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Abstract
In this work, we obtain appropriate sharp bounds for a certain class of maximal
operators along surfaces of revolution with kernels in Lq(Sn–1), q > 1. By using these
bounds and using an extrapolation argument, we establish the Lp boundedness of
the maximal operators when their kernels are in L(log L)α (Sn–1) or in the block space
B0,α–1q (Sn–1). Our main results represent significant improvements as well as natural
extensions of what was known previously.
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1 Introduction and main results
Throughout this article, let Rn, n ≥ 2, be the n-dimensional Euclidean space and Sn–1 be
the unit sphere in Rn equipped with the normalized Lebesgue surface measure dσ = dσ (·).
Also, let x′ = x/|x| for x ∈ Rn \ {0} and p′ denote the exponent conjugate to p; that is,
1/p + 1/p′ = 1.

Let KΩ ,h(y) = Ω(y)h(|y|)|y|–n, where h : [0,∞) → C is a measurable function and Ω is
a homogeneous function of degree zero on Rn that is integrable on Sn–1 and satisfies the
cancelation property

∫
Sn–1

Ω
(
x′)dσ

(
x′) = 0. (1.1)

For 1 ≤ γ < ∞, define Lγ (R+) to be the set of all measurable functions h : R+ → R that
satisfy the condition ‖h‖Lγ (R+, dr

r ) = (
∫ ∞

0 |h(r)|γ dr
r )1/γ ≤ 1, and define L∞(R+) = L∞(R+, dr

r ).

For a suitable mapping φ : R+ → R, we define the maximal operator M(γ )
P,Ω ,φ for f ∈

S(Rn+1) by

M(γ )
P,Ω ,φ(f )(x, x + 1) = sup

h∈Lγ (R+)

∣∣∣∣
∫

Rn
eiP(y)f

(
x – y, xn+1 – φ

(|y|))KΩ ,h(y) dy
∣∣∣∣, (1.2)

where P : Rn → R is a real-valued polynomial.
When P(y) = 0, we denote M(γ )

P,Ω ,φ by M(γ )
Ω ,φ . Also, when φ(t) = t, we denote M(γ )

Ω ,φ by
M(γ )

Ω which is the classical maximal operator that was introduced by Chen and Lim in [17].
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The authors of [17] proved that when Ω ∈ C(Sn–1) and h ∈ Lγ (R+) for some 1 ≤ γ ≤ 2, then
the Lp boundedness of M(γ )

Ω is satisfied for (nγ )′ < p < ∞. This result was improved by Al-
Salman in [10]; he established the Lp(Rn) boundedness of M(2)

Ω for all p ≥ 2 provided that
Ω ∈ L(log L)1/2(Sn–1). Moreover, he pointed out that the condition Ω ∈ L(log L)1/2(Sn–1) is
optimal in the sense that 1/2 in L(log L)1/2(Sn–1) cannot be replaced by any smaller positive
number. In addition, the last result was generalized by Al-Qassem (see [4, Theorem 1.5]).
Indeed, he verified that M(γ )

Ω is bounded on Lp(Rn) for all p ≥ γ ′ and 1 < γ ≤ 2 under the
condition Ω ∈ L(log L)1/γ ′ (Sn–1). Later on, Al-Qassem in [4] improved the above results.
Precisely, he obtained that if h ∈ Lγ (R+) for some 1 ≤ γ ≤ 2, Ω ∈ L(log L)1/γ ′ (Sn–1); and
φ is C2([0,∞)), convex and increasing function with φ(0) = 0, then M(γ )

Ω ,φ is bounded on
Lp(Rn+1) for any γ ′ ≤ p < ∞ with 1 < γ ≤ 2; and it is bounded on L∞(Rn+1) for γ = 1. On
the other hand, when Ω belongs to the block spaces B(0,–1/2)

q (Sn–1) for some q > 1, then the
author of [3] showed that M(2)

Ω is bounded on Lp(Rn) for all p ≥ 2. Furthermore, he found
Ω which lies in B(0,–1/2–ε)

q (Sn–1) for all ε > 0 such that M(2)
Ω in not bounded on L2(Rn).

Subsequently, the study of the Lp boundedness of M(γ )
Ω under various conditions on the

function has been performed by many authors. The readers can see [9, 12, 20, 21, 23–25],
and [28] for the significance of considering integral operators with oscillating kernels.

