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1 Introduction

Let C be anonempty closed convex subset of a real Hilbert space H with inner product (-, -)
and induced norm || - ||. We denote by P¢ the metric projection of H onto C and by Fix(S)
the set of fixed points of the mapping S. Recall that a mapping 7 : C — H is nonexpansive
if | Tx — Ty|| < |lx -y, Y&,y € C. A mapping T : C — H is called pseudocontractive if

(Tx— Ty, x—y) < llx—ylI>, Vx,yeC.
This inequality can be equivalently rewritten as

2
1% = Ty))* < llx=y1* + | (1 = D)x = (T = Dy,

Vx,y € C,

where [ is the identity mapping.
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T : C — H is said to be k-strictly pseudocontractive if there exists a constant k € [0, 1)
such that

1T — Ty|1® < 2 -y + k| (I = T)x - (1 = T)y|",

Vx,y € C.

A mapping V : C — H is said to be [-Lipschitzian if there exists a constant / > 0 such
that

A mapping F : C — H is called monotone if
(x—y,Fx—Fy) >0, Vx,yeC,
and F is called «-inverse-strongly monotone if there exists a constant o > 0 such that
(x—y,Fx—Fy) > a|Fx— Fy|?, Vx,yeC.
If F is an «-inverse-strongly monotone mapping, then it is obvious that F is é—Lipschitz
continuous, that is, |[Fx — Fy|| < illx —y| forallx,y € C.
A mapping F : C — H is called B-strongly monotone if there exists a constant 8 > 0 such
that

(x =y, Fx—Fy) = Bllx -y, VxyeC.

A linear operator A : H — H is said to be strongly positive on H if there exists a constant
y > 0 such that

(Ax,x) > 721>, VxeH.

Let F: C — H be a mapping. The classical variational inequality problem (VIP) is to
find x* € C such that

(Fx*,x—x*)>0, VxeC. (1.1)

We denote the set of solutions of VIP (1.1) by VI(C, F).
In 2008, Ceng et al. [1] considered the following general system of variational inequalities
(GSVI):

(AFLy* +x* =y ,x—x*) >0, VxeC, 12)
(vEx* +y* —x*,x—y") >0, VxeC, '

where Fy, F, are a-inverse-strongly monotone and S-inverse-strongly monotone, respec-
tively, and A € (0,2«) and v € (0,28) are two constants. Many iterative methods have been
developed for solving GSVI (1.2); see [2—7] and the references therein.
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Subsequently, Alofi et al. [8] also introduced two composite iterative algorithms based
on the composite iterative methods in Ceng et al. [9] and Jung [10] for solving the problem
of GSVI (1.2). Moreover, they showed strong convergence of the proposed algorithms to
a common solution of these two problems.

Very recently, Kong et al. [11] established the strong convergence of two hybrid steepest-
descent schemes to the same solution of GSVI (1.2), which is also a common solution of
finitely many variational inclusions and a minimization problem.

Lemma 1.1 (see [12, Proposition 3.1]) Let C be a nonempty closed convex subset of a real
Hilbert space H. For given x*,y* € C, (x*,y*) is a solution of GSVI (1.3) for continuous
monotone mappings F1 and F, if and only if x* is a fixed point of the composite R = F1, F, :
H — C of nonexpansive mappings Fy, : H— C and F,,, : H — C, where y* = F, ,x*,

1
Fix= {ze C:(y—-zFiz) + X(y—z,z—x) >0,Vye C},
and
1
Fox = {zeC: -z, Fz)+ —(y—2z2z-x)>0,Vy e C}.
v

For simplicity, we denote by GSVI(C, F1, F,) the fixed point set of mapping R.

In the meantime, inspired by Ceng et al. [1], Jung [12] introduced a general system of
variational inequalities (GSVI) for two continuous monotone mappings F; and F, of find-
ing (x*,5*) € C x C such that

(AF1x* +x* —y*,x—x*) >0, VxeC, (1.3)
(VEYy +y* —x",x—y*) >0, VxeC, '

where XA, v > 0 are two constants. In order to find an element of Fix(R) N Fix(T), he pro-
posed one implicit algorithm generating a net {x;}:

% = (I = 0,A) T, R, + 0, [ty Ve, + (I - tnG) T, R, (1.4)

with ¢ € (0, min{1, TZ_;Z[}) and 6; € (0, min{%, |A|I7}), and an explicit algorithm generating
a sequence {x,}:

Yn =y Vo, + (I — ayuG) T, Rxy,
Xntl = (I - ﬁnA)TrnRxn + ﬁnym Vn >0,

(1.5)

with {o,} C [0,1], {B,} C (0,1], {r,} C (0,00), and xy € C any initial guess, where T},x =
{zeC:(y-21z) - %(y—z,(l + 1)z —x) <0,Y¥y € C} for r, € (0,00), and T, x = {z €
C:(y-z1Tz) - i (y—2z,(1+r,)z—x) <0,Vy € C} for r, € (0,00). Moreover, he established
strong convergence of the proposed iterative algorithms to an element ¥ € Fix(R) NFix(T),
which uniquely solves the variational inequality

(A-Dx%%-p)<0, VpeFix(R) NFix(T).



Wang et al. Journal of Inequalities and Applications (2018) 2018:315 Page 4 of 35

On the other hand, the generalized mixed equilibrium problem (GMEP) is to find x € C
such that

Ox,y) + o) —px) + (Bx,y —x) >0, VyeC. (1.6)

We denote the set of solutions of GMEP (1.6) by GMEP(®, ¢, B). GMEP (1.6) is very gen-
eral in the sense that it includes many problems as special cases, namely optimization
problems, variational inequalities, minimax problems, Nash equilibrium problems in non-
cooperative games, and others. For different aspects and solution methods, we refer to
[13-18] and the references therein.

In this paper, we introduce implicit and explicit iterative methods for finding a solution
of GSVI (1.3) with solutions belonging also to the common solution set ﬂf\il GMEP(G;,
@i, B;) of finitely many generalized mixed equilibrium problems and the fixed point set of
a continuous pseudocontractive mapping 7. First, GSVI (1.3) and each generalized mixed
equilibrium problem both are transformed into fixed point problems of nonexpansive
mappings. Then we establish strong convergence of the proposed iterative methods to an
element of ﬂﬁl GMEP(0;, ¢;, B;) N GSVI(C, Fy, F;) NFix(T), which is the unique solution
of a certain variational inequality.

2 Preliminaries and lemmas
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. We
write x, — x and x, — x to indicate the strong convergence of the sequence {x,} to x and
the weak convergence of the sequence {x,} to x, respectively.

For every point x € H, there exists a unique nearest point in C, denoted by P¢(x), such
that

|lx=Pc)| < llx-yl, VyeC.

D¢ is called the metric projection of H onto C. It is well known that P¢ is nonexpansive
and is characterized by the property

u=Pclx) & x-wuu-y>0 VxeH,yeC. (2.1)
In a Hilbert space H, the following equality holds:
= 1% = lxl® + lyl* = 2(x,), Vx,y € H. (2.2)
The following lemma is an immediate consequence of an inner product.
Lemma 2.1 [n a real Hilbert space H, there holds the following inequality:
lx+y1? < llxl® + 2¢p,2+y), Va,y € H.
Next we list some elementary conclusions for the MEP.
It is first assumed as in [19] that ® : C x C — R is a bifunction satisfying conditions

(A1)—(A4) and ¢ : C — R is a lower semicontinuous and convex function with restriction
(B1) or (B2), where
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(Al) O(x,x)=0forallx e C;
(A2) © is monotone, i.e., O(x,y) + O(y,x) <0 for any x,y € C;
(A3) © is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup O (tz + (1 - t)x,y) < O(x,);

t—0*

(A4) ©O(x,-) is convex and lower semicontinuous for each x € C;
(B1) for Vx € H and r > 0, there exists a bounded subset D, C C and y, € C such that,
forVze C\ D,,

1
O(2yx) +902) = 9() + — (22 -2) < 0;
(B2) C isabounded set.

Proposition 2.1 ([19]) Assume that © : C x C — R satisfies (A1)—(A4), and let ¢ : C — R
be a proper lower semicontinuous and convex function. Assume that either (B1) or (B2)
holds. For r > 0 and x € H, define a mapping T . H > C as follows:

T (x) := {z €C:0(zy) +9(y) - p(2) + %()’-Zﬂ—x) =0,¥y e C}

or all x € H. Then the following hold:
Il x € H. Then the following hold
i) foreachx € H, T,""¥ (x) is nonempty and single-valued,
(i) hxeH, T/ (x) pty and single-valued
(i) 7% is firmly nonexpansive, that is, for any x,y € H,
| 79 - Tf@’“’)yﬂz <(T@Px - TO9y,x —y);
(iii) Fix(7,”*) = MEP(O, ¢);
(iv) MEP(O®, ¢) is closed and convex;

W) 1TO% - T2 < =t (T — T, T % — x) for all s,t >0 and x € H.

Proposition 2.2 Let F: C — H be an a-inverse-strongly monotone mapping. Then, for all
x,y € Cand ) >0, one has

| (= 2E)x— (1 = 2E)y|” < = y1* + 20 — 200 |1 - Fy.
In particular, if A € (0,2a], [ — AF : C — H is a nonexpansive mapping.
We will use the following lemmas for the proof of our main results in the sequel.

