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Abstract
In this paper, we introduce two general iterative methods (one implicit method and
one explicit method) for finding a solution of a general system of variational
inequalities (GSVI) with the constraints of finitely many generalized mixed equilibrium
problems and a fixed point problem of a continuous pseudocontractive mapping in a
Hilbert space. Then we establish strong convergence of the proposed implicit and
explicit iterative methods to a solution of the GSVI with the above constraints, which
is the unique solution of a certain variational inequality. The results presented in this
paper improve, extend, and develop the corresponding results in the earlier and
recent literature.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H with inner product 〈·, ·〉
and induced norm ‖ · ‖. We denote by PC the metric projection of H onto C and by Fix(S)
the set of fixed points of the mapping S. Recall that a mapping T : C → H is nonexpansive
if ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. A mapping T : C → H is called pseudocontractive if

〈Tx – Ty, x – y〉 ≤ ‖x – y‖2, ∀x, y ∈ C.

This inequality can be equivalently rewritten as

‖Tx – Ty‖2 ≤ ‖x – y‖2 +
∥
∥(I – T)x – (I – T)y

∥
∥

2, ∀x, y ∈ C,

where I is the identity mapping.
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T : C → H is said to be k-strictly pseudocontractive if there exists a constant k ∈ [0, 1)
such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k
∥
∥(I – T)x – (I – T)y

∥
∥

2, ∀x, y ∈ C.

A mapping V : C → H is said to be l-Lipschitzian if there exists a constant l ≥ 0 such
that

‖Vx – Vy‖ ≤ l‖x – y‖, ∀x, y ∈ C.

A mapping F : C → H is called monotone if

〈x – y, Fx – Fy〉 ≥ 0, ∀x, y ∈ C,

and F is called α-inverse-strongly monotone if there exists a constant α > 0 such that

〈x – y, Fx – Fy〉 ≥ α‖Fx – Fy‖2, ∀x, y ∈ C.

If F is an α-inverse-strongly monotone mapping, then it is obvious that F is 1
α

-Lipschitz
continuous, that is, ‖Fx – Fy‖ ≤ 1

α
‖x – y‖ for all x, y ∈ C.

A mapping F : C → H is called β-strongly monotone if there exists a constant β > 0 such
that

〈x – y, Fx – Fy〉 ≥ β‖x – y‖2, ∀x, y ∈ C.

A linear operator A : H → H is said to be strongly positive on H if there exists a constant
γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄ ‖x‖2, ∀x ∈ H .

Let F : C → H be a mapping. The classical variational inequality problem (VIP) is to
find x∗ ∈ C such that

〈

Fx∗, x – x∗〉≥ 0, ∀x ∈ C. (1.1)

We denote the set of solutions of VIP (1.1) by VI(C, F).
In 2008, Ceng et al. [1] considered the following general system of variational inequalities

(GSVI):

⎧

⎨

⎩

〈λF1y∗ + x∗ – y∗, x – x∗〉 ≥ 0, ∀x ∈ C,

〈νF2x∗ + y∗ – x∗, x – y∗〉 ≥ 0, ∀x ∈ C,
(1.2)

where F1, F2 are α-inverse-strongly monotone and β-inverse-strongly monotone, respec-
tively, and λ ∈ (0, 2α) and ν ∈ (0, 2β) are two constants. Many iterative methods have been
developed for solving GSVI (1.2); see [2–7] and the references therein.
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Subsequently, Alofi et al. [8] also introduced two composite iterative algorithms based
on the composite iterative methods in Ceng et al. [9] and Jung [10] for solving the problem
of GSVI (1.2). Moreover, they showed strong convergence of the proposed algorithms to
a common solution of these two problems.

Very recently, Kong et al. [11] established the strong convergence of two hybrid steepest-
descent schemes to the same solution of GSVI (1.2), which is also a common solution of
finitely many variational inclusions and a minimization problem.

Lemma 1.1 (see [12, Proposition 3.1]) Let C be a nonempty closed convex subset of a real
Hilbert space H . For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (1.3) for continuous
monotone mappings F1 and F2 if and only if x∗ is a fixed point of the composite R = F1,λF2,ν :
H → C of nonexpansive mappings F1,λ : H → C and F2,ν : H → C, where y∗ = F2,νx∗,

F1,λx =
{

z ∈ C : 〈y – z, F1z〉 +
1
λ

〈y – z, z – x〉 ≥ 0,∀y ∈ C
}

,

and

F2,νx =
{

z ∈ C : 〈y – z, F2z〉 +
1
ν
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

.

For simplicity, we denote by GSVI(C, F1, F2) the fixed point set of mapping R.

In the meantime, inspired by Ceng et al. [1], Jung [12] introduced a general system of
variational inequalities (GSVI) for two continuous monotone mappings F1 and F2 of find-
ing (x∗, y∗) ∈ C × C such that

⎧

⎨

⎩

〈λF1x∗ + x∗ – y∗, x – x∗〉 ≥ 0, ∀x ∈ C,

〈νF2y∗ + y∗ – x∗, x – y∗〉 ≥ 0, ∀x ∈ C,
(1.3)

where λ,ν > 0 are two constants. In order to find an element of Fix(R) ∩ Fix(T), he pro-
posed one implicit algorithm generating a net {xt}:

xt = (I – θtA)Trt Rxt + θt
[

tγ Vxt + (I – tμG)Trt Rxt
]

, (1.4)

with t ∈ (0, min{1, 2–γ̄

τ–γ l }) and θt ∈ (0, min{ 1
2 ,‖A‖–1}), and an explicit algorithm generating

a sequence {xn}:

⎧

⎨

⎩

yn = αnγ Vxn + (I – αnμG)Trn Rxn,

xn+1 = (I – βnA)Trn Rxn + βnyn, ∀n ≥ 0,
(1.5)

with {αn} ⊂ [0, 1], {βn} ⊂ (0, 1], {rn} ⊂ (0,∞), and x0 ∈ C any initial guess, where Trt x =
{z ∈ C : 〈y – z, Tz〉 – 1

rt
〈y – z, (1 + rt)z – x〉 ≤ 0,∀y ∈ C} for rt ∈ (0,∞), and Trn x = {z ∈

C : 〈y – z, Tz〉 – 1
rn

〈y – z, (1 + rn)z – x〉 ≤ 0,∀y ∈ C} for rn ∈ (0,∞). Moreover, he established
strong convergence of the proposed iterative algorithms to an element x̃ ∈ Fix(R)∩Fix(T),
which uniquely solves the variational inequality

〈

(A – I )̃x, x̃ – p
〉≤ 0, ∀p ∈ Fix(R) ∩ Fix(T).
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On the other hand, the generalized mixed equilibrium problem (GMEP) is to find x ∈ C
such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Bx, y – x〉 ≥ 0, ∀y ∈ C. (1.6)

We denote the set of solutions of GMEP (1.6) by GMEP(Θ ,ϕ, B). GMEP (1.6) is very gen-
eral in the sense that it includes many problems as special cases, namely optimization
problems, variational inequalities, minimax problems, Nash equilibrium problems in non-
cooperative games, and others. For different aspects and solution methods, we refer to
[13–18] and the references therein.

In this paper, we introduce implicit and explicit iterative methods for finding a solution
of GSVI (1.3) with solutions belonging also to the common solution set

⋂N
i=1 GMEP(Θi,

ϕi, Bi) of finitely many generalized mixed equilibrium problems and the fixed point set of
a continuous pseudocontractive mapping T . First, GSVI (1.3) and each generalized mixed
equilibrium problem both are transformed into fixed point problems of nonexpansive
mappings. Then we establish strong convergence of the proposed iterative methods to an
element of

⋂N
i=1 GMEP(Θi,ϕi, Bi) ∩ GSVI(C, F1, F2) ∩ Fix(T), which is the unique solution

of a certain variational inequality.

2 Preliminaries and lemmas
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . We
write xn → x and xn ⇀ x to indicate the strong convergence of the sequence {xn} to x and
the weak convergence of the sequence {xn} to x, respectively.

For every point x ∈ H , there exists a unique nearest point in C, denoted by PC(x), such
that

∥
∥x – PC(x)

∥
∥≤ ‖x – y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is nonexpansive
and is characterized by the property

u = PC(x) ⇔ 〈x – u, u – y〉 ≥ 0, ∀x ∈ H , y ∈ C. (2.1)

In a Hilbert space H , the following equality holds:

‖x – y‖2 = ‖x‖2 + ‖y‖2 – 2〈x, y〉, ∀x, y ∈ H . (2.2)

The following lemma is an immediate consequence of an inner product.

Lemma 2.1 In a real Hilbert space H , there holds the following inequality:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H .

Next we list some elementary conclusions for the MEP.
It is first assumed as in [19] that Θ : C × C → R is a bifunction satisfying conditions

(A1)–(A4) and ϕ : C → R is a lower semicontinuous and convex function with restriction
(B1) or (B2), where
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(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for any x, y ∈ C;
(A3) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

Θ
(

tz + (1 – t)x, y
)≤ Θ(x, y);

(A4) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
(B1) for ∀x ∈ H and r > 0, there exists a bounded subset Dx ⊂ C and yx ∈ C such that,

for ∀z ∈ C \ Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +
1
r
〈yx – z, z – x〉 < 0;

(B2) C is a bounded set.

Proposition 2.1 ([19]) Assume that Θ : C ×C → R satisfies (A1)–(A4), and let ϕ : C → R
be a proper lower semicontinuous and convex function. Assume that either (B1) or (B2)
holds. For r > 0 and x ∈ H , define a mapping T (Θ ,ϕ)

r : H → C as follows:

T (Θ ,ϕ)
r (x) :=

{

z ∈ C : Θ(z, y) + ϕ(y) – ϕ(z) +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

for all x ∈ H . Then the following hold:
(i) for each x ∈ H , T (Θ ,ϕ)

r (x) is nonempty and single-valued;
(ii) T (Θ ,ϕ)

r is firmly nonexpansive, that is, for any x, y ∈ H ,

∥
∥T (Θ ,ϕ)

r x – T (Θ ,ϕ)
r y

∥
∥

2 ≤ 〈

T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y, x – y
〉

;

(iii) Fix(T (Θ ,ϕ)
r ) = MEP(Θ ,ϕ);

(iv) MEP(Θ ,ϕ) is closed and convex;
(v) ‖T (Θ ,ϕ)

s x – T (Θ ,ϕ)
t x‖2 ≤ s–t

s 〈T (Θ ,ϕ)
s x – T (Θ ,ϕ)

t x, T (Θ ,ϕ)
s x – x〉 for all s, t > 0 and x ∈ H .

Proposition 2.2 Let F : C → H be an α-inverse-strongly monotone mapping. Then, for all
x, y ∈ C and λ > 0, one has

∥
∥(I – λF)x – (I – λF)y

∥
∥

2 ≤ ‖x – y‖2 + λ(λ – 2α)‖Fx – Fy‖2.

In particular, if λ ∈ (0, 2α], I – λF : C → H is a nonexpansive mapping.

We will use the following lemmas for the proof of our main results in the sequel.

Lemma 2.2 ([20]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 – ωn)sn + ωnδn + γn, ∀n ≥ 0,

where {ωn}, {δn}, and {γn} satisfy the following conditions:
(i) {ωn} ⊂ [0, 1] and

∑∞
n=0 ωn = ∞ or, equivalently,

∏∞
n=0(1 – ωn) = 0;
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(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=0 ωn|δn| < ∞;
(iii) γn ≥ 0 (n ≥ 0),

∑∞
n=0 γn < ∞.

Then limn→∞ sn = 0.

Lemma 2.3 (Demiclosedness principle [21]) Let C be a nonempty closed convex subset of
a real Hilbert space H . Let S : C → C be a nonexpansive mapping with Fix(S) �= ∅. Then
the mapping I – S is demiclosed. That is, if {xn} is a sequence in C such that xn ⇀ x∗ and
(I – S)xn → y, then (I – S)x∗ = y. Here I is the identity mapping of H .

Lemma 2.4 ([22]) Let H be a real Hilbert space. Let A : H → H be a strongly positive
bounded linear operator with a constant γ̄ > 1. Then

〈

(A – I)x – (A – I)y, x – y
〉≥ (γ̄ – 1)‖x – y‖2, ∀x, y ∈ C.

That is, A – I is strongly monotone with a constant γ̄ – 1.

Lemma 2.5 ([22]) Assume that A : H → H is a strongly positive bounded linear operator
with a coefficient γ̄ > 0 and 0 < ζ ≤ ‖A‖–1. Then ‖I – ζA‖ ≤ 1 – ζ γ̄ .