We point out that the study the maximal operator M(γ )
P,Ω ,φ was initiated by Al-Salman

in his work in [11]. In fact, he investigated the Lp (p ≥ 2) boundedness of M(2)
P,Ω ,t under

the condition Ω ∈ L(log L)1/2(Sn–1) ∪ B(0,–1/2)
q (Sn–1) for some q > 1. For more information

about the importance and the recent advances on the study of such operators, the readers
are referred to [1, 2, 5, 27], and the references therein.

In view of the results in [4] as well as the results in [11], it is natural to ask whether the
parametric maximal operator M(γ )

P,Ω ,φ is bounded on Lp(Rn+1) under weak conditions on
Ω , φ, and γ . We shall obtain an answer to this question in the affirmative as described in
the next theorem. Precisely, we will establish the following result.

Theorem 1.1 Suppose that Ω ∈ Lq(Sn–1), q > 1, and satisfy condition (1.1) with
‖Ω‖L1(Sn–1) ≤ 1. Suppose also that φ : R+ → R is in C2([0,∞)), convex and increasing func-
tion with φ(0) = 0. Let P : Rn → R be a polynomial of degree m and M(γ )

P,Ω ,φ be given by
(1.2). Then there exists a constant Cp,q > 0 such that

∥∥M(γ )
P,Ω ,φ(f )

∥∥
Lp(Rn+1) ≤ Cp,q(1 + βΩ ))1/γ ′‖f ‖Lp(Rn+1) (1.3)

for γ ′ ≤ p < ∞ and 1 < γ ≤ 2; and

∥∥M(1)
P,Ω ,φ(f )

∥∥
L∞(Rn+1) ≤ C‖f ‖L∞(Rn+1), (1.4)

where βΩ = log(e + ‖Ω‖Lq(Sn–1)), Cp,q = 21/q′

21/q′ –1
Cp, and Cp is a positive constant that may

depend on the degree of the polynomial P but it is independent of Ω , φ, q, and the coefficients
of the polynomial P.

By the conclusion from Theorem 1.1 and applying an extrapolation argument (see [8,
11] and [26]), we get the following.

Theorem 1.2 Suppose that Ω is given as in Theorem 1.1 and M(γ )
P,Ω ,φ is given by

(1.2), where φ is in C2([0,∞)), convex and increasing function with φ(0) = 0. If Ω ∈
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L(log L)1/γ ′ (Sn–1) ∪ B(0,–1/γ )
q (Sn–1), then M(γ )

P,Ω ,φ is bounded on Lp(Rn+1) for γ ′ ≤ p < ∞ and
1 < γ ≤ 2; and it is bounded on L∞(Rn+1) for γ = 1.

Here and henceforth, the letter C denotes a bounded positive constant that may vary at
each occurrence but is independent of the essential variables.

2 Preliminary lemmas
This section is devoted to present and prove some auxiliary lemmas which will be used
in the proof of Theorem 1.1. We start with the following lemma which can be derived by
applying the arguments (with only minor modifications) used in [11].

Lemma 2.1 Let Ω ∈ Lq(Sn–1), q > 1, and satisfy condition (1.1) with ‖Ω‖L1(Sn–1) ≤ 1. As-
sume that φ(·) is an arbitrary function on R+, and assume also that P =

∑
|α|≤m aαxα is a

polynomial of degree m ≥ 1 such that |x|m is not one of its terms and
∑

|α|=m |aα| = 1. For
k ∈ Z, define Jk,Ω ,φ : Rn+1 → R by

Jk,Ω ,φ(ξ ,η) =
∫ 22βΩ

1

∣∣∣∣
∫

Sn–1
Ω(u)Gk,Ω ,φ(r, u, ξ · u,η) dσ (u)

∣∣∣∣
2 dr

r
, (2.1)

where

Gk,Ω ,φ(r, u, ξ · u,η) = e–i[P(2–(k+1)βΩ ru)+(2–(k+1)βΩ )ru·ξ+φ(2–(k+1)βΩ r)η]. (2.2)

Then a positive constant C exists such that

sup
(ξ ,η)∈Rn×R

Jk,Ω ,φ(ξ ,η) ≤ CβΩ2(k+1)/4q′
.