Lemma 2.2 ([20]) Let {s,} be a sequence of nonnegative real numbers satisfying
Spil < (L= wn)Sy + Wuy + Yy Yn >0,

where {w,}, {8,}, and {y,} satisfy the following conditions:
(i) {wn} C[0,1] and Y ;7 w, = 00 or, equivalently, [ ]~ (1 — w,) = 0;
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(i) limsup,_, o 8, <0 o0r > oo o wyl8,| < 00;
(i) ¥4 =0 (n>0), Y120 ¥ < 0.
Then lim,_, o S, = 0.

Lemma 2.3 (Demiclosedness principle [21]) Let C be a nonempty closed convex subset of
a real Hilbert space H. Let S : C — C be a nonexpansive mapping with Fix(S) # #. Then
the mapping I — S is demiclosed. That is, if {x,} is a sequence in C such that x,, — x* and
(I = S)x,, — y, then (I — S)x* = y. Here I is the identity mapping of H.

Lemma 2.4 ([22]) Let H be a real Hilbert space. Let A : H — H be a strongly positive
bounded linear operator with a constant y > 1. Then

(A-Dx—(A-Dy,x-y)= (7 -Dlx-yI> VryeC.
That is, A — I is strongly monotone with a constant y — 1.

Lemma 2.5 ([22]) Assume that A: H — H is a strongly positive bounded linear operator
with a coefficient y >0and 0 < ¢ < ||A|| L. Then | - A <1-¢y.

Lemma 2.6 ([23]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
G: C — H be a p-Lipschitzian and n-strongly monotone mapping with constants p,n > 0.
Let 0 < < i—g and 0<t<o <1.Then S:=0l -tuG: C — H is a contractive mapping
with constant o — tt, where t =1 — /1 — u(2n — up2).

Lemma 2.7 ([24]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C — H be a continuous monotone mapping. Then, forr > 0and x € H, there existsz € C
such that

1
y-z,Fz) + —(y—2z,z—x) >0, VyeC.
r

Forr>0andx € H, define F, : H— C by

1
Fx= {ze C:(y—-zFz) + ;(y—z,z—x) >0,Vye C}.
Then the following hold.:
(i) F, is single-valued;
(i) F, is firmly nonexpansive, that is,

”Frx_Fry”2 <x-yFx-Fy), VxyecH,

(iii) Fix(F,) = VI(C, F);
(iv) VI(C,F) is a closed convex subset of C.

Lemma 2.8 ([24]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — H be a continuous pseudocontractive mapping. Then, for r >0 and x € H, there
exists z € C such that

1y—z,(1+r)z—x <0, VyeC.
( )

y-2z1z) - -
r
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Forr>0andx € H, define T,: H— C by
1
T,x = {zeC: (y—z,Tz)——(y—z,(1+r)z—x>§O,VyeC}.
r

Then the following hold:
(i) T, is single-valued;

(i) T, is firmly nonexpansive, that is,
I T, — Toyll> < (x -3 T,x—T,y), Vx,y€H;

(iii) Fix(T,) = Fix(T);
(iv) Fix(T) is a closed convex subset of C.

3 Main results
Throughout this section, we always assume the following:
e B;: C— H is a y;-inverse-strongly monotone mapping for each i = 1,2,...,N;
¢ ©;:C x C — Ris a bifunction satisfying conditions (A1)—(A4) for each i =1,2,...,N;
+ ¢;: C— Ris a proper lower semicontinuous and convex function with restriction
(B1) or (B2) for each i =1,2,...,N;
+ A:H — H is a strongly positive linear bounded self-adjoint operator with a constant
y €(1,2);
« V:C— Cis-Lipschitzian with constant / € [0, 00);
+ G:C— Cisa p-Lipschitzian and 5-strongly monotone mapping with constants
p >0andn>0;

constants u, /, 7, and y satisfy 0 < u < /2)—2’ and 0 < yl < 7, where

.

T=1-y1-pu(2n-pup?);

+ F1,F>: C— H are continuous monotone mappings and T : C — C is a continuous
pseudocontractive mapping such that
2 := Y, GMEP(®,, ¢;, B;) N GSVI(C, F, Fy) N Fix(T) # 0;

¢ Ry =F,,,F,, :H— C,where Fy,,,F,,, : H— C are defined as follows:

1

Fiyx= {ze C:(y—z,Fiz) + A—(y—z,z—x) zO,‘v’yeC},
t
1

Fpux= {zeC: (y—z,Fz) + v—(y—z,z—x) >0,Vye C},
t

for As, vy € (0,00), t € (0,1), limy;_,gA; = A >0, and lim,_,q v, = v > 0;
¢ R, =F,,F,, :H— C,where Fy,,,F,, : H— C are defined as follows:

1
Fl,,\nxz{zeC:(y—z,Flz) (y—z,z—x)zO,VyeC},

+ —
A

1
Fypx= {ze C:(y-z,Fz)+ —(y-2z,z—x)>0,Vye C},
V,

n

for A,, v, € (0,00), lim, .50 Ay = A >0, and lim,_, oo v, =V > 0;
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+ T,,: H— Cis a mapping defined by
1
T,x= {ze C:(y-2z1Tz) - r—<y—z,(1 +rt)z—x>20,‘v’ye C}
t

for r; € (0,00), t € (0,1), and liminf,_ o 7; > 0;
+ T,,:H— Cisamapping defined by

1
T,,%= {zeC:(y—z,Tz)——(y—z,(l+r,,)z—x)zO,VyeC}
Tu

for r, € (0,00), and liminf,_, o, 1, > 0;

o T\%%) . H — C is a mapping defined by

Tit

it

1
T©ii x = {ze C:0iz,y) +9;(y) —pi(z2) + —(y—z,z—x) > 0,Vy € C}
Tit

for {ris}reo1) C leidi] € (0,2u;) and i € {1,2,...,N};
TOz Pi

Tin

):H— Cisa mapping defined by

Tr(fi"""i)x = {z € C:0i(z,9) + ¢:(y) — pi(2) + i(y -z,z-x)>0,Vye C}
in
for {rin}52, C lcidi] € (0,21;) and i € {1,2,...,N}.

By Proposition 2.1 and Lemmas 2.7 and 2.8, we note that T, i) Tr(,(il o) p e Fiogs
Fy.,s Fay,» Ty, and T, are nonexpansive, GMEP(®;, ¢;, B;) = le(T,O’ i) (I = risBy) =
Fix(T,(fii’W")(I rixBi)), and Fix(T) = Fix(7,,) = Fix(T},). So it is known that the com-
posite mappings R; = Fy,,F»,, and R, = F1,,F,,, are nonexpansive. Also, we note that
GSVI(C, F1, F;) = Fix(R;) = Fix(R,) by Lemma 1.1.

In this section, for £ € (0,1), n > 1and i € {1,2,...,N}, we put

Ap= T = ry B)T, 2 V(I =1y Bio) - TV (L= r1,By),

AL = TN = 1y, B) T4 = 1y Bicy) -+ - T (I = 1y,By),
and A?=A%=1.

We now introduce the first general iterative scheme that generates a net {x;} in an im-
plicit way:
N N

%, = Pc[(I = 0,A) T, AY Ryxy + 0,(ty Vaey + (I = tnG) T, AN Rexy) ), (3.1)

where ¢ € (0, mm{l }) and 6; € (0, min{%, IAIMD.

We prove the strong convergence of {x;} as t — 0 to a point X € £2, which is a unique
solution to the VI

(A-Dx,p-%)>0, Vpeg. (3.2)
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In the meantime, we also propose the second general iterative scheme that generates a
sequence {x,} in an explicit way:

Wy = tyy Vi, + (I — a,uG) T, AJ:Rnxnr

(3.3)
Xnil = PC[(I - ,BnA)Trn A];:[Rnxn + ﬁnwn]; Vi >1,

where {a,}, {B,} C [0,1] and x( € C is an arbitrary initial guess, and establish the strong
convergence of {x,} as n — oo to the same point ¥ € §2, which is the unique solution to
VI (3.2).

Next, for ¢ € (0, min{1, 3%;71}) and 6, € (0, min{%, |A||71}), consider a mapping Q;: C — C
defined by

Qux = PC[(I - GtA)TrtAf[Rtx + Gt(ty Va+ (I -tuG)T, A?[Rtx)], Vx e C.

It is easy to see that Q; is a contractive mapping with constant 1 — 6,(y — 1 + t(v — y1)).
Indeed, by Propositions 2.1 and 2.2 and Lemmas 2.5 and 2.6, we have
Q- Quyll < | - 6,A) T, AY Ryx + 6,(ty Vix + (I - tuG) Ty, AY Ryx)
~ (I -0,A) T, ANRy - 0,(ty Vy + I - tnG)T,, AN Ryy) ||
< || -6A)T,, ANRx ~ (I - 0,A)T,, AN R,y |
+0:| (ty Vo + (I = tnG) T, AN Ryx) — (ty Vy + (I — tuG) T, ANRyy) |
<A =607)| T, AN Rx — T, AN Ryy || + 60, [ty | Ve = Wyl
+ | = tuG) T, AN Ryx — (I - tnG) T, AN Ry | |
<@ =60p)llx—yll + 6 [ty lix -yl + (1 - tT)]lx - yll]

=[1-6,(7 -1+t~ yD)]lx -yl

Since ¥ € (1,2), T — vl >0and 0 < £ < min{1, 3%;71} < 3:;71, it follows that 0 < — 1 + #(7 —
y1) <1, which together with 0 < 6, < min{%, A7} < 1yields0 < 1-0,(y -1+ t(z —yl)) < 1.
Hence Q; is a contractive mapping. By the Banach contraction principle, Q; has a unique
fixed point, denoted by x;, which uniquely solves the fixed point equation (3.1).