Lemma 2.6 ([23]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
G : C → H be a ρ-Lipschitzian and η-strongly monotone mapping with constants ρ,η > 0.
Let 0 < μ < 2η

ρ2 and 0 < t < σ ≤ 1. Then S := σ I – tμG : C → H is a contractive mapping
with constant σ – tτ , where τ = 1 –

√

1 – μ(2η – μρ2).

Lemma 2.7 ([24]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C → H be a continuous monotone mapping. Then, for r > 0 and x ∈ H , there exists z ∈ C
such that

〈y – z, Fz〉 +
1
r
〈y – z, z – x〉 ≥ 0, ∀y ∈ C.

For r > 0 and x ∈ H , define Fr : H → C by

Frx =
{

z ∈ C : 〈y – z, Fz〉 +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

.

Then the following hold:
(i) Fr is single-valued;

(ii) Fr is firmly nonexpansive, that is,

‖Frx – Fry‖2 ≤ 〈x – y, Frx – Fry〉, ∀x, y ∈ H ;

(iii) Fix(Fr) = VI(C, F);
(iv) VI(C, F) is a closed convex subset of C.

Lemma 2.8 ([24]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → H be a continuous pseudocontractive mapping. Then, for r > 0 and x ∈ H , there
exists z ∈ C such that

〈y – z, Tz〉 –
1
r
〈

y – z, (1 + r)z – x
〉≤ 0, ∀y ∈ C.
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For r > 0 and x ∈ H , define Tr : H → C by

Trx =
{

z ∈ C : 〈y – z, Tz〉 –
1
r
〈

y – z, (1 + r)z – x
〉≤ 0,∀y ∈ C

}

.

Then the following hold:
(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is,

‖Trx – Try‖2 ≤ 〈x – y, Trx – Try〉, ∀x, y ∈ H ;

(iii) Fix(Tr) = Fix(T);
(iv) Fix(T) is a closed convex subset of C.

3 Main results
Throughout this section, we always assume the following:

• Bi : C → H is a μi-inverse-strongly monotone mapping for each i = 1, 2, . . . , N ;
• Θi : C × C → R is a bifunction satisfying conditions (A1)–(A4) for each i = 1, 2, . . . , N ;
• ϕi : C → R is a proper lower semicontinuous and convex function with restriction

(B1) or (B2) for each i = 1, 2, . . . , N ;
• A : H → H is a strongly positive linear bounded self-adjoint operator with a constant

γ̄ ∈ (1, 2);
• V : C → C is l-Lipschitzian with constant l ∈ [0,∞);
• G : C → C is a ρ-Lipschitzian and η-strongly monotone mapping with constants

ρ > 0 and η > 0;
• constants μ, l, τ , and γ satisfy 0 < μ < 2η

ρ2 and 0 ≤ γ l < τ , where
τ = 1 –

√

1 – μ(2η – μρ2);
• F1, F2 : C → H are continuous monotone mappings and T : C → C is a continuous

pseudocontractive mapping such that
Ω :=

⋂N
i=1 GMEP(Θi,ϕi, Bi) ∩ GSVI(C, F1, F2) ∩ Fix(T) �= ∅;

• Rt = F1,λt F2,νt : H → C, where F1,λt , F2,νt : H → C are defined as follows:

F1,λt x =
{

z ∈ C : 〈y – z, F1z〉 +
1
λt

〈y – z, z – x〉 ≥ 0,∀y ∈ C
}

,

F2,νt x =
{

z ∈ C : 〈y – z, F2z〉 +
1
νt

〈y – z, z – x〉 ≥ 0,∀y ∈ C
}

,

for λt ,νt ∈ (0,∞), t ∈ (0, 1), limt→0 λt = λ > 0, and limt→0 νt = ν > 0;
• Rn = F1,λn F2,νn : H → C, where F1,λn , F2,νn : H → C are defined as follows:

F1,λn x =
{

z ∈ C : 〈y – z, F1z〉 +
1
λn

〈y – z, z – x〉 ≥ 0,∀y ∈ C
}

,

F2,νn x =
{

z ∈ C : 〈y – z, F2z〉 +
1
νn

〈y – z, z – x〉 ≥ 0,∀y ∈ C
}

,

for λn,νn ∈ (0,∞), limn→∞ λn = λ > 0, and limn→∞ νn = ν > 0;
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• Trt : H → C is a mapping defined by

Trt x =
{

z ∈ C : 〈y – z, Tz〉 –
1
rt

〈

y – z, (1 + rt)z – x
〉≥ 0,∀y ∈ C

}

for rt ∈ (0,∞), t ∈ (0, 1), and lim inft→0 rt > 0;
• Trn : H → C is a mapping defined by

Trn x =
{

z ∈ C : 〈y – z, Tz〉 –
1
rn

〈

y – z, (1 + rn)z – x
〉≥ 0,∀y ∈ C

}

for rn ∈ (0,∞), and lim infn→∞ rn > 0;
• T (Θi ,ϕi)

ri,t : H → C is a mapping defined by

T (Θi ,ϕi)
ri,t

x =
{

z ∈ C : Θi(z, y) + ϕi(y) – ϕi(z) +
1

ri,t
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

for {ri,t}t∈(0,1) ⊂ [ci, di] ⊂ (0, 2μi) and i ∈ {1, 2, . . . , N};
• T (Θi ,ϕi)

ri,n : H → C is a mapping defined by

T (Θi ,ϕi)
ri,n

x =
{

z ∈ C : Θi(z, y) + ϕi(y) – ϕi(z) +
1

ri,n
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

for {ri,n}∞n=1 ⊂ [ci, di] ⊂ (0, 2μi) and i ∈ {1, 2, . . . , N}.
By Proposition 2.1 and Lemmas 2.7 and 2.8, we note that T (Θi ,ϕi)

ri,t , T (Θi ,ϕi)
ri,n , F1,λt , F1,λn ,

F2,νt , F2,νn , Trt , and Trn are nonexpansive, GMEP(Θi,ϕi, Bi) = Fix(T (Θi ,ϕi)
ri,t (I – ri,tBi)) =

Fix(T (Θi ,ϕi)
ri,n (I – ri,nBi)), and Fix(T) = Fix(Trt ) = Fix(Trn ). So it is known that the com-

posite mappings Rt = F1,λt F2,νt and Rn = F1,λn F2,νn are nonexpansive. Also, we note that
GSVI(C, F1, F2) = Fix(Rt) = Fix(Rn) by Lemma 1.1.

In this section, for t ∈ (0, 1), n ≥ 1 and i ∈ {1, 2, . . . , N}, we put

Δi
t = T (Θi ,ϕi)

ri,t
(I – ri,tBi)T (Θi–1,ϕi–1)

ri–1,t
(I – ri–1,tBi–1) · · ·T (Θ1,ϕ1)

r1,t (I – r1,tB1),

Δi
n = T (Θi ,ϕi)

ri,n
(I – ri,nBi)T (Θi–1,ϕi–1)

ri–1,n
(I – ri–1,nBi–1) · · ·T (Θ1,ϕ1)

r1,n (I – r1,nB1),

and Δ0
t = Δ0

n = I .
We now introduce the first general iterative scheme that generates a net {xt} in an im-

plicit way:

xt = PC
[

(I – θtA)Trt Δ
N
t Rtxt + θt

(

tγ Vxt + (I – tμG)Trt Δ
N
t Rtxt

)]

, (3.1)

where t ∈ (0, min{1, 2–γ̄

τ–γ l }) and θt ∈ (0, min{ 1
2 ,‖A‖–1}).

We prove the strong convergence of {xt} as t → 0 to a point x̃ ∈ Ω , which is a unique
solution to the VI

〈

(A – I )̃x, p – x̃
〉≥ 0, ∀p ∈ Ω . (3.2)
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In the meantime, we also propose the second general iterative scheme that generates a
sequence {xn} in an explicit way:

⎧

⎨

⎩

wn = αnγ Vxn + (I – αnμG)TrnΔ
N
n Rnxn,

xn+1 = PC[(I – βnA)TrnΔ
N
n Rnxn + βnwn], ∀n ≥ 1,

(3.3)

where {αn}, {βn} ⊂ [0, 1] and x0 ∈ C is an arbitrary initial guess, and establish the strong
convergence of {xn} as n → ∞ to the same point x̃ ∈ Ω , which is the unique solution to
VI (3.2).

Next, for t ∈ (0, min{1, 2–γ̄

τ–γ l }) and θt ∈ (0, min{ 1
2 ,‖A‖–1}), consider a mapping Qt : C → C

defined by

Qtx = PC
[

(I – θtA)Trt Δ
N
t Rtx + θt

(

tγ Vx + (I – tμG)Trt Δ
N
t Rtx

)]

, ∀x ∈ C.

It is easy to see that Qt is a contractive mapping with constant 1 – θt(γ̄ – 1 + t(τ – γ l)).
Indeed, by Propositions 2.1 and 2.2 and Lemmas 2.5 and 2.6, we have

‖Qtx – Qty‖ ≤ ∥
∥(I – θtA)Trt Δ

N
t Rtx + θt

(

tγ Vx + (I – tμG)Trt Δ
N
t Rtx

)

– (I – θtA)Trt Δ
N
t Rty – θt

(

tγ Vy + (I – tμG)Trt Δ
N
t Rty

)∥
∥

≤ ∥
∥(I – θtA)Trt Δ

N
t Rtx – (I – θtA)Trt Δ

N
t Rty

∥
∥

+ θt
∥
∥
(

tγ Vx + (I – tμG)Trt Δ
N
t Rtx

)

–
(

tγ Vy + (I – tμG)Trt Δ
N
t Rty

)∥
∥

≤ (1 – θt γ̄ )
∥
∥Trt Δ

N
t Rtx – Trt Δ

N
t Rty

∥
∥ + θt

[

tγ ‖Vx – Vy‖
+
∥
∥(I – tμG)Trt Δ

N
t Rtx – (I – tμG)Trt Δ

N
t Rty

∥
∥
]

≤ (1 – θt γ̄ )‖x – y‖ + θt
[

tγ l‖x – y‖ + (1 – tτ )‖x – y‖]

=
[

1 – θt
(

γ̄ – 1 + t(τ – γ l)
)]‖x – y‖.

Since γ̄ ∈ (1, 2), τ – γ l > 0 and 0 < t < min{1, 2–γ̄

τ–γ l } ≤ 2–γ̄

τ–γ l , it follows that 0 < γ̄ – 1 + t(τ –
γ l) < 1, which together with 0 < θt < min{ 1

2 ,‖A‖–1} < 1 yields 0 < 1–θt(γ̄ –1+ t(τ –γ l)) < 1.
Hence Qt is a contractive mapping. By the Banach contraction principle, Qt has a unique
fixed point, denoted by xt , which uniquely solves the fixed point equation (3.1).

We summarize the basic properties of {xt}.