Proof On the one hand, it is clear that

Jk,Ω ,φ(ξ ,η) ≤ C
∫ 22βΩ

1

(∫
Sn–1

∣∣Ω(u)
∣∣dσ (u)

)2 dr
r

≤ CβΩ‖Ω‖2
L1(Sn–1) ≤ CβΩ . (2.3)

Also, it is easy to get that

P
(
2–(k+1)βΩ ru

)
– P

(
2–(k+1)βΩ rv

)
+ 2–(k+1)βΩ ru · ξ – 2–(k+1)βΩ rv · ξ

= 2–m(k+1)βΩ rm
( ∑

|α|=m

aαuα –
∑
|α|=m

aαvα

)
+ 2–(k+1)βΩ r(u – v) · ξ + Ak(u, v, r, ξ ),

with dm

drm Ak(u, v, r, ξ ) = 0. Without loss of generality, we may assume that m > 1. Then, we
follow the same steps as in [11, (2.9)–(2.12)] to prove that the inequality

Jk,Ω ,φ(ξ ,η) ≤ Cβ
1–1/4q′
Ω

(
2(k+1)βΩ /4q′)

(2.4)

holds for some constant C > 0. Therefore, combining (2.4) with the trivial estimate (2.3)
leads to

sup
(ξ ,η)∈Rn×R

Jk,Ω ,φ(ξ ,η) ≤ CβΩ2(k+1)/4q′
. �
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We shall need the following lemma which can be acquired by using the argument em-
ployed in the proof of [14, Lemma 4.7].

Lemma 2.2 Let Ω ∈ L1(Sn–1) be a homogeneous function of degree zero and satisfy condi-
tion (1.1). Suppose that φ : R+ → R is in C2([0,∞)), convex and increasing function with
φ(0) = 0. Let the maximal function MΩ ,φ be given by

MΩ ,φ f (x, xn+1) = sup
j∈Z

∫
2jβΩ≤|y|≤2j+1βΩ

∣∣f (x – y, xn+1 – φ
(|y|))∣∣ |Ω(y)|

|y|n dy.

Then, for 1 < p ≤ ∞, there exists a positive number Cp so that

∥∥MΩ ,φ(f )
∥∥

Lp(Rn+1) ≤ Cp(1 + βΩ )1/2‖f ‖Lp(Rn+1)‖Ω‖L1(Sn–1)

for every f ∈ Lp(Rn+1).

Using a similar argument as in the proof of [4, Theorem 1.6], we obtain the following.

Lemma 2.3 Let Ω ∈ Lq(Sn–1), q > 1, and satisfy condition (1.1) with ‖Ω‖L1(Sn–1) ≤ 1. As-
sume that φ(·) is given as in Theorem 1.1. Then there exists a constant Cp,q > 0 such that

∥∥M(2)
0,Ω ,φ(f )

∥∥
Lp(Rn+1) ≤ Cp,q(1 + βΩ )1/2‖f ‖Lp(Rn+1) (2.5)

for 2 ≤ p < ∞.

Proof Since Lq(Sn–1) ⊆ L2(Sn–1) for q ≥ 2, it is enough to prove this lemma for 1 < q ≤ 2.
It is clear that

M(2)
Ω ,φ(f )(x, x + 1) = M(2)

0,Ω ,φ(f )(x, x + 1)

≤
(∫ ∞

0

∣∣∣∣
∫

Sn–1
f
(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u)

∣∣∣∣
2 dr

r

)1/2

.

Let {ϕk}k∈Z be a smooth partition of unity in (0,∞) adapted to Ik,βΩ
= [2–(k+1)βΩ , 2–(k–1)βΩ ].

More precisely, we require the following:

ϕk ∈ C∞, suppϕk ⊆ Ik,βΩ
, 0 ≤ ϕk ≤ 1,

∑
k∈Z

ϕk(r) = 1, and
∣∣∣∣ dkϕk(r)

drk

∣∣∣∣ ≤ Ck

rk .

Define the multiplier operators Sk in Rn+1 by

̂(Skf )(ξ ,η) = ϕk
(|ξ |))̂f (ξ ,η) for (ξ ,η) ∈ Rn × R.