We summarize the basic properties of {x;}.

Theorem 3.1 Let {x;} be defined via (3.1). Then

(i) {x:) is bounded for t € (0, min{1, 3:;7,});

(i) limgo |l — Rexe|| = 0, limy—q ||, — ANx¢|| = 0, and lim,— ||lx; — Ty,%:|| = O provided

lim:ao 0; = 0;
(iii) 2, : (0, min{1, f_;jl}) — H is locally Lipschitzian provided
0y : (0, min{1, f:fl}) — (0, min{%, IAI™1Y) is locally Lipschitzian,
ri ke vy 2 (0, min{1, 25
2-y
-yl

(iv) x; defines a contfnuous path from (0, min{1, szl}) into H provided
6, : (0, min{1, 3j;’l}) — (0, min{%, AN~} is continuous,
Tty )"t) Ve o (O; min{]-r .,:2:;/7[

}) — lci,d;] is continuous for each i =1,2,...,N.

1) = (0,00) are locally Lipschitzian, and

ri¢ + (0, min{1, V) = [ci,d;] is locally Lipschitzian for each i = 1,2,...,N;

) — (0,00) are continuous, and
2-y

riy: (0, min{1, )

Page 9 of 35
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Proof Letz; = Ryxy, uy = ANz, and v, = T,,u,. Take p € £2. Then p = T,,p by Lemma 2.8(iii),

p=Ap(= T,(g)"’w")(l — r;:B;)p) by Proposition 2.1(iii), and p = R;p by Lemma 1.1.

(i) Utilizing Proposition 2.1(ii) and Proposition 2.2, we have

iz = pll = | TN = reBa) AY ™ 2 = TSN NI = r e Ba) AY ' p|

=< || (1 - rN,tBN)AZt\Lth — (1 _ rN’tBN)Ai\LlpH

<[ Az - AYp|
E .
< | A%z - Afp| = llz: - plI. (34)

Moreover, it is easy from the nonexpansivity of R; to see that

llz: — pll = I1Rex; — Repll < lIx: = pll,
which together with the nonexpansivity of 7,, and (3.4) implies that

Ive —pll = I True = Trypll < llute = pll < llze — pll < llxe - pII- (3.5)
By (3.5), we have

lla; = pll < | (I = 6,A)v; + 6, (ty Vie, + (I - tuG)v) - p|

= | - 0,A)W, = (I - 0,A)p + 0, (ty Vi, + I — tuG)v, - p) + 6, - A)p ||

< |t -6.Aw, - U -6,A)p| + 6|ty Va, + I - tuG)v, - p|| + 6,| I - A)p|

= |t -6.A)v, - -6,A)p|
+ 0| (I = tuG)v, — (I = tuG)p + t(y Vi, — uGp)|| + 6, (I = A)p |

<@ =6)lve—pll + 6|~ tnGyv: — U~ tuG)p|
+t(y [ Vae = Vol + lly Vo - nGpll)] + 6. | - A)p||

< (1=07)llxe = pll + 61 = t0) o = pll + t(y Uiz = pll + |y V = nG)p )]
+ 011 = Alllpll

=[1-6,(7 -1+ t(x —yD)]llx: —pll + 6:[IL - Alllpll + £ (y V - uG)p|].

So, it follows that

I1-Allllpll +tll(yV — uGpl| - I -Alllpll + Iy V - uGpll
7 -1+ttt —yl) - 7 -1 ’

llx: - pll <

Hence {x;} is bounded and so are {Vx,}, {u:}, {v:}, {z:}, and {Gv,}.
(ii) By the definition of {x,}, we have

lle: —vell = ”PC[(I -0 A)ve + Qt(t)/ Ve + (1 - t,uG)Vt)] - Vt”

< || (I-6:A)v; + Ht(ty Ve + (I - tuG)vt) -V ||
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= ||9t[(1 —A)ve + t(y Vi, — Mth)] ||
=0, “(1 — A + t(y Ve, — uGvy) “

<O = Alllvell +tlly Ve — uGvell > 0 ast— 0,
using the boundedness of {Vx,}, {v;}, and {Gw;} in the proof of assertion (i). That is,
}E% lxe — ve]| = 0. (3.6)
In view of (3.5) and Lemma 2.7(ii), we get

2 2 2
lve —plI” < llze = pII” = |Rexe — Rep|
2
= |Fy, Fopxt — Fip,Fonpll
< (Fou X — Fo, 0o F1,. Foi%t — F13,F2,0,0)

= (Fyux: — Fou,p,2: — p)

1
E[”Fszxt Eoupl* + Iz = plI* = || (Fa,¢ — Fou,p) — (2¢ - P)”]

1
§[||xt pI? + 1% = plI? = | (Fyus — Fop) — (2 - p)||°]

)

1 2
= |l - plI* - 5 |(Fa,p,60 = Fo,p) = (20— p)

which immediately yields

% | (Fa,vp 2 = Fo,,p) = (20 — p) H2 <l —pl* = lve—pl* < (e = pll + lve = pll) e = vl
From (3.6) and the boundedness of {x;} and {v;}, we have

lim [ (Fo,,% = Fap) = (2 = p)| = 0. (37)
Again from (3.5) and Lemma 2.7(ii), we obtain

2 2 2
lve = plI” < llze = plI” = IRex: — Rp|
2
S ||F2,vtxt - FZ,vzp“

S (xt _p: F2,vtxt - F2,utp>

E[”xt P|| + || Fa,p % — F2uzp|| _”(xt ) — (Faux: — szp)”]

1
5[”% p||2+||xz P|| _”(xt — (Fyu %t = Fo,u,p) || ]

1
= |l — pll* - 5 |Gee = p) = (Fopupxe

which hence leads to

1 2
5 | Gee = p) = (Fote = Fo,p)||” < e = pI1* = llve = pII* < (% = pll + lve = pll) 1o = ve .
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Again from (3.6) and the boundedness of {x;} and {v;}, we have
lim | (%, ~ p) = (Fa: = Faup) | = 0. (3.8)
So it follows from (3.7) and (3.8) that
lloee = zell < || 0 = p) = (Fanee = Fo,p) | + || Fonye = Fop) = (@ —p)| > 0 ast— 0.
That is,
lim ||, — 2| = O. (3.9)
t—0
Furthermore, from (3.5) and Proposition 2.1(ii) and Proposition 2.2, it follows that

v -l < llue —pll* = | ANz - p|®
<[4z -p|
= | IO~ 110B) AT 2, — TO (I~ 1y By)p |
< |- ryB)AT 2, — (I - ri B))p|)?
< |45 2 — p|* + riplrie — 200) | Bid 2, — By
< llze =PI + rierig = 23)| Bi A 2~ B

i 2
< l¢ = plI* + rigelriz — 210) | BiAL 'z = Bip ||,

which together with {r;:};c01) C [ci»di] C (0,2u;) for i € {1,2,...,N} implies that
i-1 2 i-1 2
ci2ui—dy)|BiAT 2 — Bip||” < rip(Qui — 1i0) | BiAT 'z — Bip |
< llxe = I = lve = pII* < (I = pll + [Ive = pll) Il = vell.
From (3.6) and the boundedness of {x;} and {v;}, we have
lim | B; A}z, ~ Bp| = 0. (3.10)
Also, by Proposition 2.1(ii), we obtain that, for each i =1,2,...,N,

|4tz ~pl’

= ” Tfft)i:%)(l - Vi,tBi)Ai_lzt _ Tr(i(ii'w)(l _ 7’i,tBi)p”2
= ((I B rivtBi)Ai_lzt — (I -ri:By)p, Aizt —P)
1 . ‘
- E[” (7~ ri'fBi)A;_lzt - (- ri,tBi)p||2 + “ Az —P“2

— | = 7B AT 2 — (I = i Bi)p — (Al - p) ]

Page 12 of 35
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which immediately implies that

| Alz, - p|* < Il = plI> - | AT 2, — Alz, — 1y (BiAT 2 — Bip) |-
This together with (3.5) leads to

v = pI? < llu - pI* = | ANz - | < | Atz - |

=< [l —P||2 - ” Ai_lzt - Aizt - Vi,t(BiAi_lzt _Bip) 2,

which hence implies

| A 2, — Alze = 1ie (BiA 2~ Bip) ||* < llxe — pI® = ve = pII?
< (llse = pll + lIve = pll) e = vell.