Theorem 3.1 Let {xt} be defined via (3.1). Then
(i) {xt} is bounded for t ∈ (0, min{1, 2–γ̄

τ–γ l });
(ii) limt→0 ‖xt – Rtxt‖ = 0, limt→0 ‖xt – ΔN

t xt‖ = 0, and limt→0 ‖xt – Trt xt‖ = 0 provided
limt→0 θt = 0;

(iii) xt : (0, min{1, 2–γ̄

τ–γ l }) → H is locally Lipschitzian provided
θt : (0, min{1, 2–γ̄

τ–γ l }) → (0, min{ 1
2 ,‖A‖–1}) is locally Lipschitzian,

rt ,λt ,νt : (0, min{1, 2–γ̄

τ–γ l }) → (0,∞) are locally Lipschitzian, and
ri,t : (0, min{1, 2–γ̄

τ–γ l }) → [ci, di] is locally Lipschitzian for each i = 1, 2, . . . , N ;
(iv) xt defines a continuous path from (0, min{1, 2–γ̄

τ–γ l }) into H provided
θt : (0, min{1, 2–γ̄

τ–γ l }) → (0, min{ 1
2 ,‖A‖–1}) is continuous,

rt ,λt ,νt : (0, min{1, 2–γ̄

τ–γ l }) → (0,∞) are continuous, and
ri,t : (0, min{1, 2–γ̄

τ–γ l }) → [ci, di] is continuous for each i = 1, 2, . . . , N .
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Proof Let zt = Rtxt , ut = ΔN
t zt , and vt = Trt ut . Take p ∈ Ω . Then p = Trt p by Lemma 2.8(iii),

p = Δi
tp (= T (Θi ,ϕi)

ri,t (I – ri,tBi)p) by Proposition 2.1(iii), and p = Rtp by Lemma 1.1.
(i) Utilizing Proposition 2.1(ii) and Proposition 2.2, we have

‖ut – p‖ =
∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tBN )ΔN–1

t zt – T (ΘN ,ϕN )
rN ,t

(I – rN ,tBN )ΔN–1
t p

∥
∥

≤ ∥
∥(I – rN ,tBN )ΔN–1

t zt – (I – rN ,tBN )ΔN–1
t p

∥
∥

≤ ∥
∥ΔN–1

t zt – ΔN–1
t p

∥
∥

≤ · · ·
≤ ∥
∥Δ0

t zt – Δ0
t p
∥
∥ = ‖zt – p‖. (3.4)

Moreover, it is easy from the nonexpansivity of Rt to see that

‖zt – p‖ = ‖Rtxt – Rtp‖ ≤ ‖xt – p‖,

which together with the nonexpansivity of Trt and (3.4) implies that

‖vt – p‖ = ‖Trt ut – Trt p‖ ≤ ‖ut – p‖ ≤ ‖zt – p‖ ≤ ‖xt – p‖. (3.5)

By (3.5), we have

‖xt – p‖ ≤ ∥
∥(I – θtA)vt + θt

(

tγ Vxt + (I – tμG)vt
)

– p
∥
∥

=
∥
∥(I – θtA)vt – (I – θtA)p + θt

(

tγ Vxt + (I – tμG)vt – p
)

+ θt(I – A)p
∥
∥

≤ ∥
∥(I – θtA)vt – (I – θtA)p

∥
∥ + θt

∥
∥tγ Vxt + (I – tμG)vt – p

∥
∥ + θt

∥
∥(I – A)p

∥
∥

=
∥
∥(I – θtA)vt – (I – θtA)p

∥
∥

+ θt
∥
∥(I – tμG)vt – (I – tμG)p + t(γ Vxt – μGp)

∥
∥ + θt

∥
∥(I – A)p

∥
∥

≤ (1 – θt γ̄ )‖vt – p‖ + θt
[∥
∥(I – tμG)vt – (I – tμG)p

∥
∥

+ t
(

γ ‖Vxt – Vp‖ + ‖γ Vp – μGp‖)] + θt
∥
∥(I – A)p

∥
∥

≤ (1 – θt γ̄ )‖xt – p‖ + θt
[

(1 – tτ )‖xt – p‖ + t
(

γ l‖xt – p‖ +
∥
∥(γ V – μG)p

∥
∥
)]

+ θt‖I – A‖‖p‖
=
[

1 – θt
(

γ̄ – 1 + t(τ – γ l)
)]‖xt – p‖ + θt

[‖I – A‖‖p‖ + t
∥
∥(γ V – μG)p

∥
∥
]

.

So, it follows that

‖xt – p‖ ≤ ‖I – A‖‖p‖ + t‖(γ V – μG)p‖
γ̄ – 1 + t(τ – γ l)

≤ ‖I – A‖‖p‖ + ‖(γ V – μG)p‖
γ̄ – 1

.

Hence {xt} is bounded and so are {Vxt}, {ut}, {vt}, {zt}, and {Gvt}.
(ii) By the definition of {xt}, we have

‖xt – vt‖ =
∥
∥PC

[

(I – θtA)vt + θt
(

tγ Vxt + (I – tμG)vt
)]

– vt
∥
∥

≤ ∥
∥(I – θtA)vt + θt

(

tγ Vxt + (I – tμG)vt
)

– vt
∥
∥
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=
∥
∥θt
[

(I – A)vt + t(γ Vxt – μGvt)
]∥
∥

= θt
∥
∥(I – A)vt + t(γ Vxt – μGvt)

∥
∥

≤ θt‖I – A‖‖vt‖ + t‖γ Vxt – μGvt‖ → 0 as t → 0,

using the boundedness of {Vxt}, {vt}, and {Gvt} in the proof of assertion (i). That is,

lim
t→0

‖xt – vt‖ = 0. (3.6)

In view of (3.5) and Lemma 2.7(ii), we get

‖vt – p‖2 ≤ ‖zt – p‖2 = ‖Rtxt – Rtp‖2

= ‖F1,λt F2,νt xt – F1,λt F2,νt p‖2

≤ 〈F2,νt xt – F2,νt p, F1,λt F2,νt xt – F1,λt F2,νt p〉
= 〈F2,νt xt – F2,νt p, zt – p〉

≤ 1
2
[‖F2,νt xt – F2,νt p‖2 + ‖zt – p‖2 –

∥
∥(F2,νt xt – F2,νt p) – (zt – p)

∥
∥

2]

≤ 1
2
[‖xt – p‖2 + ‖xt – p‖2 –

∥
∥(F2,νt xt – F2,νt p) – (zt – p)

∥
∥

2]

= ‖xt – p‖2 –
1
2
∥
∥(F2,νt xt – F2,νt p) – (zt – p)

∥
∥

2,

which immediately yields

1
2
∥
∥(F2,νt xt – F2,νt p) – (zt – p)

∥
∥

2 ≤ ‖xt – p‖2 – ‖vt – p‖2 ≤ (‖xt – p‖ + ‖vt – p‖)‖xt – vt‖.

From (3.6) and the boundedness of {xt} and {vt}, we have

lim
t→0

∥
∥(F2,νt xt – F2,νt p) – (zt – p)

∥
∥ = 0. (3.7)

Again from (3.5) and Lemma 2.7(ii), we obtain

‖vt – p‖2 ≤ ‖zt – p‖2 = ‖Rtxt – Rtp‖2

≤ ‖F2,νt xt – F2,νt p‖2

≤ 〈xt – p, F2,νt xt – F2,νt p〉

≤ 1
2
[‖xt – p‖2 + ‖F2,νt xt – F2,νt p‖2 –

∥
∥(xt – p) – (F2,νt xt – F2,νt p)

∥
∥

2]

≤ 1
2
[‖xt – p‖2 + ‖xt – p‖2 –

∥
∥(xt – p) – (F2,νt xt – F2,νt p)

∥
∥

2]

= ‖xt – p‖2 –
1
2
∥
∥(xt – p) – (F2,νt xt – F2,νt p)

∥
∥

2,

which hence leads to

1
2
∥
∥(xt – p) – (F2,νt xt – F2,νt p)

∥
∥

2 ≤ ‖xt – p‖2 – ‖vt – p‖2 ≤ (‖xt – p‖ + ‖vt – p‖)‖xt – vt‖.
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Again from (3.6) and the boundedness of {xt} and {vt}, we have

lim
t→0

∥
∥(xt – p) – (F2,νt xt – F2,νt p)

∥
∥ = 0. (3.8)

So it follows from (3.7) and (3.8) that

‖xt – zt‖ ≤ ∥
∥(xt – p) – (F2,νt xt – F2,νt p)

∥
∥+

∥
∥(F2,νt xt – F2,νt p) – (zt – p)

∥
∥→ 0 as t → 0.

That is,

lim
t→0

‖xt – zt‖ = 0. (3.9)

Furthermore, from (3.5) and Proposition 2.1(ii) and Proposition 2.2, it follows that

‖vt – p‖2 ≤ ‖ut – p‖2 =
∥
∥ΔN

t zt – p
∥
∥

2

≤ ∥
∥Δi

tzt – p
∥
∥

2

=
∥
∥T (Θi ,ϕi)

ri,t
(I – ri,tBi)Δi–1

t zt – T (Θi ,ϕi)
ri,t

(I – ri,tBi)p
∥
∥

2

≤ ∥
∥(I – ri,tBi)Δi–1

t zt – (I – ri,tBi)p
∥
∥

2

≤ ∥
∥Δi–1

t zt – p
∥
∥

2 + ri,t(ri,t – 2μi)
∥
∥BiΔ

i–1
t zt – Bip

∥
∥

2

≤ ‖zt – p‖2 + ri,t(ri,t – 2μi)
∥
∥BiΔ

i–1
t zt – Bip

∥
∥

2

≤ ‖xt – p‖2 + ri,t(ri,t – 2μi)
∥
∥BiΔ

i–1
t zt – Bip

∥
∥

2,

which together with {ri,t}t∈(0,1) ⊂ [ci, di] ⊂ (0, 2μi) for i ∈ {1, 2, . . . , N} implies that

ci(2μi – di)
∥
∥BiΔ

i–1
t zt – Bip

∥
∥

2 ≤ ri,t(2μi – ri,t)
∥
∥BiΔ

i–1
t zt – Bip

∥
∥

2

≤ ‖xt – p‖2 – ‖vt – p‖2 ≤ (‖xt – p‖ + ‖vt – p‖)‖xt – vt‖.

From (3.6) and the boundedness of {xt} and {vt}, we have

lim
t→0

∥
∥BiΔ

i–1
t zt – Bip

∥
∥ = 0. (3.10)

Also, by Proposition 2.1(ii), we obtain that, for each i = 1, 2, . . . , N ,

∥
∥Δi

tzt – p
∥
∥

2

=
∥
∥T (Θi ,ϕi)

ri,t
(I – ri,tBi)Δi–1

t zt – T (Θi ,ϕi)
ri,t

(I – ri,tBi)p
∥
∥

2

≤ 〈

(I – ri,tBi)Δi–1
t zt – (I – ri,tBi)p,Δi

tzt – p
〉

=
1
2
[∥
∥(I – ri,tBi)Δi–1

t zt – (I – ri,tBi)p
∥
∥

2 +
∥
∥Δi

tzt – p
∥
∥

2

–
∥
∥(I – ri,tBi)Δi–1

t zt – (I – ri,tBi)p –
(

Δi
tzt – p

)∥
∥

2]

≤ 1
2
[∥
∥Δi–1

t zt – p
∥
∥

2 +
∥
∥Δi

tzt – p
∥
∥

2 –
∥
∥Δi–1

t zt – Δi
tzt – ri,t

(

BiΔ
i–1
t zt – Bip

)∥
∥

2]

≤ 1
2
[‖xt – p‖2 +

∥
∥Δi

tzt – p
∥
∥

2 –
∥
∥Δi–1

t zt – Δi
tzt – ri,t

(

BiΔ
i–1
t zt – Bip

)∥
∥

2],
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which immediately implies that

∥
∥Δi

tzt – p
∥
∥

2 ≤ ‖xt – p‖2 –
∥
∥Δi–1

t zt – Δi
tzt – ri,t

(

BiΔ
i–1
t zt – Bip

)∥
∥

2.

This together with (3.5) leads to

‖vt – p‖2 ≤ ‖ut – p‖2 =
∥
∥ΔN

t zt – p
∥
∥

2 ≤ ∥
∥Δi

tzt – p
∥
∥

2

≤ ‖xt – p‖2 –
∥
∥Δi–1

t zt – Δi
tzt – ri,t

(

BiΔ
i–1
t zt – Bip

)∥
∥

2,

which hence implies

∥
∥Δi–1

t zt – Δi
tzt – ri,t

(

BiΔ
i–1
t zt – Bip

)∥
∥

2 ≤ ‖xt – p‖2 – ‖vt – p‖2

≤ (‖xt – p‖ + ‖vt – p‖)‖xt – vt‖.

From (3.6) and the boundedness of {xt} and {vt}, we have

lim
t→0

∥
∥Δi–1

t zt – Δi
tzt – ri,t

(

BiΔ
i–1
t zt – Bip

)∥
∥ = 0,

which together with (3.10) implies that, for each i = 1, 2, . . . , N ,

lim
t→0

∥
∥Δi–1

t zt – Δi
tzt
∥
∥ = 0. (3.11)

Note that

‖zt – ut‖ ≤
N
∑

i=1

∥
∥Δi–1

t zt – Δi
tzt
∥
∥.

From (3.11), it is easy to see that

lim
t→0

‖zt – ut‖ = 0. (3.12)

Also, observe that

∥
∥xt – ΔN

t xt
∥
∥≤ ‖xt – zt‖ +

∥
∥zt – ΔN

t zt
∥
∥ +

∥
∥ΔN

t zt – ΔN
t xt

∥
∥

≤ ‖xt – zt‖ +
∥
∥zt – ΔN

t zt
∥
∥ + ‖zt – xt‖

= 2‖xt – zt‖ + ‖zt – ut‖.