Hence, for f ∈ S(Rn+1), we have

M(2)
0,Ω ,φ(f )(x, xn+1) ≤

∑
j∈Z

TΩ ,φ,jf (x, xn+1), (2.6)
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where

TΩ ,φ,jf (x, xn+1) =
(∫ ∞

0

∣∣NΩ ,φ,j(x, xn+1)
∣∣2 dt

t

)1/2

,

NΩ ,φ,j(x, x + 1) =
∑
k∈Z

∫
Sn–1

(Sk+jf )
(
x – ru, xn+1 – φ(r)

)
χIk,βΩ

Ω(u) dσ (u).

By using [4, ineq. (3.10)] together with Lemma 2.2, we get

∥∥TΩ ,φ,j(f )
∥∥

Lp(Rn+1) ≤ Cp,qβ
1/2
Ω 2–εp|j|‖f ‖Lp(Rn+1) (2.7)

for some constant 0 < εp < 1 and for all 2 ≤ p < ∞. Therefore, by (2.6) and (2.7), we imme-
diately satisfy inequality (2.5) for all 2 ≤ p < ∞. �

3 Proof of the main results

Proof of Theorem 1.1 The proof of Theorem 1.1 mainly depends on the approaches em-
ployed in the proof of [11, Theorem 1.1] and [4, Theorem 1.6]. By duality, for 1 < γ ≤ 2,
we get

M(γ )
P,Ω ,φ(f )(x, x + 1) =

(∫ ∞

0

∣∣∣∣
∫

Sn–1
eiP(ru)f

(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u)

∣∣∣∣
γ ′

dr
r

)1/γ ′

,

which gives

∥∥M(γ )
P,Ω ,φ(f )

∥∥
Lp(Rn+1) =

∥∥N(f )
∥∥

Lp(Lγ ′ (R+, dr
r ),Rn+1), (3.1)

where N : Lp(Rn+1) → Lp(Lγ ′ (R+, dr
r ), Rn+1) is a linear operator defined by

N(f )(x, xn+1, r) =
∫

Sn–1
eiP(u)f

(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u).

Now if we assume that

∥∥M(2)
P,Ω ,φ(f )

∥∥
Lp(Rn+1) =

∥∥N(f )
∥∥

Lp(L2(R+, dr
r ),Rn+1) ≤ Cp,q(1 + βΩ )1/2‖f ‖Lp(Rn+1)

for 2 ≤ p < ∞; and

∥∥M(1)
P,Ω ,φ(f )

∥∥
L∞(Rn+1) =

∥∥N(f )
∥∥

L∞(L∞(R+, dr
r ),Rn+1) ≤ C‖f ‖L∞(Rn+1),

then by applying the interpolation theorem for the Lebesgue mixed normed spaces to the
last two inequalities, we directly obtain

∥∥M(γ )
P,Ω ,φ(f )

∥∥
Lp(Rn+1) ≤ Cp,q(1 + βΩ )1/γ ′‖f ‖Lp(Rn+1) (3.2)

for γ ′ ≤ p < ∞ with 1 < γ ≤ 2; and ‖M(1)
P,Ω ,φ(f )‖L∞(Rn+1) ≤ C‖f ‖L∞(Rn+1). Thus, to prove our

theorem, it is enough to prove it only for the cases γ = 1 and γ = 2.
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Case 1 (if γ = 1). Assume that h ∈ L1(R+, dr
r ) and f ∈ L∞(Rn+1). Then, for all (x, xn+1) ∈

Rn × R, we have

∣∣∣∣
∫ ∞

0
h(r)

∫
Sn–1

eiP(ru)f
(
x – ru, xn+1 – φ(r)

)
Ω(u)) dσ (u)

dr
r

∣∣∣∣ ≤ C‖f ‖L∞(Rn+1)‖h‖L1(R+, dr
r ).

Hence, by taking the supremum on both sides over all h with ‖h‖L1(R+, dr
r ) ≤ 1, we reach

M(1)
P,Ω ,φ f (x, xn+1) ≤ C‖f ‖L∞(Rn+1)

for almost every where (x, xn+1) ∈ Rn+1, which implies

∥∥M(1)
P,Ω ,φ f

∥∥
L∞(Rn+1) ≤ C‖f ‖L∞(Rn+1).