From (3.6) and the boundedness of {x;} and {v;}, we have
lim | A}z, — Ajze —ri (Bid; 2z = Bip) | =0,
which together with (3.10) implies that, for eachi=1,2,...,N,
lim | 4,2, — Az | =0. (3.11)

Note that

N . .
llze = ucll < Z” Aff_lzt - Altzt||~
i=1

From (3.11), it is easy to see that
}iné llze — us]l = 0. (3.12)
Also, observe that

e = ANxe || < llae = zell + |20 = ANz | + || ANz = ANy |
< llwe —zell + | ze = ANz || + llze — x¢ ]

=2y — 2|l + llze — we |-
From (3.9) and (3.12), it is easy to see that
lim 2, — 477 | =0. (3.13)
In the meantime, again from (3.5) and Lemma 2.7(ii), we obtain

Ilve - plI*> = | Ty, 1, — Ty, pll*
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<(uy—p, Tru, — T;,p) = (uy —p, v — p)

1 2
= E[Hut—l?”z + ||Vt—P||2 - Hut—P— (ve —19)” ]
1
= §[||xt —P||2 + [l —P||2 = llug - Vt||2]
1
= llae = pI* = 5 llwe = vill,

which immediately yields
1 2 2 2
3 e = vell® < llxe = plI? = llve = pII* < (I = 1l + lve = pll) e = vell.
From (3.6) and the boundedness of {x;} and {v;}, we have
lim ||u; — v¢|| = 0. (3.14)
t—0
Taking into account that

lloce = Tryxell < lloee — v ll + lloge = Ty e |l + 11Ty 000 — Tyl
< e — vl + e = Tyl + (| 2ae — el
=2|loee — e || + |logg = ve|

= 2(||xt =zl + llze - Mt||) + e = vells
we deduce from (3.9), (3.12), and (3.14) that
lim [l — Ty, = 0. (3.15)

(iii) Let £, to € (0, min{1, 3%;7[}). Since v, = Ty,u; and v, = T, theyr We get

1
(y —v, (I - T)vt> +—y-vyve—u) >0, Vye(C, (3.16)
Tt
and

1
(y=vigs I = T)vyy) + r—(y— Vigs Vip — Uzy) =0, VyeC. (3.17)

to

Putting y = v, in (3.16) and y = v; in (3.17), we obtain

1
(Vto -V, - T)Vt) + - (Vig = Ve Ve —uy) >0 (3.18)
t

and

1
(ve = vipo (I = T)vyy) + — Ve = Vig» Vig — o) Z 0. (3.19)

to
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Adding up (3.18) and (3.19), we have

Vi—U Vi — U
_<Vt — Vo5 I-Tv,-(- T)Vto) + <Vt0 Vi A u> >0.
rt Tty

Since T is pseudocontractive, we know that I — T' is a monotone mapping such that

Ve— Uy Vi — Uy
Vto_vtr—_M >0,
rt It

and hence
'ty
<Vt — Vs Vg = Ve Ve — Uy — r—(Vt — Mt)> > 0. (3.20)
t

Taking into account that liminf,_,o r; > 0, without loss of generality, we may assume that
re>b >0Vt e (0,min{1, tz%fl}) for some b > 0. Then from (3.20) we have

t

rto
= <Vz = Vigr U — Ugy + ( - r—>(Vt - Mt)>
t

Up — Ugy + (1 - rﬁ)("t —u;)

Tt

r
2 §
||Vt—Vt0|| §<Vt_Vt0;Vt_ut+ut_ut0 - r—O(Vt—Mt)>

< ve =gl

't

”Vt_ut”}’

= lve—vg ||{||14t =tz || +
t

which immediately yields

1
Ve = vl < Nlute — gy || + r_|rt_rto|||vt_ut||
t

L

b

< lug — v |l + —=17e = 1yl (3.21)

where L; = sup{|lv; — u;| : £ € (0, min{1, rz_;fl})}.

Also, taking into account that lim; o A; = A > 0 and lim,_,¢ v; = v > 0, without loss of gen-
erality, we may assume that min{A;, v;} > a > 0 V¢ € (0, min{1, 3_;;;1}) for some a > 0. Since
zy =Fi,y:and z, = Fij Yt where y, = F5 ¢ and yy, = Fouy % for t, ty € (0, min{1, TZ_;;_I}),

by using arguments similar to those of (3.21), we get
1 ~
Izt = zey I < 1lye = Yo Il + P |Ae = Ay |Lo (3.22)
and

1 -
ly: = yeo | < llocs — 2 I + ;|Vt — Vg lLa, (3.23)
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where L, = sup{||z, =yl + llye — ¢l : £ € (0, min{1, 12__51})}. Substituting (3.23) for (3.22), we

obtain

L,
lze = zgo | < 1% — g0 I + P (Mt = Al + Ve = Vt0|)~ (3.24)
In the meantime, by Proposition 2.1(ii), (v) and Proposition 2.2, we deduce that

lloee — wary || = ” A?[Zt - A%Zto ”

[ TrgftV‘/’N (I —rnBNn) ANz —T,A?WN (I = rngBN)AY 'z |

IA

| TSN = 1 Br) A2 = Ty = rv o B) Ay
+ Tr(lf"[)j\é"”N)(I — N BN) ANz, - T,(;{gw)u — N BN) AN 2 |

< | TSN = rn BN AY 2 = TiN N (T = 1 Ba) AY 2t

TN,to

+ | TSN = 1 Ba) AY e = THNN (I = 1y Bu) AY 2t

+ | (= BN AY 2 = (I = vy BN) A 24 |

|7N: = TNt | ® _ _
| TN — 1 Bh) AN 2 = (1= 1 B) AY |

Nt

N

e - rNto|[||BNAN a4 T - ) 4

U= ruBr) AN, ||} ANz - AN, |

IA

IA

m—rN,t0|[||BNaﬁf-lztu+ [ TN — 1y By) AN 12,

- rN,tBNmﬁf-lztn] bt g =il [nBlA?ztn

1
T =B Az = (=B Az ||] + ]| A%: - A%z, |
St

N
<L3) Irie = rigol + 12 = 24l (3.25)
i=1
where
N 1
sup i [Z[”B,-A’t_lzt ” + — ” Tfﬁi’%)(l — Vi,tBi)Alt_lzt — (I — ri,tBi)A;_lzt ||] }
te(min{l, 22 i=1 Tis
=< Zs

for some L > 0. This together with (3.21) and (3.24) implies that

1
_|rt_rt0|

b

Ve = vioIl < llute — s || +

Page 16 of 35



Wang et al. Journal of Inequalities and Applications (2018) 2018:315 Page 17 of 35

N ~

~ i
SLBZVi,t —Tigol + 126 = Zg || + ?Vt — It
i=1

N ~ ~

~ L, Ly
§L3Z|Vi,t —'”i,z0| + [l —xto” + ;(|)\t—)»t0| + v — Vt0|) + ?In — Tt
i=1

b

N
+LBZ|H,¢—H¢O|~
i=1

Ly I,
< loee = xg || + —+; (Mt_)‘tol"'|vt_‘)t0|+|rt_rt0|)

Taking into account that both 6, € (O,min{%,HAll‘l}) and 0 < yl <t =1 -

V1= u(2n = pp?) imply
0<1-6,(y—-1+t7)<1,
we calculate from (3.1)

lloee = o || < ||(Z = 0, A) Ty, AN Rexy + 6, (ty Vity + (I = tnG) T, AN Ryaxy )

— (I = 01, A) Ty, AR Rigiisg + 01y (LY Vit + (I = 6o G) T,

rto

A Rig%s ) |
= || (I-6,A)v + Gt(ty Vi, + (I - t;LG)vt) — (I =6, A)vy,
+ 04 (Lo Vg + (I = tonG)vy) ||
< ||t = 6.A), = (I -0, A)ve|| + | = i, A)ve = (I = 01, A)vie |
+ 160 — 64| th Vs + (I - tuG)vt” + 6, || [ty Ve + (I — tpcG)vt]
- [toy Vi, + (I - tO//,G)vto] ”
< 16 = Oy [NANVell + (1 =6 P 1ve = vig | + 16 = Oy | £ Ve + (I = tuG)ve
+ Os || (£ = o)y Ve + toy (Vie, = Vixyy) — (¢ = to) Gy, + (I = touG)v,
— (I = tonG)vy, ||
< 10: = Oy AN el + (1= O P) 1V = vig || + 162 = Oy [ 1V
+t(y | Vol + wl Gvel) ]
+ O [ (Y 1 Vaell + il Gell) £ = to] + toy Ll = 20| + (1 = 0T [|v2 = vig Il
<16: = O I [1vell + NAN el + v 11 Vaeell + 1l Gvell] + O toy Lliae — x4, |

+ [1 — Oy -1+ tor)]

L I
X 1% — X || + —+; (l)‘t_)‘t0|+|Vt_vt0|+|rt_rto|)

b
N
+L13) |ri —mol} + 01 (V11 Vace || + | Gvill) I - o]
i=1

=16, = O | [IVell + HANIVIl + y 1 Vel + il Gvell]

+[1 =04 (7 = 1+ to(t = y D]l = 24
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_ Ly L
+ [1_9t0(7/_1+t0‘[)]{<;1 + ;2)(|}\t_}‘to| + |Ut—Ut0| + |’”t—”to|)

N
+L13) |ri —ri,t0|} + 04 (Y 11 Ve | + | Gvel) £ = o).

i=1
This immediately implies that

lvell + NANVell + ¥ I Vaell + el Gvell VIVl + wllGvell
— |0; = 0| + ——————————|t — Lol
O (¥ —1+t(r —y))

y—=1+t(t -yl
1—9;0()7—1"'1:0'[) Zl Zz
=)V n, = A — —
07 — 1+ to(t - 7)) b + p (| t = Al + Ve = vy | + |1 '”t0|)

N
+L13) |ri —n,to|}.
i=1

”xt - xto ” =

Since 6; : (0, min{1, TZ__;;[}) — (0, min{%, |A|I71}) is locally Lipschitzian, r;, As, vs : (0, min{1,
3-;;)/71}) — (0,00) are locally Lipschitzian, and r;; : (0, min{1, 12__)’/71

schitzian for each i = 1,2,...,N, we deduce that x; : (0, min{1, 3—;;)//1

}) = [ci,d;] is locally Lip-
}) = H is locally Lips-
chitzian.

(iv) From the last inequality in (iii), the desired result follows immediately. a

We prove the following strong convergence theorem for the net {x;} as t — 0, which

guarantees the existence of solutions of the variational inequality (3.2).

