14]

m,m–1 ≥ · · · ≥ A[14]
m,2 ≤ A[14]

m,1 = S, (38)

where

A[14]
m,m =

1
1 – λ

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

× log

(∑l
j=1

rλij
αIm ,ij

∑l
j=1

rij
αIm ,ij

)
. (39)

The inequalities in (38) are reversed if the base of log is between 0 and 1.

Proof (i) Suppose q = 1
n , then from (25) we have

Dλ(r, q) =
1

λ – 1
log

( n∑

s=1

nλ–1rλ
s

)

= log(n) +
1

λ – 1
log

( n∑

s=1

rλ
s

)

, (40)

therefore we have

Hλ(r) = log(n) – Dλ

(
r,

1
n

)
. (41)

Now, using Theorem 4.1(i) and (41), we get

Hλ(r) = log(n) – Dλ

(
r,

1
n

)
≥ · · ·

≥ log(n) –
1

μ – 1
log

(

nμ–1 (m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)
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×
( l∑

j=1

rij

αIm ,ij

)(∑l
j=1

rλij
αIm ,ij

∑l
j=1

rij
αIm ,ij

)μ–1
λ–1

)

≥ · · ·

≥ log(n) – Dμ(r, q) = Hμ(r), (42)

(ii) and (iii) can be proved similarly. �

Corollary 4.4 Assume (H1) and let r = (r1, . . . , rn) and q = (q1, . . . , qn) be positive probabil-
ity distributions.

If either 0 ≤ λ < 1 and the base of log is greater than 1, or 1 < λ and the base of log is
between 0 and 1, then

–
1

∑n
s=1 rλ

s

n∑

s=1

rλ
s log(rs) = A[15]

m,1 ≥ A[15]
m,2 ≥ · · · ≥ A[15]

m,m–1 ≥ A[15]
m,m

≥ Hλ(r) ≥ A[16]
m,m ≥ A[16]

m,m–1 ≥ · · · ≥ A[16]
m,2 ≥ A[16]

m,1 = H(r), (43)

where

A[15]
m,l =

1
(λ – 1)

∑n
s=1 rλ

s

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rλ
ij

αIm ,ij

)

× log

(
nλ–1

∑l
j=1

rλij
αIm ,ij

∑l
j=1

rij
αIm ,ij

)

and

A[16]
m,1 =

1
1 – λ

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

rij

αIm ,ij

)

log

(∑l
j=1

rλij
αIm ,ij

∑l
j=1

rij
αIm ,ij

)
.

The inequalities in (43) are reversed if either 0 ≤ λ < 1 and the base of log is between 0
and 1, or 1 < λ and the base of log is greater than 1.

Proof The proof is similar to Corollary 4.3 by using Theorem 4.2. �

5 Inequalities by using Zipf–Mandelbrot law
In [22] the Zipf–Mandelbrot law is defined as follows.

Definition 6 The Zipf–Mandelbrot law is a discrete probability distribution depending
on three parameters q ∈ [0,∞), N ∈ {1, 2, . . .}, and t > 0, and it is defined by

f (s; N , q, t) :=
1

(s + q)tHN ,q,t
, s = 1, . . . , N , (44)
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where

HN ,q,t =
N∑

j=1

1
(j + q)t . (45)

If the total mass of the law is taken over all N, then for q ≥ 0, t > 1, s ∈ N, the density
function of the Zipf–Mandelbrot law becomes

f (s; q, t) =
1

(s + q)tHq,t
, (46)

where

Hq,t =
∞∑

j=1

1
(j + q)t . (47)

For q = 0, the Zipf–Mandelbrot law becomes Zipf ’s law.

Conclusion 5.1 Assume (H1), let r be a Zipf–Mandelbrot law, by Corollary 4.3(iii), we get:
If 0 ≤ λ < 1 and the base of log is greater than 1, then

Hλ(r) =
1

1 – λ
log

(
1

Hλ
N ,q,t

n∑

s=1

1
(s + q)λs

)

≥ · · ·

≥ 1
1 – λ

(m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il)

( l∑

j=1

1
αIm ,ij (ij + q)HN ,q,t

)

× log

(
1

Hλ–1
N ,q,t

∑l
j=1

1
αIm ,ij (ij–q)λs

∑l
j=1

1
αIm ,ij (ij–q)s

)
≥ · · ·

≥ t
HN ,q,t

N∑

s=1

log(s + q)
(s + q)t + log(HN ,q,t) = S. (48)

The inequalities in (48) are reversed if the base of log is between 0 and 1.