Case 2 (if γ = 2). We use the induction on the degree of the polynomial P. If the degree
of P is 0, then by Lemma 2.3 we get that, for all p ≥ 2,

∥∥M(2)
P,Ω ,φ(f )

∥∥
Lp(Rn+1) ≤ Cp,q(1 + βΩ )1/2‖f ‖Lp(Rn+1). (3.3)

Now, assume that (1.3) is satisfied for any polynomial of degree less than or equal to m
with m ≥ 1. We need to show that (1.3) is still true if deg(P) = m + 1. Let

P(x) =
∑

|α|≤m+1

aγ xγ

be a polynomial of degree m + 1. Without loss of generality, we may assume that∑
|γ |=m+1 |aγ | = 1, and also we may assume that P does not contain |x|m+1 as one of its

terms. Let {ϕk}k∈Z be a collection of C∞(0,∞) functions satisfying the following condi-
tions:

suppϕk ⊆ Ik,βΩ
=

[
2–(k+1)βΩ , 2–(k–1)βΩ

]
; 0 ≤ ϕk ≤ 1;

∑
k∈Z

ϕk(r) = 1; and
∣∣∣∣ dkϕk(r)

dur

∣∣∣∣ ≤ Ck

rk .

Define the multiplier operators Sk in Rn+1 by

̂(Skf )(ξ ,η) = ϕk
(|ξ |)̂f (ξ ,η) for (ξ ,η) ∈ Rn × R,

and set

Γ∞(r) =
0∑

k=–∞
ϕk(r), Γ0(r) =

∞∑
k=1

ϕk(r).

Thanks to Minkowski’s inequality, we have

M(2)
P,Ω ,φ(f )(x, xn+1) ≤M(2)

P,Ω ,φ,∞(f )(x, xn+1) + M(2)
P,Ω ,φ,0(f )(x, xn+1), (3.4)
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where

M(2)
P,Ω ,φ,∞(f )(x, xn+1)

=
(∫ ∞

2–βΩ

∣∣∣∣Γ∞(r)
∫

Sn–1
eiP(ru)f

(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u)

∣∣∣∣
2 dr

r

)1/2

,

and

M(2)
P,Ω ,φ,0(f )(x, xn+1)

=
(∫ 1

0

∣∣∣∣Γ0(r)
∫

Sn–1
eiP(ru)f

(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u)

∣∣∣∣
2 dr

r

)1/2

.

Let us first estimate Lp-norm of M(2)
P,Ω ,φ,∞(f ). Define

M(2)
P,Ω ,φ,∞,k(f )(x, xn+1)

=
(∫ 2–(k–1)βΩ

2–(k+1)βΩ

∣∣∣∣
∫

Sn–1
eiP(ru)f

(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u)

∣∣∣∣
2 dr

r

)1/2

.

Hence, by generalized Minkowski’s inequality, it is easy to show that

M(2)
P,Ω ,φ,∞(f )(x, xn+1) ≤

0∑
k=–∞

M(2)
P,Ω ,φ,∞,k(f )(x, xn+1). (3.5)

If p = 2, then by a simple change of variables, Plancherel’s theorem, Fubini’s theorem, and
Lemma 2.1, we get that

∥∥M(2)
P,Ω ,φ,∞,k(f )

∥∥
L2(Rn+1) =

(∫
Rn+1

∣∣̂f (ζ ,η)
∣∣2Jk,Ω ,φ(ζ ,η) dζ dη

)1/2

≤ C2
(k+1)
8q′ (1 + βΩ )1/2‖f ‖L2(Rn+1). (3.6)

However, if p > 2, then by the duality, there exists Ψ ∈ L(p/2)′ (Rn+1) with ‖Ψ ‖L(p/2)′ (Rn+1) = 1
such that

∥∥M(2)
P,Ω ,φ,∞,k(f )

∥∥2
Lp(Rn+1)

=
∫

Rn+1

∫ 22βΩ

1

∣∣∣∣
∫

Sn–1
Gk,Ω ,P(r, u, 0, 0)f

(
x – 2–(k+1)βΩ ru, xn+1

– φ
(
2–(k+1)βΩ r

))
dσ (u)

∣∣∣∣
2 dr

r

× ∣∣Ψ (x, xn+1)
∣∣dx dxn+1.