From (3.9) and (3.12), it is easy to see that

lim
t→0

∥
∥xt – ΔN

t xt
∥
∥ = 0. (3.13)

In the meantime, again from (3.5) and Lemma 2.7(ii), we obtain

‖vt – p‖2 = ‖Trt ut – Trt p‖2
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≤ 〈ut – p, Trt ut – Trt p〉 = 〈ut – p, vt – p〉

=
1
2
[‖ut – p‖2 + ‖vt – p‖2 –

∥
∥ut – p – (vt – p)

∥
∥

2]

≤ 1
2
[‖xt – p‖2 + ‖xt – p‖2 – ‖ut – vt‖2]

= ‖xt – p‖2 –
1
2
‖ut – vt‖2,

which immediately yields

1
2
‖ut – vt‖2 ≤ ‖xt – p‖2 – ‖vt – p‖2 ≤ (‖xt – p‖ + ‖vt – p‖)‖xt – vt‖.

From (3.6) and the boundedness of {xt} and {vt}, we have

lim
t→0

‖ut – vt‖ = 0. (3.14)

Taking into account that

‖xt – Trt xt‖ ≤ ‖xt – ut‖ + ‖ut – Trt ut‖ + ‖Trt ut – Trt xt‖
≤ ‖xt – ut‖ + ‖ut – Trt ut‖ + ‖ut – xt‖
= 2‖xt – ut‖ + ‖ut – vt‖
≤ 2

(‖xt – zt‖ + ‖zt – ut‖
)

+ ‖ut – vt‖,

we deduce from (3.9), (3.12), and (3.14) that

lim
t→0

‖xt – Trt xt‖ = 0. (3.15)

(iii) Let t, t0 ∈ (0, min{1, 2–γ̄

τ–γ l }). Since vt = Trt ut and vt0 = Trt0
ut0 , we get

〈

y – vt , (I – T)vt
〉

+
1
rt

〈y – vt , vt – ut〉 ≥ 0, ∀y ∈ C, (3.16)

and

〈

y – vt0 , (I – T)vt0

〉

+
1

rt0
〈y – vt0 , vt0 – ut0〉 ≥ 0, ∀y ∈ C. (3.17)

Putting y = vt0 in (3.16) and y = vt in (3.17), we obtain

〈

vt0 – vt , (I – T)vt
〉

+
1
rt

〈vt0 – vt , vt – ut〉 ≥ 0 (3.18)

and

〈

vt – vt0 , (I – T)vt0

〉

+
1

rt0
〈vt – vt0 , vt0 – ut0〉 ≥ 0. (3.19)
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Adding up (3.18) and (3.19), we have

–
〈

vt – vt0 , (I – T)vt – (I – T)vt0

〉

+
〈

vt0 – vt ,
vt – ut

rt
–

vt0 – ut0

rt0

〉

≥ 0.

Since T is pseudocontractive, we know that I – T is a monotone mapping such that

〈

vt0 – vt ,
vt – ut

rt
–

vt0 – ut0

rt0

〉

≥ 0,

and hence

〈

vt – vt0 , vt0 – vt + vt – ut0 –
rt0

rt
(vt – ut)

〉

≥ 0. (3.20)

Taking into account that lim inft→0 rt > 0, without loss of generality, we may assume that
rt > b > 0 ∀t ∈ (0, min{1, 2–γ̄

τ–γ l }) for some b > 0. Then from (3.20) we have

‖vt – vt0‖2 ≤
〈

vt – vt0 , vt – ut + ut – ut0 –
rt0

rt
(vt – ut)

〉

=
〈

vt – vt0 , ut – ut0 +
(

1 –
rt0

rt

)

(vt – ut)
〉

≤ ‖vt – vt0‖
∥
∥
∥
∥

ut – ut0 +
(

1 –
rt0

rt

)

(vt – ut)
∥
∥
∥
∥

≤ ‖vt – vt0‖
{

‖ut – ut0‖ +
∣
∣
∣
∣
1 –

rt0

rt

∣
∣
∣
∣
‖vt – ut‖

}

,

which immediately yields

‖vt – vt0‖ ≤ ‖ut – ut0‖ +
1
rt

|rt – rt0 |‖vt – ut‖

≤ ‖ut – ut0‖ +
L̃1

b
|rt – rt0 |, (3.21)

where L̃1 = sup{‖vt – ut‖ : t ∈ (0, min{1, 2–γ̄

τ–γ l })}.
Also, taking into account that limt→0 λt = λ > 0 and limt→0 νt = ν > 0, without loss of gen-

erality, we may assume that min{λt ,νt} > a > 0 ∀t ∈ (0, min{1, 2–γ̄

τ–γ l }) for some a > 0. Since
zt = F1,λt yt and zt0 = F1,λt0

yt0 , where yt = F2,νt xt and yt0 = F2,νt0
xt0 for t, t0 ∈ (0, min{1, 2–γ̄

τ–γ l }),
by using arguments similar to those of (3.21), we get

‖zt – zt0‖ ≤ ‖yt – yt0‖ +
1
a
|λt – λt0 |L̃2 (3.22)

and

‖yt – yt0‖ ≤ ‖xt – xt0‖ +
1
a
|νt – νt0 |L̃2, (3.23)
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where L̃2 = sup{‖zt – yt‖ + ‖yt – xt‖ : t ∈ (0, min{1, 2–γ̄

τ–γ l })}. Substituting (3.23) for (3.22), we
obtain

‖zt – zt0‖ ≤ ‖xt – xt0‖ +
L̃2

a
(|λt – λt0 | + |νt – νt0 |

)

. (3.24)

In the meantime, by Proposition 2.1(ii), (v) and Proposition 2.2, we deduce that

‖ut – ut0‖ =
∥
∥ΔN

t zt – ΔN
t0 zt0

∥
∥

=
∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tBN )ΔN–1

t zt – T (ΘN ,ϕN )
rN ,t0

(I – rN ,t0 BN )ΔN–1
t0 zt0

∥
∥

≤ ∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tBN )ΔN–1

t zt – T (ΘN ,ϕN )
rN ,t0

(I – rN ,t0 BN )ΔN–1
t zt

∥
∥

+
∥
∥T (ΘN ,ϕN )

rN ,t0
(I – rN ,t0 BN )ΔN–1

t zt – T (ΘN ,ϕN )
rN ,t0

(I – rN ,t0 BN )ΔN–1
t0 zt0

∥
∥

≤ ∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tBN )ΔN–1

t zt – T (ΘN ,ϕN )
rN ,t0

(I – rN ,tBN )ΔN–1
t zt

∥
∥

+
∥
∥T (ΘN ,ϕN )

rN ,t0
(I – rN ,tBN )ΔN–1

t zt – T (ΘN ,ϕN )
rN ,t0

(I – rN ,t0 BN )ΔN–1
t zt

∥
∥

+
∥
∥(I – rN ,t0 BN )ΔN–1

t zt – (I – rN ,t0 BN )ΔN–1
t0 zt0

∥
∥

≤ |rN ,t – rN ,t0 |
rN ,t

∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tBN )ΔN–1

t zt – (I – rN ,tBN )ΔN–1
t zt

∥
∥

+ |rN ,t – rN ,t0 |
∥
∥BNΔN–1

t zt
∥
∥ +

∥
∥ΔN–1

t zt – ΔN–1
t0 zt0

∥
∥

= |rN ,t – rN ,t0 |
[
∥
∥BNΔN–1

t zt
∥
∥ +

1
rN ,t

∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tBN )ΔN–1

t zt

– (I – rN ,tBN )ΔN–1
t zt

∥
∥

]

+
∥
∥ΔN–1

t zt – ΔN–1
t0 zt0

∥
∥

≤ · · ·

≤ |rN ,t – rN ,t0 |
[
∥
∥BNΔN–1

t zt
∥
∥ +

1
rN ,t

∥
∥T (ΘN ,ϕN )

rN ,t
(I – rN ,tBN )ΔN–1

t zt

– (I – rN ,tBN )ΔN–1
t zt

∥
∥

]

+ · · · + |r1,t – r1,t0 |
[
∥
∥B1Δ

0
t zt
∥
∥

+
1

r1,t

∥
∥T (Θ1,ϕ1)

r1,t (I – r1,tB1)Δ0
t zt – (I – r1,tB1)Δ0

t zt
∥
∥

]

+
∥
∥Δ0

t zt – Δ0
t0 zt0

∥
∥

≤ L̃3

N
∑

i=1

|ri,t – ri,t0 | + ‖zt – zt0‖, (3.25)

where

sup
t∈(0,min{1, 2–γ̄

τ–γ l })

{ N
∑

i=1

[
∥
∥BiΔ

i–1
t zt

∥
∥ +

1
ri,t

∥
∥T (Θi ,ϕi)

ri,t
(I – ri,tBi)Δi–1

t zt – (I – ri,tBi)Δi–1
t zt

∥
∥

]}

≤ L̃3

for some L̃3 > 0. This together with (3.21) and (3.24) implies that

‖vt – vt0‖ ≤ ‖ut – ut0‖ +
L̃1

b
|rt – rt0 |
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≤ L̃3

N
∑

i=1

|ri,t – ri,t0 | + ‖zt – zt0‖ +
L̃1

b
|rt – rt0 |

≤ L̃3

N
∑

i=1

|ri,t – ri,t0 | + ‖xt – xt0‖ +
L̃2

a
(|λt – λt0 | + |νt – νt0 |

)

+
L̃1

b
|rt – rt0 |

≤ ‖xt – xt0‖ +
(

L̃1

b
+

L̃2

a

)
(|λt – λt0 | + |νt – νt0 | + |rt – rt0 |

)

+ L̃3

N
∑

i=1

|ri,t – ri,t0 |.

Taking into account that both θt0 ∈ (0, min{ 1
2 ,‖A‖–1}) and 0 ≤ γ l < τ = 1 –

√

1 – μ(2η – μρ2) imply

0 < 1 – θt0 (γ̄ – 1 + t0τ ) < 1,

we calculate from (3.1)

‖xt – xt0‖ ≤ ∥
∥(I – θtA)Trt Δ

N
t Rtxt + θt

(

tγ Vxt + (I – tμG)Trt Δ
N
t Rtxt

)

– (I – θt0 A)Trt0
ΔN

t0 Rt0 xt0 + θt0

(

t0γ Vxt0 + (I – t0μG)Trt0
ΔN

t0 Rt0 xt0

)∥
∥

=
∥
∥(I – θtA)vt + θt

(

tγ Vxt + (I – tμG)vt
)

– (I – θt0 A)vt0

+ θt0

(

t0γ Vxt0 + (I – t0μG)vt0

)∥
∥

≤ ∥
∥(I – θtA)vt – (I – θt0 A)vt

∥
∥ +

∥
∥(I – θt0 A)vt – (I – θt0 A)vt0

∥
∥

+ |θt – θt0 |
∥
∥tγ Vxt + (I – tμG)vt

∥
∥ + θt0

∥
∥
[

tγ Vxt + (I – tμG)vt
]

–
[

t0γ Vxt0 + (I – t0μG)vt0

]∥
∥

≤ |θt – θt0 |‖A‖‖vt‖ + (1 – θt0 γ̄ )‖vt – vt0‖ + |θt – θt0 |
∥
∥tγ Vxt + (I – tμG)vt

∥
∥

+ θt0

∥
∥(t – t0)γ Vxt + t0γ (Vxt – Vxt0 ) – (t – t0)μGvt + (I – t0μG)vt

– (I – t0μG)vt0

∥
∥

≤ |θt – θt0 |‖A‖‖vt‖ + (1 – θt0 γ̄ )‖vt – vt0‖ + |θt – θt0 |
[‖vt‖

+ t
(

γ ‖Vxt‖ + μ‖Gvt‖
)]

+ θt0

[(

γ ‖Vxt‖ + μ‖Gvt‖
)|t – t0| + t0γ l‖xt – xt0‖ + (1 – t0τ )‖vt – vt0‖

]

≤ |θt – θt0 |
[‖vt‖ + ‖A‖‖vt‖ + γ ‖Vxt‖ + μ‖Gvt‖

]

+ θt0 t0γ l‖xt – xt0‖
+
[

1 – θt0 (γ̄ – 1 + t0τ )
]

×
{

‖xt – xt0‖ +
(

L̃1

b
+

L̃2

a

)
(|λt – λt0 | + |νt – νt0 | + |rt – rt0 |

)

+ L̃3

N
∑

i=1

|ri,t – ri,t0 |
}

+ θt0

(

γ ‖Vxt‖ + μ‖Gvt‖
)|t – t0|

= |θt – θt0 |
[‖vt‖ + ‖A‖‖vt‖ + γ ‖Vxt‖ + μ‖Gvt‖

]

+
[

1 – θt0 (γ̄ – 1 + t0(τ – γ l)
]‖xt – xt0‖
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+
[

1 – θt0 (γ̄ – 1 + t0τ )
]

{(
L̃1

b
+

L̃2

a

)
(|λt – λt0 | + |νt – νt0 | + |rt – rt0 |

)

+ L̃3

N
∑

i=1

|ri,t – ri,t0 |
}

+ θt0

(

γ ‖Vxt‖ + μ‖Gvt‖
)|t – t0|.