Conclusion 5.2 Assume (H1), let r1 and r2 be the Zipf–Mandelbort law with parameters
N ∈ {1, 2, . . .}, q1, q2 ∈ [0,∞), and s1, s2 > 0, respectively. Then from Corollary 3.2(ii), we
have: If the base of log is greater than 1, then

D̄(r1, r2) =
n∑

s=1

1
(s + q1)t1 HN ,q1,t1

log

(
(s + q2)t2 HN ,q2,t2

(s + q1)t1 HN ,q2,t1

)
≥ · · ·

≥ (m – 1)!
(l – 1)!

∑

(i1,...,il)∈Il

ηIm ,l(i1, . . . , il),

( l∑

j=1

1
(ij+q2)t2 HN ,q2,t2

αIm ,ij

)(∑l
j=1

1
(ij+q1)t1 HN ,q1,t1

αIm ,ij

∑l
j=1

1
(ij+q2)t2 HN ,q2,t2

αIm ,ij

)
log

(∑l
j=1

1
(ij+q1)t1 HN ,q1,t1

αIm ,ij

∑l
j=1

1
(ij+q2)t2 HN ,q2,t2

αIm ,ij

)

≥ · · · ≥ 0.

(49)
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The inequalities in (49) are reversed if the base of log is between 0 and 1.

6 Shannon entropy, Zipf–Mandelbrot law and hybrid Zipf–Mandelbrot law
Here we maximize the Shannon entropy using the method of Lagrange multiplier under
some equation constraints and get the Zipf–Mandelbrot law.

Theorem 6.1 If J = {1, 2, . . . , N}, for given q ≥ 0, a probability distribution that maximizes
the Shannon entropy under the constraints

∑

s∈J

rs = 1,
∑

s∈J

rs
(
ln(s + q)

)
:= Ψ

is the Zipf–Madelbrot law.

Proof If J = {1, 2, . . . , N}, we set the Lagrange multipliers λ and t and consider the expres-
sion

Ŝ = –
N∑

s=1

rs ln rs – λ

( N∑

s=1

rs – 1

)

– t

( N∑

s=1

rs ln(s + q) – Ψ

)

.

Just for the sake of convenience, replace λ by lnλ – 1, thus the last expression gives

Ŝ = –
N∑

s=1

rs ln rs – (lnλ – 1)

( N∑

s=1

rs – 1

)

– t

( N∑

s=1

rs ln(s + q) – Ψ

)

.

From Ŝrs = 0, for s = 1, 2, . . . , N , we get

rs =
1

λ(s + q)t ,

and on using the constraint
∑N

s=1 rs = 1, we have

λ =
N∑

s=1

(
1

(s + 1)t

)
,

where t > 0, concluding that

rs =
1

(s + q)tHN ,q,t
, s = 1, 2, . . . , N . �

Remark 6.2 Observe that the Zipf–Mandelbrot law and Shannon entropy can be bounded
from above (see [23]).

S = –
N∑

s=1

f (s, N , q, t) ln f (s, N , q, t) ≤ –
N∑

s=1

f (s, N , q, t) ln qs,

where (q1, . . . , qN ) is a positive N-tuple such that
∑N

s=1 qs = 1.
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Theorem 6.3 If J = {1, . . . , N}, then the probability distribution that maximizes Shannon
entropy under constraints

∑

s∈J

rs = 1,
∑

s∈J

rs ln(s + q) := Ψ ,
∑

s∈J

srs := η

is a hybrid Zipf–Mandelbrot law given as

rs =
ws

(s + q)kΦ∗(k, q, w)
, s ∈ J ,

where

ΦJ (k, q, w) =
∑

s∈J

ws

(s + q)k .