So, by Hölder’s inequality and Lemma 2.2, we conclude that

∥∥M(2)
P,Ω ,φ,∞,k(f )

∥∥2
Lp(Rn+1)

≤ C
∫

Rn+1

∣∣f (z, zn+1)
∣∣2

∫ 22βΩ

1

∫
Sn–1

∣∣Ω(u)
∣∣
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× ∣∣Ψ (
z + 2–(k+1)βΩ ru, zn+1 + φ

(
2–(k+1)βΩ r

))∣∣dσ (u)
dr
r

dz dzn+1

≤ Cp(1 + βΩ )
∥∥|f |2∥∥L(p/2)(Rn+1)

∥∥MΩ ,φ(Ψ̃ )
∥∥

L(p/2)′ (Rn+1)

≤ Cp(1 + βΩ )‖f ‖2
Lp(Rn+1)‖Ψ̃ ‖L(p/2)′ (Rn+1)‖Ω‖L1(Sn–1),

where Ψ̃ (z, zn+1) = Ψ (–z, –zn+1). Thus,

∥∥M(2)
P,Ω ,φ,∞,k(f )

∥∥
Lp(Rn+1) ≤ Cp(1 + βΩ )1/2‖f ‖Lp(Rn+1),

which when combined with (3.6) gives that there is 0 < ν < 1 so that

∥∥M(2)
P,Ω ,φ,∞,k(f )

∥∥
Lp(Rn+1) ≤ Cp2ν(k+1)/8(1 + βΩ )1/2‖f ‖Lp(Rn+1) (3.7)

for all p ≥ 2. Therefore, by (3.5) and (3.7), we obtain

∥∥M(2)
P,Ω ,φ,∞(f )

∥∥
Lp(Rn+1) ≤ Cp,q(1 + βΩ )1/2‖f ‖Lp(Rn+1). (3.8)

Now, let us estimate the Lp-norm of M(2)
P,Ω ,φ,0(f ). Let Q(x) =

∑
|γ |≤m aγ xγ . Define

M(2)
Q,Ω ,φ,0(f ) and M(2)

P,Q,Ω ,φ,0(f ) by

M(2)
Q,Ω ,φ,0(f )(x, xn+1) =

(∫ 1

0

∣∣∣∣
∫

Sn–1
eiQ(ru)f

(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u)

∣∣∣∣
2 dr

r

)1/2

,

M(2)
P,Q,Ω ,φ,0(f )(x, xn+1)

=
(∫ 1

0

∣∣∣∣
∫

Sn–1

(
eiP(ru) – eiQ(ru))f

(
x – ru, xn+1 – φ(r)

)
Ω(u) dσ (u)

∣∣∣∣
2 dr

r

)1/2

.

Thus, by Minkowski’s inequality, we deduce

M(2)
P,Ω ,φ,0(f )(x, xn+1) ≤M(2)

Q,Ω ,φ,0(f )(x, xn+1) + M(2)
P,Q,Ω ,φ,0(f )(x, xn+1). (3.9)

On the one hand, since deg(Q) ≤ m, then by our assumption,

∥∥M(2)
Q,Ω ,φ,0(f )

∥∥
Lp(Rn+1) ≤ Cp,q(1 + βΩ )1/2‖f ‖Lp(Rn+1) (3.10)

for all p ≥ 2. On the other hand, since we have

∣∣eiP(ru) – eiQ(ru)∣∣ ≤ r(m+1)
∣∣∣∣

∑
|γ |=m+1

aγ (u)γ
∣∣∣∣ ≤ r(m+1),

then by the Cauchy–Schwarz inequality, we reach that

M(2)
P,Q,Ω ,φ,0(f )(x, xn+1)

≤ C
(∫ 1

0

∫
Sn–1

r2(m+1)∣∣Ω(u)
∣∣∣∣f (x – ru, xn+1 – φ(r)

)∣∣2 dσ (u)
dr
r

)1/2



Ali and Al-mohammed Journal of Inequalities and Applications        (2018) 2018:305 Page 9 of 12

≤
( ∞∑

j=1

2–j(2(m+1))
∫ 2–j+1

2–j

∫
Sn–1

∣∣Ω(u)
∣∣∣∣f (x – ru, xn+1 – φ(r)

)∣∣2 dσ (u)
dr
r

)1/2

≤ C
(
MΩ ,φ

(|f |2))1/2.