Theorem 3.2 Let the net {x,} be defined via (3.1). Iflim,_,¢ 6; = 0, then x; converges strongly
toX € 2 as t — 0, which solves VI (3.2). Equivalently, we have Pg (21 — A)X = X.

Proof We first note that the uniqueness of a solution of VI (3.2) is a consequence of the
strong monotonicity of A — I (due to Lemma 2.4). See [2, 4, 5] for this fact.

Next, we prove that x, — ¥ as t — 0. For simplicity, let v, = T}, u;, u, = Altvz,, vy =Fo %,
and z; = Ryx; = F13,y;. For any given p € £2, we observe that T,,p = p, ANp = p,and Rp = p.
From (3.1), we write

Xe—p=x;— Wit W —p=x—wy+ ([ - AW, +0,(ty Vi + (I - tuG)ve) —p
=x¢ —we + (= 0,A)(ve — p) + 6:[t(y Ve — uGp) + I - tuG)ve — (I - tuG)p|
+6,(I-A)p,

where w; = (I — 6,A)v; + 0,(ty Va, + (I — tiuG)vy). In terms of (2.1) and (3.5), we have

e = pII* = @0 = wi 0 = p) + (I = 6,A)(vs = p), %, = p) + 0 [ £(y Vie, — uGp, %, — p)
+ <(1 —tuG)\v, — ([ — tnuG)p, x; —p)] + 9t<(1 —A)p,x; —p)
< (1= 07)llx = plI* + 6:[(1 = ) |l — pII> + ty Ll —
+t{(yV - uG)p,x, — p)] + 6:((I - A)p, x; - p)
=[1-6.(7 -1+ t(x —yD)]llxe ~plI* + 6:({(y V ~ nG)p, x: — p)
+ <(1—A)p,xt —p)).
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Therefore,

[l = plI* < = (H(yV - nGp,x. - p) + (U - A)p, x, - p)). (3.26)

y—1+t(t—yl)
Since {x;} is bounded as ¢t — 0 (due to Theorem 3.1(i)), there exists a subsequence {t,} in
(0, min{1, 22 }) such that ¢, — 0 and %, — x*. We first show that x* € §2. To this end, we

-yl
divide its proof into four steps.

Step 1. We claim that lim,,_, o [|%s, — 24, || = 0, limy,—, oo || 22, — %z, || = 0, and lim,,_, o |24, —
Vg, |l = 0, where z;, = Ry, x4, Uy, = Ai‘rfztn, and vy, = Ty, uy,. Indeed, according to (3.9), (3.12),
and (3.14) in the proof of Theorem 3.1, we obtain the assertion.

Step 2. We claim that x* € Fix(T). In fact, from the definition of v;, = T}, u;,, we have

Vt

n Y > >0, VyeC. (3.27)
7,

ty

(_)/ - th, (1 — T)th> + <y - thy

Setw;=tv+ (1 —t)x* forall t € (0,1] and v € C. Then w; € C. From (3.27) it follows that

(Wt — vy, (I = T)Wt> = (Wt vy, (= T)Wt> - (Wt Vg, (I = T)th) - <Wt Vi T = Bt >

r,gn

Vt

= <Wt Vi U =T)w, = (I - T)th> - <Wt ~ Vi nr_ S > (3.28)

ty

By Step 1, we have “2— — () as n — 00. Moreover, since x;, — x*, by Step 1 we have

Tty

v, — x*. Since I — T is monotone, we also have that (w, —v,,,({ - T)w; — (I - T)v,,) > 0.
Thus, from (3.28) it follows that

0< lim (wt -V, (I - T)wt) = <wt x5 - T)wt),
n—00

and hence

(v—x*, - T)wt) >0, VveC.
Letting ¢ — 0, we know from the continuity of / — T that

(v—x*, (I- T)x*) >0, VveC.
Putting v = Tx*, we get ||(I — T)x*||?> = 0, which leads to x* € Fix(T).

Step 3. We claim that x* € GSVI(C, F1, F,). Indeed, note that lim;_,oA; = A > 0 and

lim;,ov; = v > 0. For each x € C, we put x(¢) := Fy3,%, x(0) := Fix, y(£) := F,,%, and

¥(0) := Fy,x. Then, by Lemma 1.1, we have GSVI(C, Fy, F,) = Fix(R), where R = F;,F,,
and R is nonexpansive. Moreover, it is easy to see that

(y - x(t),le(t)> + %(y —x(2),x(t) — x) >0, VyeC, (3.29)

and

{y = %(0), F1x(0)) + %(y - x(0),%(0) —x) >0, VyeC. (3.30)
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Putting y = x(0) in (3.29) and y = x(t) in (3.30), we obtain

(x(0) — x(2), Fyx(t)) + %t(x(O) —x(t),x(t) —x) > 0 (3.31)
and

(x(2) — %(0), F12(0)) + %(x(t) - x(0),%(0) — x) > 0. (3.32)

Adding up (3.31) and (3.32), we have

>0.

—{x(6) - 2(0), Fyx(t) - Fyx(0)) + <x(0) —x(t), x(tl)\’ * 0= ">

Y

Since F; is a monotone mapping, we know that

<x(0) (), SO ’@} -0,

A
and hence

<x(t) —x(0),x(0) — x(£) + x(£) —x — % (x(t) - x)> > 0.
So it follows that

|%(2) - x(0)]* < <x(t) — x(0), x(£) —x — %(x(t) - x)>

t

= <x(t) —x(0), (1 - %) (x(t) - x)>

|As — Al
< ||lx(¢) = x(0) | - t)» |4(8) — %],
t
which immediately yields
|As — Al
1 F1pp — Frpxll < 1 Evpp% — %] (3.33)

t

By using arguments similar to those of (3.33), we have

[ve =]

| Fo,px — Fo x| < | F2,0,% — x|l (3.34)

t

Now, putting ¢ = ¢, ¥ = F,%;, in (3.33), and ¢ = ¢,,, ¥ = x;, in (3.34), respectively, we deduce
that

|Ag, — Al

tn

| F1 oy, Fo v, — F1oFoue, || <

1 F1 g, Fove, — Fo¥e, |l

and

[ve, = V]

tn

1 E2,,, %6, = Fou%e, | < 1 E2,v, %ty — e, |-
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Since lim, . Az, = A > 0 and lim,,_, o vz, = v > 0, it follows from the last two inequalities
that

hm ||Flv)‘-in Fz,vxtn — FL;LFz,vxtn || = hm ”FZ,W” xt” — Fz,vxtn || =0. (3.35)
n—oQ n—0o0
Also, we observe that

1Ry, — x4, |l
< [|FiaFove, — Fl,Atn Fy e, || + ||F1,,\tn Fyxy, - Fl,ktn FZ,thxty, I
+ [1F1,, Foug, %t — %2, |
< NFiaFonixe, = Fi,, Fou, || + 1 Faur, — Fouy, %6, || + 1 F1g, Fov, %, — %2, ||
= ||F1aFo0%e, — Fiay, FouXe, | + | Fouxe, — Fau, %, || + |Ry, %0, — %, || (3.36)
Since Ry, x;, —x;, — 0 (due to Step 1), from (3.35) and (3.36) we get
lim ||Rx;, — x| = 0. (3.37)
n— 00
Taking into account that x;, — x* and x,, — Rx;, — 0 (due to (3.37)), from Lemma 2.3 we
get x* = Rx*, that is, x* € Fix(R) = GSVI(C, Fy, F).
Step 4. We claim that x* € ﬂﬁlGMEP(@i,q)i,Bi). In fact, since Ainzt” = T(,@""p")(l -

Tity
r,«,tnBi)A’t;lztn, foreachi=1,2,...,N, we have

0 < 044} z0,,9) + 9i(y) — 9i (A} z,)

1 . . ,
(y - Altnztn’ Affnztn - Altzlztn)‘

it

+(BiA 2,y — A z,) +
By (A2), we have

Oi(y, A z1,) < o) — 9i( A} 21,) + (BiA] 21,y — A} 21,)

1 i i-1
(y A, Ztn»At,,Ztn AL z,n>.
rl in

Let w, =tv+ (1 —¢)x* for all £ € (0,1] and v € C. This implies that w; € C. Then we have

(wt - Ai ztn,Biwt>
> ¢i(4} z,) - %(wt)+< - A} zy,,Biw) - (w, — A} z,,,B A} z,)

< Ztn Al lztn
(

Atnz,n, > + @,-(wt, A;nztn)

ity
= 0i(4} zi,) — @i(we) + (W — A} 24, Biw, — Bi A, z,)
+(wt A ztn,BA Lty — BA‘ lztn>
zt - A 2,

" i
Wy — ztn, > +0;(we, Atnztn).

rlty[
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By the same arguments as in the proof of Theorem 3.1, we have | B; A} z, —B; A} z;, | — 0
as n — oo. In the meantime, by the monotonicity of B;, we obtain (w; — Ainztn,Biwt -
B, A} z,) > 0. Then by (A4) we get

(wt —x*,Biwt) > @; (x*) —@i(ws) + G)i(wt,x*).
Utilizing (A1), (A4), and the last inequality, we obtain
0 = Oi(we, we) + @i(we) — @i(wy)
< tOi(wy,v) + (1= 1)O;(wy, &%) + t@i(v) + (1 - )i (x*) — @i(wy)
< t{@i(we,v) + @i(v) = i(wi)] + (1 = t){w, — 2", Bw,)
= t[@i(ws,v) + @i (v) — @i(wy) | + (1 = O)e(v — x*, Biwy),
and hence
0 < O;(wi,v) + 9i(v) — @i(wy) + (1 — ) (v — x*, Biwy).
Letting ¢ — 0, we have, for each v € C,
0 < O;(x*,v) + @i(v) — g (x*) + <v —x*,B,vc*).