Proof First consider J = {1, . . . , N}, we set the Lagrange multiplier and consider the expres-
sion

S̃ = –
N∑

s=1

rs ln rs + ln w

( N∑

s=1

srs – η

)

– (lnλ – 1)

( N∑

s=1

rs – 1

)

– k

( N∑

s=1

rs ln(s + q) – Ψ

)

.

On setting S̃rs = 0, for s = 1, . . . , N , we get

– ln rs + s ln w – lnλ – k ln(s + q) = 0.

After solving for rs, we get

λ =
N∑

s=1

ws

(s + q)k ,

and we recognize this as the partial sum of Lerch’s transcendent that we will denote by

Φ∗
N (k, q, w) =

N∑

s=1

ws

(s + q)k

with w ≥ 0, k > 0. �

Remark 6.4 Observe that for the Zipf–Mandelbrot law, Shannon entropy can be bounded
from above (see [23]).

S = –
N∑

s=1

fh(s, N , q, k) ln fh(s, N , q, k) ≤ –
N∑

s=1

fh(s, N , q, k) ln qs,

where (q1, . . . , qN ) is any positive N-tuple such that
∑N

s=1 qs = 1.
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Under the assumption of Theorem 2.1(i), define the nonnegative functionals as follows:

Θ3(f ) = A[1]
m,r – f

( ∑n
s=1 rs∑n
s=1 qs

) n∑

s=1

qs, r = 1, . . . , m, (50)

Θ4(f ) = A[1]
m,r – A[1]

m,k , 1 ≤ r < k ≤ m. (51)

Under the assumption of Theorem 2.1(ii), define the nonnegative functionals as follows:

Θ5(f ) = A[2]
m,r –

( n∑

s=1

rs

)

f
( ∑n

s=1 rs∑n
s=1 qs

)
, r = 1, . . . , m, (52)

Θ6(f ) = A[2]
m,r – A[2]

m,k , 1 ≤ r < k ≤ m. (53)

Under the assumption of Corollary 3.1(i), define the following nonnegative functionals:

Θ7(f ) = A[3]
m,r +

n∑

i=1

qi log(qi), r = 1, . . . , n, (54)

Θ8(f ) = A[3]
m,r – A[3]

m,k , 1 ≤ r < k ≤ m. (55)

Under the assumption of Corollary 3.1(ii), define the following nonnegative functionals
given as

Θ9(f ) = A[4]
m,r – S, r = 1, . . . , m, (56)

Θ10(f ) = A[4]
m,r – A[4]

m,k , 1 ≤ r < k ≤ m. (57)

Under the assumption of Corollary 3.2(i), let us define the nonnegative functionals as fol-
lows:

Θ11(f ) = A[5]
m,r –

n∑

s=1

rs log

( n∑

s=1

log
rn∑n
s=1 qs

)

, r = 1, . . . , m, (58)

Θ12(f ) = A[5]
m,r – A[5]

m,k , 1 ≤ r < k ≤ m. (59)

Under the assumption of Corollary 3.2(ii), define the nonnegative functionals as follows:

Θ13(f ) = A[6]
m,r – A[6]

m,k , 1 ≤ r < k ≤ m. (60)

Under the assumption of Theorem 4.1(i), consider the following functionals:

Θ14(f ) = A[7]
m,r – Dλ(r, q), r = 1, . . . , m, (61)

Θ15(f ) = A[7]
m,r – A[7]

m,k , 1 ≤ r < k ≤ m. (62)

Under the assumption of Theorem 4.1(ii), consider the following functionals:

Θ16(f ) = A[8]
m,r – D1(r, q), r = 1, . . . , m, (63)

Θ17(f ) = A[8]
m,r – A[8]

m,k , 1 ≤ r < k ≤ m. (64)
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Under the assumption of Theorem 4.1(iii), consider the following functionals:

Θ18(f ) = A[9]
m,r – Dλ(r, q), r = 1, . . . , m, (65)

Θ19(f ) = A[9]
m,r – A[9]

m,k , 1 ≤ r < k ≤ m. (66)

Under the assumption of Theorem 4.2, consider the following nonnegative functionals:

Θ20(f ) = Dλ(r, q) – A[10]
m,r , r = 1, . . . , m, (67)

Θ21(f ) = A[10]
m,k – A[10]

m,r , 1 ≤ r < k ≤ m. (68)

Θ22(f ) = A[11]
m,r – Dλ(r, q), r = 1, . . . , m, (69)

Θ23(f ) = A[11]
m,r – A[11]

m,r , 1 ≤ r < k ≤ m, (70)

Θ24(f ) = A[11]
m,r – A[10]

m,k , r = 1, . . . , m, k = 1, . . . , m. (71)

Under the assumption of Corollary 4.3(i), consider the following nonnegative functionals:

Θ25(f ) = Hλ(r) – A[12]
m,r , r = 1, . . . , m, (72)

Θ26(f ) = A[12]
m,k – A[12]

m,r , 1 ≤ r < k ≤ m. (73)

Under the assumption of Corollary 4.3(ii), consider the following functionals:

Θ27(f ) = S – A[13]
m,r , r = 1, . . . , m, (74)

Θ28(f ) = A[13]
m,k – A[13]

m,r , 1 ≤ r < k ≤ m. (75)

Under the assumption of Corollary 4.3(iii), consider the following functionals:

Θ29(f ) = Hλ(r) – A[14]
m,r , r = 1, . . . , m, (76)

Θ30(f ) = A[14]
m,k – A[14]

m,r , 1 ≤ r < k ≤ m. (77)

Under the assumption of Corollary 4.4, define the following functionals:

Θ31 = A[15]
m,r – Hλ(r), r = 1, . . . , m, (78)

Θ32 = A[15]
m,r – A[15]

m,k , 1 ≤ r < k ≤ m, (79)

Θ33 = Hλ(r) – A[16]
m,r , r = 1, . . . , m, (80)

Θ34 = A[16]
m,k – A[16]

m,r , 1 ≤ r < k ≤ m, (81)

Θ35 = A[15]
m,r – A[16]

m,k , r = 1, . . . , m, k = 1, . . . , m. (82)

7 Generalization of the refinement of Jensen’s, Rényi, and Shannon type
inequalities via Montgomery identity

We construct some new identities with the help of the generalized Montgomery identity
(5).
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Theorem 7.1 Assume (H1), let f : [α1,α2] → R be a function where [α1,α2] ⊂ R is an
interval. Also let x1, . . . , xn ∈ [α1,α2] and p1, . . . , pn be positive real numbers such that
∑n

i=1 pi = 1, and Rm(x, u) be the same as defined in (6), then the following identity holds:

Θi(f ) =
1

α2 – α1

m–2∑

k=0

(
1

k!(k + 2)

)
(
f (k+1)(α1)Θi

(
(x – α1)k+1) – f (k+1)(α2)

× Θ2
(
(x – α2)k+1)) 1

(m – 1)!

∫ α2

α1

Θi
(
Rm(x, u)

)
f (m)(u) du, i = 1, . . . , 35. (83)

Proof Using (5) in (2), (3), and (50)–(82), we get the result. �

Theorem 7.2 Assume (H1), let f : [α1,α2] → R be a function where [α1,α2] ⊂ R is an
interval. Also let x1, . . . , xn ∈ [α1,α2] and p1, . . . , pn be positive real numbers such that
∑n

i=1 pi = 1, and Rm(x, u) be the same as defined in (6). Let, for m ≥ 2,

Θi
(
Rm(x, u)

) ≥ 0 for all u ∈ [α1,α2], i = 1, . . . , 35.

If f is m-convex such that f (m–1) is absolutely continuous, then

Θi(f ) ≥ 1
α2 – α1

m–2∑

k=0

(
1

k!(k + 2)

)

× (f (k+1)(α1)Θi
(
(x – α1)k+1) – f (k+1)(α2)Θi

(
(x – α2)k+1), i = 1, . . . , 35. (84)

Proof As f (m–1) is absolutely continuous on [α1,α2], therefore f (m) exists almost every-
where. As f is m-convex, so f (m)(u) ≥ 0 for all u ∈ [α1,α2] (see [25, p. 16]). Hence, using
Theorem 7.1, we get (84). �

Theorem 7.3 Assume (H1), let f : [α1,α2] → R be a function where [α1,α2] ⊂ R is an
interval. Also let x1, . . . , xn ∈ [α1,α2] and p1, . . . , pn be positive real numbers such that
∑n

i=1 pi = 1, let f : [α1,α2] → R be a convex function.
(i) If m ≥ 2 is even, then (84) holds.