Hence, by Lemma 2.2, we get that

∥∥M(2)
P,Q,Ω ,φ,0(f )

∥∥
Lp(Rn+1) ≤ Cp‖Ω‖L1(Sn–1)

∥∥|f |2∥∥1/2
Lp/2(Rn+1)

≤ Cp‖f ‖Lp(Rn+1) ≤ Cp(1 + βΩ )1/2‖f ‖Lp(Rn+1) (3.11)

for all p ≥ 2. Therefore, by (3.9)–(3.11), we obtain

∥∥M(2)
P,Ω ,φ,0(f )

∥∥
Lp(Rn) ≤ Cp(1 + βΩ )1/2‖f ‖Lp(Rn). (3.12)

Consequently, by (3.4), (3.8), and (3.12), we finish the proof of Theorem 1.1. �

Proof of Theorem 1.2 Assume that Ω satisfies condition (1.1). If Ω ∈ L(log L)1/γ ′ (Sn–1) with
1 < γ ≤ 2, then as in [14], we can decompose Ω as a sum of functions in L2(Sn–1). In fact,
we have a sequence {Ωk : k = 0, 1, 2, . . .} of functions in L1(Sn–1) with

Ω =
∞∑

k=0

Ωk

such that

∫
Sn–1

Ω
(
x′)dσ

(
x′) = 0, Ω0 ∈ L2(Sn–1), ‖Ωk‖L1(Sn–1) ≤ C,

‖Ωk‖L∞(Sn–1) ≤ C24k , and Ω =
∞∑

k=1

k1/γ ′‖Ωk‖L1(Sn–1) ≤ C‖Ω‖L(log L)1/γ ′ (Sn–1).

Thus, we get the following:

M(γ )
P,Ω ,φ(f )(x, x + 1) ≤ M(γ )

P,Ω0,φ(f )(x, x + 1)

+
∞∑

k=1

‖Ωk‖L1(Sn–1)M
(γ )
P,Ωk ,φ(f )(x, x + 1). (3.13)

Since Ω0 ∈ L2(Sn–1), then we have

∥∥M(γ )
P,Ω0,φ(f )

∥∥
Lp(Rn+1) ≤ Cp

(
1 + log1/γ ′(

e + ‖Ω0‖L2(Sn–1)
))

)‖f ‖Lp(Rn+1) (3.14)

for γ ′ ≤ p < ∞, and since

(
1 + log1/γ ′(

e + ‖Ωk‖L∞(Sn–1)
)) ≤ (

1 + log1/γ ′(
e + C24k)) ≤ Ck1/γ ′

, (3.15)
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then by Minkowski’s inequality and (3.13)–(3.15), we deduce that

∥∥M(γ )
P,Ω ,φ(f )

∥∥
Lp(Rn+1) ≤ ∥∥M(γ )

P,Ω0,φ(f )
∥∥

Lp(Rn+1) +
∞∑

k=1

‖Ωk‖L1(Sn–1)
∥∥M(γ )

P,Ωk ,φ(f )
∥∥

Lp(Rn+1)

≤ Cp

(
1 +

∞∑
k=1

‖Ωk‖L1(Sn–1)k1/γ ′
)

‖f ‖Lp(Rn+1)

≤ Cp‖Ω‖L(log L)1/γ ′ (Sn–1)‖f ‖Lp(Rn+1) ≤ Cp‖f ‖Lp(Rn+1).

However, if Ω ∈ B(0,–1/γ )
q (Sn–1) with q > 1 and 1 < γ ≤ 2, then

Ω =
∞∑

μ=1

cμbμ,

where each cμ is a complex number, each bμ is a q-block supported in an interval Iμ on
(Sn–1) and

M(0,–1/γ )
q

({cμ}) =
∞∑

μ=1

|cμ|(1 + log1/γ ′(|Iμ|–1)) < ∞. (3.16)

For each μ, define the blocklike function b̃μ by

b̃μ(x) = bμ(x) –
∫

Sn–1
bμ(y) dσ (y). (3.17)

Then it is easy to show that b̃μ(x) has the following properties:

∫
Sn–1

b̃μ(y) dσ (y) = 0, ‖b̃μ‖L1(Sn–1) ≤ C and ‖b̃μ‖Lq(Sn–1) ≤ C|Iμ|–1/q′
.