This implies that x* € GMEP(O;, ¢;, B;) and hence x* € ﬂf\il GMEP(®,, ¢;, B;). This to-
gether with Steps 2 and 3 attains x* € £2.

Finally, we show that x* is a solution of VI (3.2). In fact, putting x;, in place of x; in (3.26)
and taking the limit as ¢, — 0, we obtain

* —p”2 < %((I—A)p,x* -p) Vpeg.
In particular, x* solves the following VI:

x* € 2, ((A -Dp,x* —p) <0, Vpef,
or the equivalent dual variational inequality

x* € 2, ((A - Dx*, x* —p) <0, Vpef.

That is, x* € 2 is a solution of VI (3.2). Hence x* =X by uniqueness. In a summary, we
have proven that each cluster point of {x;} (as ¢ — 0) equals ¥. Therefore x; — %X as t — 0.
VI (3.2) can be rewritten as

(2I-AF-%F-p)>0, Vpeg.
So, in terms of (2.1), this is equivalent to the fixed point equation
Po(2 - A)X =%

This completes the proof. 0

Taking T=1,G=1, x=1,and y =1 in Theorem 3.2, we have the following corollary.



Wang et al. Journal of Inequalities and Applications (2018) 2018:315 Page 23 of 35

Corollary 3.1 Let {x,} be defined by
%, = Pc[(I - 0,A) AN Ry, + 0, (£ Vi, + (1 - £) AN Ryt .

If lim;_0 6, = 0, then x; converges strongly ast — 0 to X € 2 := ﬂf\il GMEP(®;, ¢;, B;) N
GSVI(C, By, By), which is the unique solution of the VI

(A-Dx%-p)<0, Vpeg. (3.38)

Proof If T =1, then T, in Lemma 2.8 is the identity mapping. Thus the result follows from
Theorem 3.2. O

We are now in a position to prove the strong convergence of the sequence {x,} generated
by the general explicit iterative scheme (3.3) to ¥ € £2, which is the unique solution to VI
(3.2).

Theorem 3.3 Let {x,} be the sequence generated by the explicit algorithm (3.3). Let {«,},
{Bu}, {ru}s {An}, {vu}, and {Vi,n}fL satisfy the following conditions:

(C1) {a,} C[0,1] and {B,} C (0,1], ¢, — 0 and B, — 0 as n — o<;

(C2) Zzio Bn =005

(C3) Yoo lanss —aul < 00, and |Buir = Bul < 0(Bus1) + Ous Yo Ou < OO (the perturbed

control condition);

(C4) {ra} C(0,00), iminf, 007, >0, and Y o |Fus1 — rul < 00;

(CS) {An} C (Ox OO), lim, 00 Ay = A >0, and Z:O:o [A41 = Anl < 00;

(C6) {vu} C(0,00), limy 0o vy =V >0, and Y oo [Vus1 — Uy < 00;

(C7) {rin) C leidi] € (0,21) Vi€ {1,2,...,N}, and 322 (SN, |Fins1 — Finl) < 00.
Then {x,} converges strongly toX € §2 := ﬂf\il GMEP(O;, ¢;, B)) N GSVI(C, F;, F,) NFix(T),
which is the unique solution of VI (3.2).

Proof First, note that from condition (C1), without loss of generality, we assume that «,, 7 <
1, B,y <1land %’;;1) <1forall n > 0. Let X € £2 be the unique solution of VI (3.2). (The
existence of X follows from Theorem 3.2.)

From now, we put z, = R,x,, u, = ANz,, and v, = T,,u,. Take p € 2. Then p = T, p
_ T(@i»(ﬂi)

by Lemma 2.8(iii), p = Alp ( vin (= rinBi)p) by Proposition 2.1(iii), and p = R,p by
Lemma 1.1.

We divide the proof into several steps as follows.

Step 1. We show that {x,} is bounded. Indeed, utilizing Proposition 2.1(ii) and Proposi-

tion 2.2, we have

ltn = pll = | TSONNU = 1y uBr) AN 2y = TN = ry By) AN |

= || (1 - rN,nBN)Aﬁlflzn — ([ — rN,nBN)Ai\hlIQH

<[ ANz, - AN
S .
<[ A%, - A%] = 1z - p. (339)
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It is easy from the nonexpansion of R, to see that

Izn = pll = 1 RuXn — Rupll < %0 —pll»
which together with the nonexpansion of 7, and (3.39) implies that

Ve =Pl = 1Ty, 160 — Tr,p|l < lttn = pIl < 120 =PIl < [I%0 — Pl (3.40)
From (3.3) and (3.40), we get

%1 — I

< ||t = BuA)Wa + Bu(ewy Vieu + (I = utG)vy) — p|

= || = BuA)v = (I = BuA)p + Bu(0tny Van + (I = ausG)v,y = p) + Bull - A)p||

< [T = BuA)vu = (I = BuA)p|| + Bu| ety Vitw + I = ctuuG)vs — p|| + B I - A)p |

= |- BuAu - - B, AP
+ Bu| (I = 0u GV, — (I = uuG)p + sy Vi, — Gp) || + B | (I - A)p ||

< (1= Bu?) V= pll + Bal | (I = 0t G)vy — I — s G)p |
+ (v | Vit = Vil + ly Vo — nGpll) ] + Ba|| (1 - A)p |

< (1= Bu?) %0 = pll + Bu[ (A = u)llxs = pll + (v Ulxs = pll + | (v V = nG)p|)]
+ BallI - Alllpl

=[1=Bu(7 = 1+ au(t = yD)) ]I = pll + Bu[IT = Allllp] + 2| (v V = nG)p| ]

<[1=Bu(7 = D]llxs —pll + B[ IT = Alllpll + | (yV = uG)p|]
I =Allllpll + 11y V = uG)pl|
y -1

=[1- B = D]llxn —pll + Bu(y = 1)

I1-Allllpll + Iy V - nGpll
<max| [|x, - pll, =1 .
y_

By induction, we derive

I = Alllpll + |V = nG)pl
nxn—pnsmax{nxo—pn, p i PRL ez

This implies that {x,} is bounded and so are {Vx,}, {1}, {v.}, {(wn}, {z,}, and {Gv,,}. Asa

consequence, with the control condition (C1), we get
%01 = Vall < Bullwn — Avpll > 0 (1 — 00). (3.41)

Step 2. We show that lim,_, o [[%:41 — %4 = 0. To this end, let y, = Fa,, %4, Yu-1 =

Foy, 1%n-15 2y = F1,Yn and 2,1 = F15,, ,¥»-1. Then we derive

V= Yn-1Yn-1—%,-1) 20, VyeC, (3.42)

= Yn-1,FoYu-1) +

V-1

Page 24 of 35
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and
1
O’—J’szJ/n) + U—O’—ym}’n _xn> = 0, VJ/ eC. (3~43)
n

Putting y = y,, in (3.42) and y = y,,_; in (3.43), we obtain

1
(yn _yn—hFZyn—l) + v (_yn _yn—l:yn—l - xn—l) Z 0 (344')
n-1
and
1
1 = 9w FaYun) + == Gn-t = Y Yn = %n) 2 0. (3.45)
n

Adding up (3.44) and (3.45), we have

yn—l —Xn-1 _ yn _xn> - 0,

-1 Vn

On = Yn-1,Foyn1 — Foyu) + <yn — Yn-1>

which together with the monotonicity of F, implies that

yn—l —Xn-1 yn —Xn
- 2 0;
n-1 Vn

< n _yn—l;

and hence

Ve
< n—Yn-1Yn-1—Yn +Yn —Xp-1— » l(yn —xn)> >0.

n

It follows that

o)

1
< lyn = Yn-1ll (”xn = X1l + v_|Vn = V-1l lYn _xn||>¢

n

Vn-1
2 n
yn = yu1ll” < < n— Yn-1,%n —Xp-1 t (1 -
n

V,

which immediately yields

1
Iyn = Yu1ll < o — X0 |l + V_ Vi = Vi1 1Ym = xull. (3.46)

n

By using arguments similar to those of (3.46), we get
1
1zn = Zzn1ll < MYn = Ynall + )L_Mn = A1z = yull. (3.47)
n
Substituting (3.46) for (3.47), we have

1
1z = zu-1ll < lyn = yuall + )L_Mn = An=1lllzn = yull
n

1 1
<M =Xt ll + — Vi = Va1 llYn = Zull + —An = Auc1llzn = Yl (3.48)
Vn An
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Note that v, = T}, u, and v,,.; = T,

Tn-1

u,_1. By using arguments similar to those of (3.46),

we obtain

1
Vi = Vi1l < oty — |l + r_|rn — PtV — u . (3.49)
n

Also, utilizing arguments similar to those of (3.25) in the proof of Theorem 3.1, we have

ety = s ll = | AN 2w — AN 1201 |

<Iram =l [||BNAgf—lz,, |+ % | TN = ryg B AY12,
— (I = rnuBN)AY 2, H] +o [ — el |:HBIA22;1 I
+ % | T80T = r1,B) ANz, = (I = 11,,B1) Az, ||}
+ [ ARz = Az |