This immediately implies that

‖xt – xt0‖ ≤ ‖vt‖ + ‖A‖‖vt‖ + γ ‖Vxt‖ + μ‖Gvt‖
θt0 (γ̄ – 1 + t0(τ – γ l)

|θt – θt0 | +
γ ‖Vxt‖ + μ‖Gvt‖
γ̄ – 1 + t0(τ – γ l)

|t – t0|

+
1 – θt0 (γ̄ – 1 + t0τ )

θt0 (γ̄ – 1 + t0(τ – γ l)

{(
L̃1

b
+

L̃2

a

)
(|λt – λt0 | + |νt – νt0 | + |rt – rt0 |

)

+ L̃3

N
∑

i=1

|ri,t – ri,t0 |
}

.

Since θt : (0, min{1, 2–γ̄

τ–γ l }) → (0, min{ 1
2 ,‖A‖–1}) is locally Lipschitzian, rt ,λt ,νt : (0, min{1,

2–γ̄

τ–γ l }) → (0,∞) are locally Lipschitzian, and ri,t : (0, min{1, 2–γ̄

τ–γ l }) → [ci, di] is locally Lip-
schitzian for each i = 1, 2, . . . , N , we deduce that xt : (0, min{1, 2–γ̄

τ–γ l }) → H is locally Lips-
chitzian.

(iv) From the last inequality in (iii), the desired result follows immediately. �

We prove the following strong convergence theorem for the net {xt} as t → 0, which
guarantees the existence of solutions of the variational inequality (3.2).

Theorem 3.2 Let the net {xt} be defined via (3.1). If limt→0 θt = 0, then xt converges strongly
to x̃ ∈ Ω as t → 0, which solves VI (3.2). Equivalently, we have PΩ (2I – A)̃x = x̃.

Proof We first note that the uniqueness of a solution of VI (3.2) is a consequence of the
strong monotonicity of A – I (due to Lemma 2.4). See [2, 4, 5] for this fact.

Next, we prove that xt → x̃ as t → 0. For simplicity, let vt = Trt ut , ut = ΔN
t zt , yt = F2,νt xt ,

and zt = Rtxt = F1,λt yt . For any given p ∈ Ω , we observe that Trt p = p, ΔN
t p = p, and Rtp = p.

From (3.1), we write

xt – p = xt – wt + wt – p = xt – wt + (I – θtA)vt + θt
(

tγ Vxt + (I – tμG)vt
)

– p

= xt – wt + (I – θtA)(vt – p) + θt
[

t(γ Vxt – μGp) + (I – tμG)vt – (I – tμG)p
]

+ θt(I – A)p,

where wt = (I – θtA)vt + θt(tγ Vxt + (I – tμG)vt). In terms of (2.1) and (3.5), we have

‖xt – p‖2 = 〈xt – wt , xt – p〉 +
〈

(I – θtA)(vt – p), xt – p
〉

+ θt
[

t〈γ Vxt – μGp, xt – p〉
+
〈

(I – tμG)vt – (I – tμG)p, xt – p
〉]

+ θt
〈

(I – A)p, xt – p
〉

≤ (1 – θt γ̄ )‖xt – p‖2 + θt
[

(1 – tτ )‖xt – p‖2 + tγ l‖xt – p‖2

+ t
〈

(γ V – μG)p, xt – p
〉]

+ θt
〈

(I – A)p, xt – p
〉

=
[

1 – θt
(

γ̄ – 1 + t(τ – γ l)
)]‖xt – p‖2 + θt

(

t
〈

(γ V – μG)p, xt – p
〉

+
〈

(I – A)p, xt – p
〉)

.
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Therefore,

‖xt – p‖2 ≤ 1
γ̄ – 1 + t(τ – γ l)

(

t
〈

(γ V – μG)p, xt – p
〉

+
〈

(I – A)p, xt – p
〉)

. (3.26)

Since {xt} is bounded as t → 0 (due to Theorem 3.1(i)), there exists a subsequence {tn} in
(0, min{1, 2–γ̄

τ–γ l }) such that tn → 0 and xtn ⇀ x∗. We first show that x∗ ∈ Ω . To this end, we
divide its proof into four steps.

Step 1. We claim that limn→∞ ‖xtn – ztn‖ = 0, limn→∞ ‖ztn – utn‖ = 0, and limn→∞ ‖utn –
vtn‖ = 0, where ztn = Rtn xtn , utn = ΔN

tn ztn , and vtn = Trtn utn . Indeed, according to (3.9), (3.12),
and (3.14) in the proof of Theorem 3.1, we obtain the assertion.

Step 2. We claim that x∗ ∈ Fix(T). In fact, from the definition of vtn = Trtn utn , we have

〈

y – vtn , (I – T)vtn

〉

+
〈

y – vtn ,
vtn – utn

rtn

〉

≥ 0, ∀y ∈ C. (3.27)

Set wt = tv + (1 – t)x∗ for all t ∈ (0, 1] and v ∈ C. Then wt ∈ C. From (3.27) it follows that

〈

wt – vtn , (I – T)wt
〉≥ 〈

wt – vtn , (I – T)wt
〉

–
〈

wt – vtn , (I – T)vtn

〉

–
〈

wt – vtn ,
vtn – utn

rtn

〉

=
〈

wt – vtn , (I – T)wt – (I – T)vtn

〉

–
〈

wt – vtn ,
vtn – utn

rtn

〉

. (3.28)

By Step 1, we have vtn –utn
rtn

→ 0 as n → ∞. Moreover, since xtn ⇀ x∗, by Step 1 we have
vtn ⇀ x∗. Since I – T is monotone, we also have that 〈wt – vtn , (I – T)wt – (I – T)vtn〉 ≥ 0.
Thus, from (3.28) it follows that

0 ≤ lim
n→∞

〈

wt – vtn , (I – T)wt
〉

=
〈

wt – x∗, (I – T)wt
〉

,

and hence

〈

v – x∗, (I – T)wt
〉≥ 0, ∀v ∈ C.

Letting t → 0, we know from the continuity of I – T that

〈

v – x∗, (I – T)x∗〉≥ 0, ∀v ∈ C.

Putting v = Tx∗, we get ‖(I – T)x∗‖2 = 0, which leads to x∗ ∈ Fix(T).
Step 3. We claim that x∗ ∈ GSVI(C, F1, F2). Indeed, note that limt→0 λt = λ > 0 and

limt→0 νt = ν > 0. For each x ∈ C, we put x(t) := F1,λt x, x(0) := F1,λx, y(t) := F2,νt x, and
y(0) := F2,νx. Then, by Lemma 1.1, we have GSVI(C, F1, F2) = Fix(R), where R = F1,λF2,ν

and R is nonexpansive. Moreover, it is easy to see that

〈

y – x(t), F1x(t)
〉

+
1
λt

〈

y – x(t), x(t) – x
〉≥ 0, ∀y ∈ C, (3.29)

and

〈

y – x(0), F1x(0)
〉

+
1
λ

〈

y – x(0), x(0) – x
〉≥ 0, ∀y ∈ C. (3.30)
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Putting y = x(0) in (3.29) and y = x(t) in (3.30), we obtain

〈

x(0) – x(t), F1x(t)
〉

+
1
λt

〈

x(0) – x(t), x(t) – x
〉≥ 0 (3.31)

and

〈

x(t) – x(0), F1x(0)
〉

+
1
λ

〈

x(t) – x(0), x(0) – x
〉≥ 0. (3.32)

Adding up (3.31) and (3.32), we have

–
〈

x(t) – x(0), F1x(t) – F1x(0)
〉

+
〈

x(0) – x(t),
x(t) – x

λt
–

x(0) – x
λ

〉

≥ 0.

Since F1 is a monotone mapping, we know that

〈

x(0) – x(t),
x(t) – x

λt
–

x(0) – x
λ

〉

≥ 0,

and hence
〈

x(t) – x(0), x(0) – x(t) + x(t) – x –
λ

λt

(

x(t) – x
)
〉

≥ 0.

So it follows that

∥
∥x(t) – x(0)

∥
∥

2 ≤
〈

x(t) – x(0), x(t) – x –
λ

λt

(

x(t) – x
)
〉

=
〈

x(t) – x(0),
(

1 –
λ

λt

)
(

x(t) – x
)
〉

≤ ∥
∥x(t) – x(0)

∥
∥ · |λt – λ|

λt

∥
∥x(t) – x

∥
∥,

which immediately yields

‖F1,λt x – F1,λx‖ ≤ |λt – λ|
λt

‖F1,λt x – x‖. (3.33)

By using arguments similar to those of (3.33), we have

‖F2,νt x – F2,νx‖ ≤ |νt – ν|
νt

‖F2,νt x – x‖. (3.34)

Now, putting t = tn, x = F2,νxtn in (3.33), and t = tn, x = xtn in (3.34), respectively, we deduce
that

‖F1,λtn F2,νxtn – F1,λF2,νxtn‖ ≤ |λtn – λ|
λtn

‖F1,λtn F2,νxtn – F2,νxtn‖

and

‖F2,νtn xtn – F2,νxtn‖ ≤ |νtn – ν|
νtn

‖F2,νtn xtn – xtn‖.
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Since limn→∞ λtn = λ > 0 and limn→∞ νtn = ν > 0, it follows from the last two inequalities
that

lim
n→∞‖F1,λtn F2,νxtn – F1,λF2,νxtn‖ = lim

n→∞‖F2,νtn xtn – F2,νxtn‖ = 0. (3.35)

Also, we observe that

‖Rxtn – xtn‖
≤ ‖F1,λF2,νxtn – F1,λtn F2,νxtn‖ + ‖F1,λtn F2,νxtn – F1,λtn F2,νtn xtn‖

+ ‖F1,λtn F2,νtn xtn – xtn‖
≤ ‖F1,λF2,νxtn – F1,λtn F2,νxtn‖ + ‖F2,νxtn – F2,νtn xtn‖ + ‖F1,λtn F2,νtn xtn – xtn‖
= ‖F1,λF2,νxtn – F1,λtn F2,νxtn‖ + ‖F2,νxtn – F2,νtn xtn‖ + ‖Rtn xtn – xtn‖. (3.36)

Since Rtn xtn – xtn → 0 (due to Step 1), from (3.35) and (3.36) we get

lim
n→∞‖Rxtn – xtn‖ = 0. (3.37)

Taking into account that xtn ⇀ x∗ and xtn – Rxtn → 0 (due to (3.37)), from Lemma 2.3 we
get x∗ = Rx∗, that is, x∗ ∈ Fix(R) = GSVI(C, F1, F2).

Step 4. We claim that x∗ ∈ ⋂N
i=1 GMEP(Θi,ϕi, Bi). In fact, since Δi

tn ztn = T (Θi ,ϕi)
ri,tn (I –

ri,tn Bi)Δi–1
tn ztn , for each i = 1, 2, . . . , N , we have

0 ≤ Θi
(

Δi
tn ztn , y

)

+ ϕi(y) – ϕi
(

Δi
tn ztn

)

+
〈

BiΔ
i–1
tn ztn , y – Δi

tn ztn

〉

+
1

ri,tn

〈

y – Δi
tn ztn ,Δi

tn ztn – Δi–1
tn ztn

〉

.

By (A2), we have

Θi
(

y,Δi
tn ztn

)≤ ϕi(y) – ϕi
(

Δi
tn ztn

)

+
〈

BiΔ
i–1
tn ztn , y – Δi

tn ztn

〉

+
1

ri,tn

〈

y – Δi
tn ztn ,Δi

tn ztn – Δi–1
tn ztn

〉

.