Without loss of generality, we may assume that |Iμ| < 1. So,

M(γ )
P,Ω ,φ(f )(x, x + 1) ≤

∞∑
μ=1

|cμ|M(γ )
P,b̃μ ,φ(f )(x, x + 1). (3.18)

Therefore, by Minkowski’s inequality and the above procedure, we get that

∥∥M(γ )
P,Ω ,φ(f )

∥∥
Lp(Rn+1) ≤ Cp,q

∞∑
μ=1

|cμ|(1 + log1/γ ′(
e + |Iμ|–1))‖f ‖Lp(Rn+1)

≤ Cp,q‖f ‖Lp(Rn+1)

for all p ≥ γ ′. �

4 Further results
In this section, we present some additional results that follow by applying Theorems 1.1
and 1.2. The first result concerns the boundedness of oscillatory singular integrals. More
precisely, we deduce the following.
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Theorem 4.1 Assume that Ω ∈ L(log L)1/γ ′ (Sn–1)∪B(0,–1/γ )
q (Sn–1), q > 1 and satisfying con-

dition (1.1). Let h ∈ Lγ (R+) for some 1 < γ ≤ 2 and φ be given as in Theorem 1.1. Then the
singular integral operator T (γ )

P,Ω ,h,φ given by

T (γ )
P,Ω ,h,φ(f )(x, xn+1) = p · v

∫
Rn

eiP(y)f
(
x – y, xn+1 – φ

(|y|))KΩ ,h(y) dy (4.1)

is bounded on Lp(Rn+1) for 1 < p < ∞.

Proof The proof of this case is reached by using the observation that

∣∣T (γ )
P,Ω ,h,φ(f )(x, x + 1)

∣∣ ≤ ‖h‖Lγ (R+, dr
r )M

(γ )
P,Ω ,φ(f )(x, x + 1). (4.2)

In fact, by the last inequality and Theorem 1.2, we obtain that T (γ )
P,Ω ,h,φ is bounded on

Lp(Rn+1) for γ ′ ≤ p < ∞ with 1 < γ ≤ 2. Furthermore, by a standard duality argument,
we satisfy the Lp boundedness of T (γ )

P,Ω ,h,φ for 1 < p ≤ γ with 1 < γ ≤ 2. So, if γ = 2, then we
are done. However, if 1 < γ < 2, then we apply the real interpolation theorem to attain the
Lp boundedness of T (γ )

P,Ω ,h,φ for (γ < p < γ ′). This completes the proof. �

The generalized parametric Marcinkiewicz operator related to the operator M(γ )
P,Ω ,φ is

defined by

μ
(γ )
P,Ω ,φ(f )(x, x + 1)

=
(∫

R+

∣∣∣∣1
t

∫
|y|≤t

eiP(y)f
(
x – y, xn+1 – φ

(|y|))Ω(y)|y|–n+1 dy
∣∣∣∣
γ ′

dt
t

)1/γ ′

. (4.3)

As a direct consequence of the notice that

μ
(γ )
P,Ω ,φ(f )(x, x + 1) ≤ CM(γ )

P,Ω ,φ(f )(x, x + 1)

for 1 ≤ γ ≤ 2, it is easy to derive the following result.

Theorem 4.2 Let Ω satisfy condition (1.1) and belong to the space L(log L)1/γ ′ (Sn–1) ∪
B(0,–1/γ )

q (Sn–1) for some q > 1 and 1 ≤ γ ≤ 2. Suppose that φ and P are given as in Theo-
rem 1.2. Then the parametric Marcinkiewicz operator μ

(γ )
P,Ω ,φ is bounded on Lp(Rn+1) for

γ ′ ≤ p < ∞ with 1 < γ ≤ 2; and it is bounded on L∞(Rn+1) for γ = 1.

We point out that by specializing to the case P = 0, γ = 2 and φ(t) = t, then the oper-
ator μ

(γ )
P,Ω ,φ (denoted by μΩ ) is just the classical Marcinkiewicz integral operator intro-

duced by Stain in [29] in which he showed that μΩ is of type (p, p) for 1 < p ≤ 2 provided
that Ω ∈ Lipα(Sn–1) for some 0 < α ≤ 2. Subsequently, the operator μΩ has been stud-
ied by many authors (for instance, see [11, 13, 15, 18], as well as [19] and the references
therein). For the significance and recent advances on the study of the generalized para-
metric Marcinkiewicz operators, we refer the readers to consult [7] and [6] among others.

It is worth mentioning that Theorem 4.1 generalizes the corresponding results in [4, 14,
16], and [22]. However, Theorem 4.2 extends and improves the results found in [11, 13,
19], and [29].
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