N
< Mlzmn = Tip-1l + 12w = Zu-1l, (3.50)
-1

where A~/Il > 0 is a constant such that, for each 7 > 0,
N 1
> [ |B: AL 2, | + — | TS0 = 1y, B) AL 2y = (I = 13 B) AL 2| }} <M;.
in

i=1

So it follows from (3.48), (3.49), and (3.50) that

1
”Vn _Vn—lll = ”un _un—lll + r_|rn _Vn—1|||Vn _un”
n

N
~ 1
<MY Jrin = il 4 12 = 2t [l — 1 = a1V =
i=1 "
N 1
<MY Jrin = i+ 16 = Sl + — [0 = Vel =
i=1 ”
1 1
+ — A = At lllzn = yull + — 11w = Pt v — u . (3.51)
An T

Since liminf,, o 7, > 0, limy, 00 Ay, = A > 0, and lim,,, oo v, = v > 0O, it is easy to see from
(3.51) that, for each n > 0,

N
”Vn —Vu ” S ”xn —Xn-1 ” +M|:Z|ri,n - ri,n—1| + |Vn = Vp-1

i=1

+ |)‘-n - )‘n—ll + |rn - rn1|:|: (352)

Page 26 of 35
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where M > 0 is a constant such that

~ 1 1 1 ~
SUP{Ml + — Y0 = %nll + —l2n = yull + — Vi - unll} =M.
Vy )\4;1 7,

n>0 n

Now, simple calculations yield that

Wy —Wy1 = 0y Ve, + (I - anMG)Vn — 1y Va1 — (1 - Oln—IIJLG’)Vn—l
= (otn — 1) (y Va1 = 0Gvp-1) + any (Vitn = Vien-1)

+ ([ =Gy — (I — ayuG)vy_y.
In terms of (3.52) and Lemma 2.6, we obtain

Wi = Wt | < lotw — ot [ (¥ 1 VEnor |+ Gt ) + cny Ll — %1
+ (1 —ra)llvy = Vil

< ety = ot | (Y I VEnr | + lIGVu1 1)) + iy Ly — Xuoa |

N

+ (1= ) 1, = 21| + M[Zmn ~ Fipl
i=1

+ V= V1| + Ay = Ao + |7 _rn—1|:|

= lay — an—l|(y 1Vl + nllGvuy ||) + (1 — (T - )/l)) % — 21l

N
+M|:Z|ri,n_ri,n—l| + |vn_vn—1| + |)"n_)¥n—l| + |rn_rn—1|]

i=1

N
< 1y = % || + Mo [Zm,n — it | + oty =
i=1
+ vn_vn—1|+ |}‘n_)‘«n—1| + |rn_rn—1|:|’ (353)

where M, = sup, ol ¥ 1 Vaull + nllGvall + 1\~/I}. By (3.53) and Lemma 2.5, we derive

”xn+l _xn” =< || (1 - IBVIA)Vn + ,ann - (1 - ,Bn—lA)Vn—l - ﬁn—lwn—l ||
< U= BuA)u = V1) | + 1Bu = Buca LA Via |

+ ,BnHWn — Wn-1 “ + |,3n - ﬁn—l“lwn—l”

N

<= Bu?)Vi = Varl + Ba [uxn =%l + My (Zm,n ~Tina1

i=1

+ oty — 1| + [V = V1| + (A = A1 | + |rn_rn1|>j| + 1By = Bn-1lM3

N

<@- ﬁm[nxn — %1 +A~4<Z|n,n = it + 1V = Ve + [y = A |

i=1
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N
+ |y — rn—1|>:| + ﬂn|:||xn _xn—IH +M2 (Z|ri,n - Vi,n—1| + |an —0y-1

i=1

1 =Vt |+ Pon = A | + |1 —mﬂ)] + 1By = Bua | M3
N
< (1= B = D) 0 = x| + (1= Bu(7 = 1) M, (Zmn ~Tin1
i=1
+ oty — oot | + [V = Vit | + (A = At | + |1 _rn—l|> +1Bn _ﬂn—llfwf}
N
< (1= Bu7 = 1) 190 = %1l + Mo (Zmn o]+l —
i=1
+ [V — vn—1| + |)\n _)"n—1| + |rn _rn1|> + |,Bn _,Bn—IVVIS
N
< (1= Bu7 = D) %0 = %1 | + Mo (Zmn — it | + oty —
i=1
+ Vi = V1| + (A = Apoa | + |1 — rn1|) + (O(ﬁn) + O'n—l)M?n (3.54)

where MS = Supnzo{”A” lvall + llwall}. By taking Sue1 = [%ne1 =% ll, @n = Bu(y — 1), wub, =
M30(By), and

N
Vn = On_1M3 + My <Z|ri,n_ri,n—1| e e N e |rn_rn—l|>y
i=1

we deduce from (3.54) that
Sni1 < (1= @n)sn + 0pdy + V.

Hence, by conditions (C2)—(C7) and Lemma 2.2, we obtain
Him [lx,41 = 2,]] = 0.

Step 3. We show that lim,,_, o, [|%,s1 — wy,|| = 0. Indeed, from (3.41) and condition (C1),
we derive

%ne1 = Wall < 1%s1 = Vall + IV = Wiyl

< Bullwn = Avyl + anlly Ve, — nGvy| = 0 (1 — o0).
Step 4. We show that lim,,_, » ||%, — w,|| = 0. In fact, by Step 2 and Step 3, we get
”xn - Wn” = ||xn _xn+1|| + ||xn+1 - Wn” -0 (I’l g OO)

Step 5. We show that lim,,_, o ||x,, — z,|| = 0 and lim,,_, o ||%,, — Rx,,|| = 0. In fact, we first
derive lim,_, « ||, — z,|| = 0 by using arguments similar to those of (3.9) in the proof of
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Theorem 3.1, and then we obtain lim,_, « [|x, — Rx,| = 0 by using arguments similar to
those of (3.37) in the proof of Theorem 3.2.

Step 6. We show that lim,,, oo |12, — 4, || = 0 and lim,,— oo ||, — AN, || = 0. In fact, by using
arguments similar to those of (3.12) and (3.13) in the proof of Theorem 3.1, we obtain the
desired conclusions.

Step 7. We show that lim,,_, o |4, — V|| = 0 and lim,,_, ¢ ||, — T}, %, || = 0. In fact, by using
arguments similar to those of (3.14) and (3.15) in the proof of Theorem 3.1, we obtain the
desired conclusions.

Step 8. We show that limsup,,_, .. ((I — A)%,x, — %) < 0. To this end, take a subsequence
{#4, } of {x,} such that

lim sup<(1 — A%, x, —35) = lim ((I —A)%, %, —35).

n—00 k—00

Without loss of generality, we may assume that x,, — . Utilizing Steps 5, 6, and 7 and
arguments similar to those of Steps 2, 3, and 4 in the proof of Theorem 3.2, we derive
x € 2. Thus, from VI (3.2), we conclude

limsup((I — A)%, %, — %) = Jim (I - A)x, %, —%) = (I - A%, 2 -%) < 0.

n—00

Step 9. We show that lim,,_, o ||, —%|| = 0. Note that ¥ € £2. From (3.3), % = R, %, % = A%,
and ¥ = T,, %, we obtain

Wy =% = ([ —a,uG)v, — (I — oy uG)X + (v Vi, — 1 GX)
and

Xn+1 -x= Xn+l — (1 - ,BnA)Vn - ,ann + (I - ﬂnA)Vn + ﬁnwn -%

=Xn+l — (1 - ,BnA)Vn - ,ann + (I - ﬂnA)(Vn _35) + ,Bn(wn _’7\") + /Sn(l _A)SE
Applying (2.1), (3.40) and Lemmas 2.1, 2.5, and 2.6, we deduce that

~ ~ 2
W, _xHZ = ” (I - auuG)v, — (I — oy uG)X + ay(y Vix,, — //LG;CI)H
~2 ~
= ” (I -y G)v, — (I - a,,,uG)x” + 20, (y Vax, — UGX, wy, — X)
< (1= ayt)*[|vy = FII* + 200, ]|y Vix, — uGE|| | w,, =%

~ 2 ~
< lon = %° + 20 ||y Vi, — nGx|| | w,, = %[,
and hence

”xn+1 _%H2
= ” (I = BuA) vy = %) + Bu(Wy = %) + Bu(l — A)X + X1 — (I = BuA)Vy — B ”2
<[ - 8@ =B + 28,00 = Fox01 - F)

+ 2,3}’1((1 _A)?C‘:xn-*—l _35> + 2<xn+l - (1 - lgnA)Vn - ,ann:xm—l _35)
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< U = B =D + 2B Wn = Fo 1 = F) + 284 — AF, 21 —F)
< (1= Bu?llve = ZII* + 2Bullw = &l 161 — Fl| + 2Bu((I = A%, K11 — %)
< (1= Bu?)llxn = %07 + Bullwn = ZI* + 01 = XI%) + 2B, — A)X, 1 — %)
< (1= Bu?)lltn = XN + Bu[llxn = %11 + 20ully Vi, — nGE| [ wy, — %]
+ Bullwis —[1* + 2B - A)X, %01 — F)
= [(1 = Bup)* + Bulllxn = FII* + 20 Bull y Vit — it Gl 1wy = %] + Bl 1 — %

+ 2B — A%, X1 — X). (3.55)

It then follows from (3.55) that

”xn+1 _%H2
(1-B.7)*+8 ~ B -
< i — X+ —[20lly Vi, — nGR| Wy, — X
1 _IBn 1 _,Bn

+ 2<(I — A%, X1 —%)]

_ 2,7 =1\, o 26:(7-1) 1
_(1_ 1- By )"x” A el

+ Bu? 96 = FN? + 2((I = A%, %01 — %))

= (1= &)y = %> + £460,

2atu|ly Vien — Gzl ||y, — ||

where &, = 2020, 5, = (20, ly Vi, — uGRIllw, - Fl + Bui?lla, — X1 + 2( -
A)X, %,+1 —%)]. It can be readily seen from Step 2 and conditions (C1) and (C2) that &, — 0,
Y oo &n = 00,and limsup,_, . 8, < 0.By Lemma 2.2, we conclude that lim,,_, « ||, —X]| = 0.