Let wt = tv + (1 – t)x∗ for all t ∈ (0, 1] and v ∈ C. This implies that wt ∈ C. Then we have

〈

wt – Δi
tn ztn , Biwt

〉

≥ ϕi
(

Δi
tn ztn

)

– ϕi(wt) +
〈

wt – Δi
tn ztn , Biwt

〉

–
〈

wt – Δi
tn ztn , BiΔ

i–1
tn ztn

〉

–
〈

wt – Δi
tn ztn ,

Δi
tn ztn – Δi–1

tn ztn

ri,tn

〉

+ Θi
(

wt ,Δi
tn ztn

)

= ϕi
(

Δi
tn ztn

)

– ϕi(wt) +
〈

wt – Δi
tn ztn , Biwt – BiΔ

i
tn ztn

〉

+
〈

wt – Δi
tn ztn , BjΔ

i
tn ztn – BiΔ

i–1
tn ztn

〉

–
〈

wt – Δi
tn ztn ,

Δi
tn ztn – Δi–1

tn ztn

ri,tn

〉

+ Θi
(

wt ,Δi
tn ztn

)

.
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By the same arguments as in the proof of Theorem 3.1, we have ‖BiΔ
i
tn ztn –BiΔ

i–1
tn ztn‖ → 0

as n → ∞. In the meantime, by the monotonicity of Bi, we obtain 〈wt – Δi
tn ztn , Biwt –

BiΔ
i
tn ztn〉 ≥ 0. Then by (A4) we get
〈

wt – x∗, Biwt
〉≥ ϕi

(

x∗) – ϕi(wt) + Θi
(

wt , x∗).

Utilizing (A1), (A4), and the last inequality, we obtain

0 = Θi(wt , wt) + ϕi(wt) – ϕi(wt)

≤ tΘi(wt , v) + (1 – t)Θi
(

wt , x∗) + tϕi(v) + (1 – t)ϕi
(

x∗) – ϕi(wt)

≤ t
[

Θi(wt , v) + ϕi(v) – ϕi(wt)
]

+ (1 – t)
〈

wt – x∗, Biwt
〉

= t
[

Θi(wt , v) + ϕi(v) – ϕi(wt)
]

+ (1 – t)t
〈

v – x∗, Biwt
〉

,

and hence

0 ≤ Θi(wt , v) + ϕi(v) – ϕi(wt) + (1 – t)
〈

v – x∗, Biwt
〉

.

Letting t → 0, we have, for each v ∈ C,

0 ≤ Θi
(

x∗, v
)

+ ϕi(v) – ϕi
(

x∗) +
〈

v – x∗, Bix∗〉.

This implies that x∗ ∈ GMEP(Θi,ϕi, Bi) and hence x∗ ∈ ⋂N
i=1 GMEP(Θi,ϕi, Bi). This to-

gether with Steps 2 and 3 attains x∗ ∈ Ω .
Finally, we show that x∗ is a solution of VI (3.2). In fact, putting xtn in place of xt in (3.26)

and taking the limit as tn → 0, we obtain

∥
∥x∗ – p

∥
∥

2 ≤ 1
γ̄ – 1

〈

(I – A)p, x∗ – p
〉

, ∀p ∈ Ω .

In particular, x∗ solves the following VI:

x∗ ∈ Ω ,
〈

(A – I)p, x∗ – p
〉≤ 0, ∀p ∈ Ω ,

or the equivalent dual variational inequality

x∗ ∈ Ω ,
〈

(A – I)x∗, x∗ – p
〉≤ 0, ∀p ∈ Ω .

That is, x∗ ∈ Ω is a solution of VI (3.2). Hence x∗ = x̃ by uniqueness. In a summary, we
have proven that each cluster point of {xt} (as t → 0) equals x̃. Therefore xt → x̃ as t → 0.
VI (3.2) can be rewritten as

〈

(2I – A)̃x – x̃, x̃ – p
〉≥ 0, ∀p ∈ Ω .

So, in terms of (2.1), this is equivalent to the fixed point equation

PΩ (2I – A)̃x = x̃.

This completes the proof. �

Taking T ≡ I , G ≡ I , μ = 1, and γ = 1 in Theorem 3.2, we have the following corollary.
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Corollary 3.1 Let {xt} be defined by

xt = PC
[

(I – θtA)ΔN
t Rtxt + θt

(

tVxt + (1 – t)ΔN
t Rtxt

)]

.

If limt→0 θt = 0, then xt converges strongly as t → 0 to x̃ ∈ Ω :=
⋂N

i=1 GMEP(Θi,ϕi, Bi) ∩
GSVI(C, B1, B2), which is the unique solution of the VI

〈

(A – I )̃x, x̃ – p
〉≤ 0, ∀p ∈ Ω . (3.38)

Proof If T ≡ I , then Tr in Lemma 2.8 is the identity mapping. Thus the result follows from
Theorem 3.2. �

We are now in a position to prove the strong convergence of the sequence {xn} generated
by the general explicit iterative scheme (3.3) to x̃ ∈ Ω , which is the unique solution to VI
(3.2).

Theorem 3.3 Let {xn} be the sequence generated by the explicit algorithm (3.3). Let {αn},
{βn}, {rn}, {λn}, {νn}, and {ri,n}N

i=1 satisfy the following conditions:
(C1) {αn} ⊂ [0, 1] and {βn} ⊂ (0, 1], αn → 0 and βn → 0 as n → ∞;
(C2)

∑∞
n=0 βn = ∞;

(C3)
∑∞

n=0 |αn+1 – αn| < ∞, and |βn+1 – βn| ≤ o(βn+1) + σn,
∑∞

n=0 σn < ∞ (the perturbed
control condition);

(C4) {rn} ⊂ (0,∞), lim infn→∞ rn > 0, and
∑∞

n=0 |rn+1 – rn| < ∞;
(C5) {λn} ⊂ (0,∞), limn→∞ λn = λ > 0, and

∑∞
n=0 |λn+1 – λn| < ∞;

(C6) {νn} ⊂ (0,∞), limn→∞ νn = ν > 0, and
∑∞

n=0 |νn+1 – νn| < ∞;
(C7) {ri,n} ⊂ [ci, di] ⊂ (0, 2μi) ∀i ∈ {1, 2, . . . , N}, and

∑∞
n=0(

∑N
i=1 |ri,n+1 – ri,n|) < ∞.

Then {xn} converges strongly to x̃ ∈ Ω :=
⋂N

i=1 GMEP(Θi,ϕi, Bi) ∩ GSVI(C, F1, F2) ∩ Fix(T),
which is the unique solution of VI (3.2).

Proof First, note that from condition (C1), without loss of generality, we assume that αnτ <
1, βnγ̄ < 1 and 2βn(γ̄ –1)

1–βn
< 1 for all n ≥ 0. Let x̃ ∈ Ω be the unique solution of VI (3.2). (The

existence of x̃ follows from Theorem 3.2.)
From now, we put zn = Rnxn, un = ΔN

n zn, and vn = Trn un. Take p ∈ Ω . Then p = Trn p
by Lemma 2.8(iii), p = Δi

np (= T (Θi ,ϕi)
ri,n (I – ri,nBi)p) by Proposition 2.1(iii), and p = Rnp by

Lemma 1.1.
We divide the proof into several steps as follows.
Step 1. We show that {xn} is bounded. Indeed, utilizing Proposition 2.1(ii) and Proposi-

tion 2.2, we have

‖un – p‖ =
∥
∥T (ΘN ,ϕN )

rN ,n
(I – rN ,nBN )ΔN–1

n zn – T (ΘN ,ϕN )
rN ,n

(I – rN ,nBN )ΔN–1
n p

∥
∥

≤ ∥
∥(I – rN ,nBN )ΔN–1

n zn – (I – rN ,nBN )ΔN–1
n p

∥
∥

≤ ∥
∥ΔN–1

n zn – ΔN–1
n p

∥
∥

≤ · · ·
≤ ∥
∥Δ0

nzn – Δ0
np
∥
∥ = ‖zn – p‖. (3.39)
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It is easy from the nonexpansion of Rn to see that

‖zn – p‖ = ‖Rnxn – Rnp‖ ≤ ‖xn – p‖,

which together with the nonexpansion of Trn and (3.39) implies that

‖vn – p‖ = ‖Trn un – Trn p‖ ≤ ‖un – p‖ ≤ ‖zn – p‖ ≤ ‖xn – p‖. (3.40)

From (3.3) and (3.40), we get

‖xn+1 – p‖
≤ ∥
∥(I – βnA)vn + βn

(

αnγ Vxn + (I – αnμG)vn
)

– p
∥
∥

=
∥
∥(I – βnA)vn – (I – βnA)p + βn

(

αnγ Vxn + (I – αnμG)vn – p
)

+ βn(I – A)p
∥
∥

≤ ∥
∥(I – βnA)vn – (I – βnA)p

∥
∥ + βn

∥
∥αnγ Vxn + (I – αnμG)vn – p

∥
∥ + βn

∥
∥(I – A)p

∥
∥

=
∥
∥(I – βnA)vn – (I – βnA)p

∥
∥

+ βn
∥
∥(I – αnμG)vn – (I – αnμG)p + αn(γ Vxn – μGp)

∥
∥ + βn

∥
∥(I – A)p

∥
∥

≤ (1 – βnγ̄ )‖vn – p‖ + βn
[∥
∥(I – αnμG)vn – (I – αnμG)p

∥
∥

+ αn
(

γ ‖Vxn – Vp‖ + ‖γ Vp – μGp‖)] + βn
∥
∥(I – A)p

∥
∥

≤ (1 – βnγ̄ )‖xn – p‖ + βn
[

(1 – αnτ )‖xn – p‖ + αn
(

γ l‖xn – p‖ +
∥
∥(γ V – μG)p

∥
∥
)]

+ βn‖I – A‖‖p‖
=
[

1 – βn
(

γ̄ – 1 + αn(τ – γ l)
)]‖xn – p‖ + βn

[‖I – A‖‖p‖ + αn
∥
∥(γ V – μG)p

∥
∥
]

≤ [

1 – βn(γ̄ – 1)
]‖xn – p‖ + βn

[‖I – A‖‖p‖ +
∥
∥(γ V – μG)p

∥
∥
]

=
[

1 – βn(γ̄ – 1)
]‖xn – p‖ + βn(γ̄ – 1)

‖I – A‖‖p‖ + ‖(γ V – μG)p‖
γ̄ – 1

≤ max

{

‖xn – p‖,
‖I – A‖‖p‖ + ‖(γ V – μG)p‖

γ̄ – 1

}

.

By induction, we derive

‖xn – p‖ ≤ max

{

‖x0 – p‖,
‖I – A‖‖p‖ + ‖(γ V – μG)p‖

γ̄ – 1

}

, ∀n ≥ 0.

This implies that {xn} is bounded and so are {Vxn}, {un}, {vn}, {wn}, {zn}, and {Gvn}. As a
consequence, with the control condition (C1), we get

‖xn+1 – vn‖ ≤ βn‖wn – Avn‖ → 0 (n → ∞). (3.41)

Step 2. We show that limn→∞ ‖xn+1 – xn‖ = 0. To this end, let yn = F2,νn xn, yn–1 =
F2,νn–1 xn–1, zn = F1,λn yn, and zn–1 = F1,λn–1 yn–1. Then we derive

〈y – yn–1, F2yn–1〉 +
1

νn–1
〈y – yn–1, yn–1 – xn–1〉 ≥ 0, ∀y ∈ C, (3.42)
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and

〈y – yn, F2yn〉 +
1
νn

〈y – yn, yn – xn〉 ≥ 0, ∀y ∈ C. (3.43)

Putting y = yn in (3.42) and y = yn–1 in (3.43), we obtain

〈yn – yn–1, F2yn–1〉 +
1

νn–1
〈yn – yn–1, yn–1 – xn–1〉 ≥ 0 (3.44)

and

〈yn–1 – yn, F2yn〉 +
1
νn

〈yn–1 – yn, yn – xn〉 ≥ 0. (3.45)

Adding up (3.44) and (3.45), we have

〈yn – yn–1, F2yn–1 – F2yn〉 +
〈

yn – yn–1,
yn–1 – xn–1

νn–1
–

yn – xn

νn

〉

≥ 0,

which together with the monotonicity of F2 implies that

〈

yn – yn–1,
yn–1 – xn–1

νn–1
–

yn – xn

νn

〉

≥ 0,

and hence
〈

yn – yn–1, yn–1 – yn + yn – xn–1 –
νn–1

νn
(yn – xn)

〉

≥ 0.