(ii) Let (84) be valid. If the function

λ(x) =
1

α2 – α1

m–2∑

l=0

(
f (l+1)(α1)(x – α1)l+2 – f (l+1)(α2)(x – α2)l+2

l!(l + 2)

)

is convex, then the right-hand side of (84) is nonnegative and

Θi(f ) ≥ 0, i = 1, . . . , 35.

Proof
(i) The function Rm(·, v) is convex (see [10]). Hence, for an even integer m ≥ 2,

Θi
(
Rm(u, v)

) ≥ 0,

therefore from Theorem 7.2, we have (84).
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(ii) By using the linearity of Θi(f ), we can write the right-hand side of (84) in the form
Θi(λ). As λ is supposed to be convex, therefore the right-hand side of (84) is
nonnegative, so Θi(f ) ≥ 0. �

Theorem 7.4 Assume (H1), let f : [α1,α2] → R be a function where [α1,α2] ⊂ R is an
interval. Also let x1, . . . , xn ∈ [α1,α2] and p1, . . . , pn be positive real numbers such that
∑n

i=1 pi = 1, and R̂m(x, u) be the same as defined in (8), then the following identity holds:

Θi(f ) =
1

α2 – α1

m–2∑

k=0

(
1

k!(k + 2)

)
(Θi

(
f (k+1)(x)(α1 – x)k+1) – Θi

(
f (k+1)(x)(α2 – x)k+1)

+
1

(m – 1)!

∫ α2

α1

Θi
(
R̂m(x, u)

)
f (m)(u) du, i = 1, . . . , 35. (85)

Proof Using (7) in (2), (3), and (50)–(82), we get identity (85). �

Theorem 7.5 Assume (H1), let f : [α1,α2] → R be a function where [α1,α2] ⊂ R is an
interval. Also let x1, . . . , xn ∈ [α1,α2] and p1, . . . , pn be positive real numbers such that
∑n

i=1 pi = 1, and R̂m(x, u) be the same as defined in (8). Let, for m ≥ 2,

Θi
(
R̂m(x, u)

) ≥ 0 for all u ∈ [α1,α2], i = 1, . . . , 35.

If f is m-convex such that f (m–1) is absolutely continuous, then

Θi(f ) ≥ 1
α2 – α1

m–2∑

k=0

(
1

k!(k + 2)

)

× (Θi
(
f (k+1)(x)(α1 – x)k+1) – Θi

(
f (k+1)(x)(α2 – x)k+1), i = 1, . . . , 35. (86)

Proof As f (m–1) is absolutely continuous on [α1,α2], therefore f (m) exists almost every-
where. As f is m-convex, so f (m)(u) ≥ 0 for all u ∈ [α1,α2] (see [25, p. 16]). Hence, using
Theorem 7.4, we get (86). �

Remark 7.6 We can get a similar result as that given in Theorem 7.3.

Remark 7.7 We can give related mean value theorems, also construct the new families
of m-exponentialy convex functions and Cauchy means related to the functionals Θi, i =
1, . . . , 35, as given in [7].
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11. Butt, S.I., Pec̆arić, J.: Popoviciu’s Inequality for N-Convex Functions. Lap Lambert Academic Publishing, Saarbrücken

(2016)
12. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci.

Math. Hung. 2, 299–318 (1967)
13. Csiszár, I.: Information measures: a critical survey. In: Trans. 7th Prague Conf. on Info. Th., Statist. Decis. Funct., Random

Process and 8th European Meeting of Statist., vol. B, pp. 73–86. Academia, Prague (1978)
14. Horváth, L.: A method to refine the discrete Jensen’s inequality for convex and mid-convex functions. Math. Comput.

Model. 54(9–10), 2451–2459 (2011)
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