This completes the proof. d
Taking T=1,G=1, x =1,and y = 1 in Theorem 3.3, we have the following corollary.

Corollary 3.2 Let {x,} be generated by the following iterative algorithm:

Wy = o, Viey + (1 — ) ANR,x,,

Xnel = PC[(I - lgnA)AQIRnxn + ,ann]: Vn> 1.

Assume that the sequences {a,}, {Bu}, {An}, {Vn}, and {ri,,,}ﬁ»\z’1 satisfy conditions (C1)—(C3)
and (C5)—(C7) in Theorem 3.3. Then {x,} converges strongly to ¥ € 2 := ﬂf\il GMEP(0;,
@i, B;) N GSVI(C, Fy, F,), which is the unique solution of VI (3.38).

Remark 3.1 Compared with Proposition 3.3, Theorem 3.4, and Theorem 3.7 in [11], re-
spectively, our Theorems 3.1, 3.2, and 3.3 improve and develop them in the following as-
pects:
(i) GSVI (1.3) with solutions being also fixed points of a continuous pseudocontinuous
mapping in [12, Proposition 3.3, Theorem 3.4, and Theorem 3.7] is extended to
GSVI (1.3) with solutions being also common solutions of a finite family of
generalized mixed equilibrium problems (GMEPs) and fixed points of a continuous
pseudocontinuous mapping in our Theorems 3.1, 3.2, and 3.3;
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(i)

(i)

(iv)

in the argument process of our Theorems 3.1, 3.2, and 3.3, we use the variable
parameters A, and v; (resp., A, and v,) in place of the fixed parameters A and v in
the proof of [12, Proposition 3.3, Theorem 3.4, and Theorem 3.7], and additionally
deal with a pool of variable parameters {r,»,,}f.\i (resp., {rl,,} *,) involving a finite
family of GMEPs;

the iterative schemes in our Theorems 3.1, 3.2, and 3.3 are more advantageous and
more flexible than the iterative schemes in [12, Proposition 3.3, Theorem 3.4, and
Theorem 3.7], because they can be applied to solving three problems (i.e., GSVI
(1.3), a finite family of GMEPs, and the fixed point problem of a continuous
pseudocontractive mapping) and involve much more parameter sequences;

it is worth emphasizing that our general implicit iterative scheme (3.1) is very
different from Jung’s composite implicit iterative scheme in [12], because the term
“T,,Rx,” in Jung’s implicit scheme is replaced by the term “T,, ANR,x,” in our
implicit scheme (3.1). Moreover, the term “T,, Rx,” in Jung’s explicit scheme is
replaced by the term “T,, ANR,x,,” in our explicit scheme (3.3).

4 Numerical examples

The purpose of this section is to give two examples and numerical results to illustrate the

applicability, effectiveness, and stability of our algorithm.

Example 4.1 (Example of Theorem 3.3) Let H =R and C = [0, 100]. Let the inner product
) : R x R— R be defined by (x,7) = xy. Let N =2, Vx = 2x, Gx = 1, Tx = x, B1x = 3%,
Byx = %x, Fix = %x, Fox =x, O1(x,9) = y* — 2%, O1(x,y) = =3 + xy + 292, o1 = x%, px = 0,

("

and Ax = 3x. Leta, = 1, B, =

is easy to calculate that T, X = 3x,

1 1 1 2
,Hl),’”n—l,’”l,n:Q,Vz,n=1,)»n:1,vn:5,)/=§,M=§~It

(O1, @,
1,¢1) TSMZ ¥2) 1,

1y and Fp,x =5

1
x=zx, Tpx=xF,x=5

Choose an arbitrary 1n1t1al guess x1 = 4. We get the numerical results of Algorithm (3.3).

Table 1 shows the value of the sequence {x,,}.
Figure 1 shows the convergence of the iterative sequence of Algorithm (3.3).
Solution: We can see from both Table 1 and Fig. 1 that the sequence {x,} converges

to 0, that is, 0 is the solution in Example 4.1. In addition, it is also easy to check from
Example 4.1 that ﬂiz:l GMEP(®;, ¢;, B;) N GSVI(C, Fy, F;) N Fix(T) = {0}. Therefore, the
iterative algorithm of Theorem 3.3 is efficient.

Example 4.2 (Example of Theorem 3.7 in [12]) Let H = R and C = [0, 100]. Let the inner
product (-,-) : R x R— R be defined by {x,y) = xy. Let Vx = 2x, Gx = %x, Tx =x, F1x = %x,
Fyx =x, and Ax = %x Let a, = ,ﬁn— n+1,r,, LLa=1,v= ,y:%,u:%,Choose

an arbitrary initial guess x; = 4. We get the numerical results of Algorithm (1.5) (Algo-
rithm (3.10) of [12]).

Table 1 The values of x,,

n Xn n Xn
1 40000 7 15285 x 107
2 1.8261 x 107! 8 9.1892 x 10714
3 33191 x 1073 9 52325 x 1071°
4 3.7633 x 107 10 2.8636 x 10718
5 3.2426 x 107/ 11 15212 x 10720
6 1

2.3546 x 1077 12 7.8994 x 10723
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Figure 1 The convergence of {x,} with initial x; =4
Table 2 The values of x,,
n Xn n Xn
1 40000 7 90468 x 107
2 1.0278 8 22236 x 1074
3 25219 x 107! 9 54731 x 107
4 6.1587 x 1072 10 13488 x 107
5 15055 x 1072 1 33278 x 107
6 36870 x 1073 12 82181 x 107/
4
35 A
3t A
25h g
<= 2 i
15+ A
1t A
05F A
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18
n
Figure 2 The convergence of {x,} with initial x; =4

Table 2 shows the value of the sequence {x,,}.

The Fig. 2 shows the convergence of the iterative sequence of Algorithm (1.5).
Solution: We can see from both Table 2 and Fig. 2 that the sequence {x,} converges

to 0, that is, 0 is the solution in Example 4.2. In addition, it is also easy to check from

Example 4.2 that GSVI(C, F;, F,) N Fix(T) = {0}.

Remark 4.1 From Tables 1, 2 and Figs. 1, 2, it is readily seen that the convergence of {x,} to

0in Example 4.1 is faster than the one of {x, } to 0 in Example 4.2. Therefore, our algorithm

is more applicable, efficient, and stable than the algorithm in [12].
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5 Application
In this section, applying our main result Theorem 3.3, we can prove strong convergence
theorems for approximating the solution of the standard constrained convex optimization
problem.

Let C be a closed convex subset of H. The standard constrained convex optimization
problem is to find x* € C such that

f(&") = minf (), (5.1)

where f : C — R is a convex, Fréchet differentiable function. The set of the solutions of
(5.1) is denoted by @.

Lemma 5.1 (Optimality condition, [25]) A necessary condition of optimality for a point
x* € C to be a solution of the minimization problem (5.1) is that x* solves the variational
inequality

(Vf(x*),x-x")=0 (5.2)
forall x € C. Equivalently, x* € C solves the fixed point equation
=Pc(l - AVf)x*

for every A > 0. If, in addition, f is convex, then the optimality condition (5.2) is also suffi-
cient.

Theorem 5.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let f; (i =
1,2,...,N): C — R be a real-valued convex function with the gradient Vf; being Lifi—inverse
strongly monotone and continuous with Ly, > 0. Let ©;, ¢;, A, V, G, Fy, Fa, Ry, F1,,,, Fa,»
T,,, and T,(,fj""’]") be defined as in Theorem 3.3. Given x; € C and let {x,} be the sequence
generated by the following explicit algorithm:

Wy = oy Vit + ([ — auuG) Ty, ANR %,

(5.3)
Xp+l = PC[(I IBrl ) ™ ANRnxn + ,ann] Vn = 1;
where Al = TSN (1 = 1, VAT =1y, Vi) - TP = 11, V) and A =1

Assume that {a,}, {ﬁ,,}, {raly by v}, and {r; Y, satisfy conditions (C1)-(C7) in
Theorem 3.3. Then {x,} converges strongly to X € §2 := ﬂi:l MEP(®;, ¢;) N ﬂi:l @ N
GSVI(C, F1, F;) NFix(T), which is the unique solution of VI (3.2).

Proof By using Lemma 5.1 and Theorem 3.3, we obtain the desired conclusion directly. (]

6 Conclusions

We introduced and analyzed one general implicit iterative scheme and another general
explicit iterative scheme for finding a solution of a general system of variational inequali-
ties (GSVI) with the constraints of finitely many generalized mixed equilibrium problems
and a fixed point problem of a continuous pseudocontractive mapping in a Hilbert space.
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Moreover, we established strong convergence of the proposed implicit and explicit itera-
tive schemes to a solution of the GSVI, which is the unique solution of a certain variational
inequality. Our Theorems 3.1-3.3 not only improve and develop the main results of [1]
and [12] but also improve and develop Theorems 3.1 and 3.2 of [9], Theorems 3.1 and 3.2
of [10], and Proposition 3.1, Theorems 3.2 and 3.5 of [11].
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