It follows that

‖yn – yn–1‖2 ≤
〈

yn – yn–1, xn – xn–1 +
(

1 –
νn–1

νn

)

(yn – xn)
〉

≤ ‖yn – yn–1‖
(

‖xn – xn–1‖ +
1
νn

|νn – νn–1|‖yn – xn‖
)

,

which immediately yields

‖yn – yn–1‖ ≤ ‖xn – xn–1‖ +
1
νn

|νn – νn–1|‖yn – xn‖. (3.46)

By using arguments similar to those of (3.46), we get

‖zn – zn–1‖ ≤ ‖yn – yn–1‖ +
1
λn

|λn – λn–1|‖zn – yn‖. (3.47)

Substituting (3.46) for (3.47), we have

‖zn – zn–1‖ ≤ ‖yn – yn–1‖ +
1
λn

|λn – λn–1|‖zn – yn‖

≤ ‖xn – xn–1‖ +
1
νn

|νn – νn–1|‖yn – xn‖ +
1
λn

|λn – λn–1|‖zn – yn‖. (3.48)
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Note that vn = Trn un and vn–1 = Trn–1 un–1. By using arguments similar to those of (3.46),
we obtain

‖vn – vn–1‖ ≤ ‖un – un–1‖ +
1
rn

|rn – rn–1|‖vn – un‖. (3.49)

Also, utilizing arguments similar to those of (3.25) in the proof of Theorem 3.1, we have

‖un – un–1‖ =
∥
∥ΔN

n zn – ΔN
n–1zn–1

∥
∥

≤ |rN ,n – rN ,n–1|
[
∥
∥BNΔN–1

n zn
∥
∥ +

1
rN ,n

∥
∥T (ΘN ,ϕN )

rN ,n
(I – rN ,nBN )ΔN–1

n zn

– (I – rN ,nBN )ΔN–1
n zn

∥
∥

]

+ · · · + |r1,n – r1,n–1|
[
∥
∥B1Δ

0
nzn
∥
∥

+
1

r1,n

∥
∥T (Θ1,ϕ1)

r1,n (I – r1,nB1)Δ0
nzn – (I – r1,nB1)Δ0

nzn
∥
∥

]

+
∥
∥Δ0

nzn – Δ0
n–1zn–1

∥
∥

≤ M̃1

N
∑

i=1

|ri,n – ri,n–1| + ‖zn – zn–1‖, (3.50)

where M̃1 > 0 is a constant such that, for each n ≥ 0,

N
∑

i=1

[
∥
∥BiΔ

i–1
n zn

∥
∥ +

1
ri,n

∥
∥T (Θi ,ϕi)

ri,n
(I – ri,nBi)Δi–1

n zn – (I – ri,nBi)Δi–1
n zn

∥
∥

]

} ≤ M̃1.

So it follows from (3.48), (3.49), and (3.50) that

‖vn – vn–1‖ ≤ ‖un – un–1‖ +
1
rn

|rn – rn–1|‖vn – un‖

≤ M̃1

N
∑

i=1

|ri,n – ri,n–1| + ‖zn – zn–1‖ +
1
rn

|rn – rn–1|‖vn – un‖

≤ M̃1

N
∑

i=1

|ri,n – ri,n–1| + ‖xn – xn–1‖ +
1
νn

|νn – νn–1|‖yn – xn‖

+
1
λn

|λn – λn–1|‖zn – yn‖ +
1
rn

|rn – rn–1|‖vn – un‖. (3.51)

Since lim infn→∞ rn > 0, limn→∞ λn = λ > 0, and limn→∞ νn = ν > 0, it is easy to see from
(3.51) that, for each n ≥ 0,

‖vn – vn–1‖ ≤ ‖xn – xn–1‖ + M̃

[ N
∑

i=1

|ri,n – ri,n–1| + |νn – νn–1|

+ |λn – λn–1| + |rn – rn–1|
]

, (3.52)
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where M̃ > 0 is a constant such that

sup
n≥0

{

M̃1 +
1
νn

‖yn – xn‖ +
1
λn

‖zn – yn‖ +
1
rn

‖vn – un‖
}

≤ M̃.

Now, simple calculations yield that

wn – wn–1 = αnγ Vxn + (I – αnμG)vn – αn–1γ Vxn–1 – (I – αn–1μG)vn–1

= (αn – αn–1)(γ Vxn–1 – μGvn–1) + αnγ (Vxn – Vxn–1)

+ (I – αnμG)vn – (I – αnμG)vn–1.

In terms of (3.52) and Lemma 2.6, we obtain

‖wn – wn–1‖ ≤ |αn – αn–1|
(

γ ‖Vxn–1‖ + μ‖Gvn–1‖
)

+ αnγ l‖xn – xn–1‖
+ (1 – ταn)‖vn – vn–1‖

≤ |αn – αn–1|
(

γ ‖Vxn–1‖ + μ‖Gvn–1‖
)

+ αnγ l‖xn – xn–1‖

+ (1 – ταn)‖xn – xn–1‖ + M̃

[ N
∑

i=1

|ri,n – ri,n–1|

+ |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
]

= |αn – αn–1|
(

γ ‖Vxn–1‖ + μ‖Gvn–1‖
)

+
(

1 – αn(τ – γ l)
)‖xn – xn–1‖

+ M̃

[ N
∑

i=1

|ri,n – ri,n–1| + |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
]

≤ ‖xn – xn–1‖ + M̃2

[ N
∑

i=1

|ri,n – ri,n–1| + |αn – αn–1|

+ |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
]

, (3.53)

where M̃2 = supn≥0{γ ‖Vxn‖ + μ‖Gvn‖ + M̃}. By (3.53) and Lemma 2.5, we derive

‖xn+1 – xn‖ ≤ ∥
∥(I – βnA)vn + βnwn – (I – βn–1A)vn–1 – βn–1wn–1

∥
∥

≤ ∥
∥(I – βnA)(vn – vn–1)

∥
∥ + |βn – βn–1|‖A‖‖vn–1‖

+ βn‖wn – wn–1‖ + |βn – βn–1|‖wn–1‖

≤ (1 – βnγ̄ )‖vn – vn–1‖ + βn

[

‖xn – xn–1‖ + M̃2

( N
∑

i=1

|ri,n – ri,n–1|

+ |αn – αn–1| + |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
)]

+ |βn – βn–1|M̃3

≤ (1 – βnγ̄ )

[

‖xn – xn–1‖ + M̃

( N
∑

i=1

|ri,n – ri,n–1| + |νn – νn–1| + |λn – λn–1|



Wang et al. Journal of Inequalities and Applications        (2018) 2018:315 Page 28 of 35

+ |rn – rn–1|
)]

+ βn

[

‖xn – xn–1‖ + M̃2

( N
∑

i=1

|ri,n – ri,n–1| + |αn – αn–1|

+ |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
)]

+ |βn – βn–1|M̃3

≤ (

1 – βn(γ̄ – 1)
)‖xn – xn–1‖ +

(

1 – βn(γ̄ – 1)
)

M̃2

( N
∑

i=1

|ri,n – ri,n–1|

+ |αn – αn–1| + |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
)

+ |βn – βn–1|M̃3

≤ (

1 – βn(γ̄ – 1)
)‖xn – xn–1‖ + M̃2

( N
∑

i=1

|ri,n – ri,n–1| + |αn – αn–1|

+ |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
)

+ |βn – βn–1|M̃3

≤ (

1 – βn(γ̄ – 1)
)‖xn – xn–1‖ + M̃2

( N
∑

i=1

|ri,n – ri,n–1| + |αn – αn–1|

+ |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
)

+
(

o(βn) + σn–1
)

M̃3, (3.54)

where M̃3 = supn≥0{‖A‖‖vn‖ + ‖wn‖}. By taking sn+1 = ‖xn+1 – xn‖, ωn = βn(γ̄ – 1), ωnδn =
M̃3o(βn), and

γn = σn–1M̃3 + M̃2

( N
∑

i=1

|ri,n – ri,n–1| + |αn – αn–1| + |νn – νn–1| + |λn – λn–1| + |rn – rn–1|
)

,

we deduce from (3.54) that

sn+1 ≤ (1 – ωn)sn + ωnδn + γn.

Hence, by conditions (C2)–(C7) and Lemma 2.2, we obtain

lim
n→∞‖xn+1 – xn‖ = 0.

Step 3. We show that limn→∞ ‖xn+1 – wn‖ = 0. Indeed, from (3.41) and condition (C1),
we derive

‖xn+1 – wn‖ ≤ ‖xn+1 – vn‖ + ‖vn – wn‖
≤ βn‖wn – Avn‖ + αn‖γ Vxn – μGvn‖ → 0 (n → ∞).

Step 4. We show that limn→∞ ‖xn – wn‖ = 0. In fact, by Step 2 and Step 3, we get

‖xn – wn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – wn‖ → 0 (n → ∞).

Step 5. We show that limn→∞ ‖xn – zn‖ = 0 and limn→∞ ‖xn – Rxn‖ = 0. In fact, we first
derive limn→∞ ‖xn – zn‖ = 0 by using arguments similar to those of (3.9) in the proof of
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Theorem 3.1, and then we obtain limn→∞ ‖xn – Rxn‖ = 0 by using arguments similar to
those of (3.37) in the proof of Theorem 3.2.

Step 6. We show that limn→∞ ‖zn – un‖ = 0 and limn→∞ ‖xn –ΔN
n xn‖ = 0. In fact, by using

arguments similar to those of (3.12) and (3.13) in the proof of Theorem 3.1, we obtain the
desired conclusions.

Step 7. We show that limn→∞ ‖un – vn‖ = 0 and limn→∞ ‖xn – Trn xn‖ = 0. In fact, by using
arguments similar to those of (3.14) and (3.15) in the proof of Theorem 3.1, we obtain the
desired conclusions.

Step 8. We show that lim supn→∞〈(I – A)̃x, xn – x̃〉 ≤ 0. To this end, take a subsequence
{xnk } of {xn} such that

lim sup
n→∞

〈

(I – A)̃x, xn – x̃
〉

= lim
k→∞

〈

(I – A)̃x, xnk – x̃
〉

.

Without loss of generality, we may assume that xnk ⇀ x̂. Utilizing Steps 5, 6, and 7 and
arguments similar to those of Steps 2, 3, and 4 in the proof of Theorem 3.2, we derive
x̂ ∈ Ω . Thus, from VI (3.2), we conclude

lim sup
n→∞

〈

(I – A)̃x, xn – x̃
〉

= lim
k→∞

〈

(I – A)̃x, xnk – x̃
〉

=
〈

(I – A)̃x, x̂ – x̃
〉≤ 0.

Step 9. We show that limn→∞ ‖xn – x̃‖ = 0. Note that x̃ ∈ Ω . From (3.3), x̃ = Rñx, x̃ = ΔN
n x̃,

and x̃ = Trn x̃, we obtain

wn – x̃ = (I – αnμG)vn – (I – αnμG)̃x + αn(γ Vxn – μG̃x)

and

xn+1 – x̃ = xn+1 – (I – βnA)vn – βnwn + (I – βnA)vn + βnwn – x̃

= xn+1 – (I – βnA)vn – βnwn + (I – βnA)(vn – x̃) + βn(wn – x̃) + βn(I – A)̃x.

Applying (2.1), (3.40) and Lemmas 2.1, 2.5, and 2.6, we deduce that

‖wn – x̃‖2 =
∥
∥(I – αnμG)vn – (I – αnμG)̃x + αn(γ Vxn – μG̃x)

∥
∥

2

≤ ∥
∥(I – αnμG)vn – (I – αnμG)̃x

∥
∥

2 + 2αn〈γ Vxn – μG̃x, wn – x̃〉
≤ (1 – αnτ )2‖vn – x̃‖2 + 2αn‖γ Vxn – μG̃x‖‖wn – x̃‖
≤ ‖xn – x̃‖2 + 2αn‖γ Vxn – μG̃x‖‖wn – x̃‖,

and hence

‖xn+1 – x̃‖2

=
∥
∥(I – βnA)(vn – x̃) + βn(wn – x̃) + βn(I – A)̃x + xn+1 – (I – βnA)vn – βnwn

∥
∥

2

≤ ∥
∥(I – βnA)(vn – x̃)

∥
∥

2 + 2βn〈wn – x̃, xn+1 – x̃〉
+ 2βn

〈

(I – A)̃x, xn+1 – x̃
〉

+ 2
〈

xn+1 – (I – βnA)vn – βnwn, xn+1 – x̃
〉



Wang et al. Journal of Inequalities and Applications        (2018) 2018:315 Page 30 of 35

≤ ∥
∥(I – βnA)(vn – x̃)

∥
∥

2 + 2βn〈wn – x̃, xn+1 – x̃〉 + 2βn
〈

(I – A)̃x, xn+1 – x̃
〉

≤ (1 – βnγ̄ )2‖vn – x̃‖2 + 2βn‖wn – x̃‖‖xn+1 – x̃‖ + 2βn
〈

(I – A)̃x, xn+1 – x̃
〉

≤ (1 – βnγ̄ )2‖xn – x̃‖2 + βn
(‖wn – x̃‖2 + ‖xn+1 – x̃‖2) + 2βn

〈

(I – A)̃x, xn+1 – x̃
〉

≤ (1 – βnγ̄ )2‖xn – x̃‖2 + βn
[‖xn – x̃‖2 + 2αn‖γ Vxn – μG̃x‖‖wn – x̃‖]

+ βn‖xn+1 – x̃‖2 + 2βn
〈

(I – A)̃x, xn+1 – x̃
〉

=
[

(1 – βnγ̄ )2 + βn
]‖xn – x̃‖2 + 2αnβn‖γ Vxn – μG̃x‖‖wn – x̃‖ + βn‖xn+1 – x̃‖2

+ 2βn
〈

(I – A)̃x, xn+1 – x̃
〉

. (3.55)

It then follows from (3.55) that

‖xn+1 – x̃‖2

≤ (1 – βnγ̄ )2 + βn

1 – βn
‖xn – x̃‖2 +

βn

1 – βn

[

2αn‖γ Vxn – μG̃x‖‖wn – x̃‖

+ 2
〈

(I – A)̃x, xn+1 – x̃
〉]

=
(

1 –
2βn(γ̄ – 1)

1 – βn

)

‖xn – x̃‖2 +
2βn(γ̄ – 1)

1 – βn
· 1

2(γ̄ – 1)
[

2αn‖γ Vxn – μG̃x‖‖wn – x̃‖

+ βnγ̄
2‖xn – x̃‖2 + 2

〈

(I – A)̃x, xn+1 – x̃
〉]

= (1 – ξn)‖xn – x̃‖2 + ξnδn,

where ξn = 2βn(γ̄ –1)
1–βn

, δn = 1
2(γ̄ –1) [2αn‖γ Vxn – μG̃x‖‖wn – x̃‖ + βnγ̄

2‖xn – x̃‖2 + 2〈(I –
A)̃x, xn+1 – x̃〉]. It can be readily seen from Step 2 and conditions (C1) and (C2) that ξn → 0,
∑∞

n=0 ξn = ∞, and lim supn→∞ δn ≤ 0. By Lemma 2.2, we conclude that limn→∞ ‖xn – x̃‖ = 0.
This completes the proof. �

Taking T ≡ I , G ≡ I , μ = 1, and γ = 1 in Theorem 3.3, we have the following corollary.

Corollary 3.2 Let {xn} be generated by the following iterative algorithm:
⎧

⎨

⎩

wn = αnVxn + (1 – αn)ΔN
n Rnxn,

xn+1 = PC[(I – βnA)ΔN
n Rnxn + βnwn], ∀n ≥ 1.

Assume that the sequences {αn}, {βn}, {λn}, {νn}, and {ri,n}N
i=1 satisfy conditions (C1)–(C3)

and (C5)–(C7) in Theorem 3.3. Then {xn} converges strongly to x̃ ∈ Ω :=
⋂N

i=1 GMEP(Θi,
ϕi, Bi) ∩ GSVI(C, F1, F2), which is the unique solution of VI (3.38).

Remark 3.1 Compared with Proposition 3.3, Theorem 3.4, and Theorem 3.7 in [11], re-
spectively, our Theorems 3.1, 3.2, and 3.3 improve and develop them in the following as-
pects:

(i) GSVI (1.3) with solutions being also fixed points of a continuous pseudocontinuous
mapping in [12, Proposition 3.3, Theorem 3.4, and Theorem 3.7] is extended to
GSVI (1.3) with solutions being also common solutions of a finite family of
generalized mixed equilibrium problems (GMEPs) and fixed points of a continuous
pseudocontinuous mapping in our Theorems 3.1, 3.2, and 3.3;
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(ii) in the argument process of our Theorems 3.1, 3.2, and 3.3, we use the variable
parameters λt and νt (resp., λn and νn) in place of the fixed parameters λ and ν in
the proof of [12, Proposition 3.3, Theorem 3.4, and Theorem 3.7], and additionally
deal with a pool of variable parameters {ri,t}N

i=1 (resp., {ri,n}N
i=1) involving a finite

family of GMEPs;
(iii) the iterative schemes in our Theorems 3.1, 3.2, and 3.3 are more advantageous and

more flexible than the iterative schemes in [12, Proposition 3.3, Theorem 3.4, and
Theorem 3.7], because they can be applied to solving three problems (i.e., GSVI
(1.3), a finite family of GMEPs, and the fixed point problem of a continuous
pseudocontractive mapping) and involve much more parameter sequences;

(iv) it is worth emphasizing that our general implicit iterative scheme (3.1) is very
different from Jung’s composite implicit iterative scheme in [12], because the term
“Trt Rxt” in Jung’s implicit scheme is replaced by the term “Trt Δ

N
t Rtxt” in our

implicit scheme (3.1). Moreover, the term “Trn Rxn” in Jung’s explicit scheme is
replaced by the term “TrnΔ

N
n Rnxn” in our explicit scheme (3.3).

4 Numerical examples
The purpose of this section is to give two examples and numerical results to illustrate the
applicability, effectiveness, and stability of our algorithm.

Example 4.1 (Example of Theorem 3.3) Let H = R and C = [0, 100]. Let the inner product
〈·, ·〉 : R × R → R be defined by 〈x, y〉 = xy. Let N = 2, Vx = 2x, Gx = 1

2 x, Tx = x, B1x = 1
2 x,

B2x = 1
3 x, F1x = 1

2 x, F2x = x, Θ1(x, y) = y2 – x2, Θ2(x, y) = –3x2 + xy + 2y2, ϕ1x = x2, ϕ2x = 0,
and Ax = 3

2 x. Let αn = 1
n , βn = 1

3(n+1) , rn = 1, r1,n = 1
2 , r2,n = 1, λn = 1, νn = 1

2 , γ = 1
8 , μ = 2

3 . It
is easy to calculate that T (Θ1,ϕ1)

r1,n x = 1
3 x, T (Θ2,ϕ2)

r2,n x = 1
6 x, Trn x = x, F1,λn x = 1

2 x, and F2,νn x = 1
2 x.

Choose an arbitrary initial guess x1 = 4. We get the numerical results of Algorithm (3.3).
Table 1 shows the value of the sequence {xn}.
Figure 1 shows the convergence of the iterative sequence of Algorithm (3.3).
Solution: We can see from both Table 1 and Fig. 1 that the sequence {xn} converges

to 0, that is, 0 is the solution in Example 4.1. In addition, it is also easy to check from
Example 4.1 that

⋂2
i=1 GMEP(Θi,ϕi, Bi) ∩ GSVI(C, F1, F2) ∩ Fix(T) = {0}. Therefore, the

iterative algorithm of Theorem 3.3 is efficient.

Example 4.2 (Example of Theorem 3.7 in [12]) Let H = R and C = [0, 100]. Let the inner
product 〈·, ·〉 : R × R → R be defined by 〈x, y〉 = xy. Let Vx = 2x, Gx = 1

2 x, Tx = x, F1x = 1
2 x,

F2x = x, and Ax = 3
2 x. Let αn = 1

n , βn = 1
3(n+1) , rn = 1, λ = 1, ν = 1

2 , γ = 1
8 , μ = 2

3 . Choose
an arbitrary initial guess x1 = 4. We get the numerical results of Algorithm (1.5) (Algo-
rithm (3.10) of [12]).

Table 1 The values of xn

n xn

1 4.0000
2 1.8261× 10–1

3 3.3191× 10–3

4 3.7633× 10–5

5 3.2426× 10–7

6 2.3546× 10–9

n xn

7 1.5285× 10–11

8 9.1892× 10–14

9 5.2325× 10–16

10 2.8636× 10–18

11 1.5212× 10–20

12 7.8994× 10–23
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Figure 1 The convergence of {xn} with initial x1 = 4

Table 2 The values of xn

n xn

1 4.0000
2 1.0278
3 2.5219× 10–1

4 6.1587× 10–2

5 1.5055× 10–2

6 3.6870× 10–3

n xn

7 9.0468× 10–4

8 2.2236× 10–4

9 5.4731× 10–5

10 1.3488× 10–5

11 3.3278× 10–6

12 8.2181× 10–7

Figure 2 The convergence of {xn} with initial x1 = 4

Table 2 shows the value of the sequence {xn}.
The Fig. 2 shows the convergence of the iterative sequence of Algorithm (1.5).
Solution: We can see from both Table 2 and Fig. 2 that the sequence {xn} converges

to 0, that is, 0 is the solution in Example 4.2. In addition, it is also easy to check from
Example 4.2 that GSVI(C, F1, F2) ∩ Fix(T) = {0}.

Remark 4.1 From Tables 1, 2 and Figs. 1, 2, it is readily seen that the convergence of {xn} to
0 in Example 4.1 is faster than the one of {xn} to 0 in Example 4.2. Therefore, our algorithm
is more applicable, efficient, and stable than the algorithm in [12].
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5 Application
In this section, applying our main result Theorem 3.3, we can prove strong convergence
theorems for approximating the solution of the standard constrained convex optimization
problem.

Let C be a closed convex subset of H . The standard constrained convex optimization
problem is to find x∗ ∈ C such that

f
(

x∗) = min
x∈C

f (x), (5.1)

where f : C → R is a convex, Fréchet differentiable function. The set of the solutions of
(5.1) is denoted by Φf .

Lemma 5.1 (Optimality condition, [25]) A necessary condition of optimality for a point
x∗ ∈ C to be a solution of the minimization problem (5.1) is that x∗ solves the variational
inequality

〈∇f
(

x∗), x – x∗〉≥ 0 (5.2)

for all x ∈ C. Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC(I – λ∇f )x∗

for every λ > 0. If, in addition, f is convex, then the optimality condition (5.2) is also suffi-
cient.

Theorem 5.1 Let C be a nonempty closed convex subset of a real Hilbert space H . Let fi (i =
1, 2, . . . , N ): C → R be a real-valued convex function with the gradient ∇fi being 1

Lfi
-inverse

strongly monotone and continuous with Lfi > 0. Let Θi, ϕi, A, V , G, F1, F2, Rn, F1,λn , F2,νn ,
Trn , and T (Θi ,ϕi)

ri,n be defined as in Theorem 3.3. Given x1 ∈ C and let {xn} be the sequence
generated by the following explicit algorithm:

⎧

⎨

⎩

wn = αnγ Vxn + (I – αnμG)TrnΛ
N
n Rnxn,

xn+1 = PC[(I – βnA)TrnΛ
N
n Rnxn + βnwn], ∀n ≥ 1,

(5.3)

where Λi
n = T (Θi ,ϕi)

ri,n (I – ri,n∇fi)T (Θi–1,ϕi–1)
ri–1,n (I – ri–1,n∇fi–1) · · ·T (Θ1,ϕ1)

r1,n (I – r1,n∇f1) and Λ0
n = I .

Assume that {αn}, {βn}, {rn}, {λn}, {νn}, and {ri,n}N
i=1 satisfy conditions (C1)–(C7) in

Theorem 3.3. Then {xn} converges strongly to x̃ ∈ Ω :=
⋂N

i=1 MEP(Θi,ϕi) ∩ ⋂N
i=1 Φfi ∩

GSVI(C, F1, F2) ∩ Fix(T), which is the unique solution of VI (3.2).

Proof By using Lemma 5.1 and Theorem 3.3, we obtain the desired conclusion directly. �

6 Conclusions
We introduced and analyzed one general implicit iterative scheme and another general
explicit iterative scheme for finding a solution of a general system of variational inequali-
ties (GSVI) with the constraints of finitely many generalized mixed equilibrium problems
and a fixed point problem of a continuous pseudocontractive mapping in a Hilbert space.
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Moreover, we established strong convergence of the proposed implicit and explicit itera-
tive schemes to a solution of the GSVI, which is the unique solution of a certain variational
inequality. Our Theorems 3.1–3.3 not only improve and develop the main results of [1]
and [12] but also improve and develop Theorems 3.1 and 3.2 of [9], Theorems 3.1 and 3.2
of [10], and Proposition 3.1, Theorems 3.2 and 3.5 of [11].
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