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1 Introduction
The theory of interval analysis has a long history which can be traced back to Archimedes’
computation of the circumference of a circle. It fell into oblivion for a long time because
of lack of applications to other sciences. To the best of our knowledge, significant work
did not appear in this area until the 1950s. The first monograph on interval analysis is
the celebrated book of R.E. Moore [28]. One of the initial uses of interval analysis was
to compute the error bounds of the numerical solutions of a finite state machine. How-
ever, interval analysis has emerged as very useful over the last fifty years due to its many
applications in various fields. We now see applications in automatic error analysis [42],
computer graphics [45], neural network output optimization [47], and many others. For
more fundamental results and applications of interval analysis theory, we refer the reader
to the papers [7, 8, 10, 11, 37] and monograph [29].

Recently, several classical integral inequalities have been extended not only to the con-
text of interval-valued functions by Chalco-Cano et al. [5, 6], Román-Flores et al. [40,
41], Flores-Franulič et al. [19], Costa and Román-Flores [12], but also to more general set-
valued maps by Matkowski and Nikodem [24], Mitroi et al. [27], and Nikodem et al. [30].
In particular, Costa [9] presented a new fuzzy version of Jensen inequalities type integral
for fuzzy-interval-valued functions. Motivated by Costa [9] and Dragomir [15], we intro-
duce the h-convex concept for interval-valued functions. Under the h-convex concept,
we present new Jensen type inequalities for interval-valued functions. The second objec-
tive of the article is to promote the following inequality which is known as the Hermite–
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Hadamard inequality [21, 22]:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
,

where f : [a, b] → R is a convex function. For various interesting extensions and general-
izations of Hermite–Hadamard inequalities, see [16–18, 20, 26, 31, 34–36, 39, 48–50]. In
[43], Sarikaya et al. proved a variant of the Hermite–Hadamard inequality for h-convex
function as follows.

Theorem 1.1 Let f : [a, b] →R be an h-convex function and h( 1
2 ) �= 0. Then

1
2h( 1

2 )
f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ [

f (a) + f (b)
]∫ 1

0
h(t) dt.

Since then, some further refinements and extensions of the Hermite–Hadamard in-
equalities for h-convex functions have been extensively studied in [2, 14, 25, 32, 33, 44].
Some Hermite–Hadamard and Jensen type inequalities for strongly h-convex functions
were obtained also in [1, 23]. In this paper, we establish some Hermite–Hadamard type
inequalities for h-convex interval-valued functions. Our results generalize the previous
inequalities presented in [9, 32, 43].

The paper is organized as follows. After a section of preliminaries, in Sect. 3 the h-convex
(h-concave, h-affine) concepts for interval-valued functions are given. Moreover, some
Jensen type inequalities and equalities are proved, respectively. In Sect. 4, we obtain some
Hermite–Hadamard type inequalities for h-convex interval-valued functions. In Sect. 5,
we discuss the main results and limitation of the present studies. We end with Sect. 6 of
conclusions and future work.

2 Preliminaries
In this section, we recall some basic definitions, notations, properties, and results on in-
terval analysis, which are used throughout the paper. A real interval [u] is the bounded,
closed subset of R defined by

[u] = [u, u] = {x ∈ R|u ≤ x ≤ u},

where u, u ∈R and u ≤ u. The numbers u and u are called the left and the right endpoints
of [u, u], respectively. When u and u are equal, the interval [u] is said to be degenerate. In
this paper, the term interval will mean a nonempty interval. We call [u] positive if u > 0 or
negative if u < 0. The inclusion “⊆” is defined by

[u, u] ⊆ [v, v] ⇐⇒ v ≤ u, u ≤ v.

For an arbitrary real number λ and [u], the interval λ[u] is given by

λ[u, u] =

⎧⎪⎪⎨
⎪⎪⎩

[λu,λu] if λ > 0,

{0} if λ = 0,

[λu,λu] if λ < 0.
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For [u] = [u, u] and [v] = [v, v], the four arithmetic operators (+, –, ·, /) are defined by

[u] + [v] = [u + v, u + v],

[u] – [v] = [u – v, u – v],

[u] · [v] =
[
min{uv, uv, uv, uv}, max{uv, uv, uv, uv}],

[u]/[v] =
[
min{u/v, u/v, u/v, u/v},

max{u/v, u/v, u/v, u/v}], where 0 /∈ [v, v].

We denote byRI the set of all intervals ofR, and byR+
I andR

–
I the sets of all positive inter-

vals and negative intervals of R, respectively. The Hausdorff–Pompeiu distance between
intervals [u, u] and [v, v] is defined by

d
(
[u, u], [v, v]

)
= max

{|u – v|, |u – v|}.

It is well known that (RI , d) is a complete metric space.
A division of [a, b] is any finite ordered subset D having the form

D = {a = t0 < t1 < · · · < tn = b}.

The mesh of a division D is the maximum length of the subintervals comprising D, i.e.,

mesh(D) = max{ti – ti–1 : k = 1, 2, . . . , n}.

Let D(δ, [a, b]) be the set of all D ∈D([a, b]) such that mesh(D) < δ. In each interval [ti–1, ti],
where 1 ≤ i ≤ n, choose an arbitrary point ξi and form the sum

S(f , D, δ) =
n∑

i=1

f (ξi)(ti – ti–1),

where f : [a, b] → R (or RI ). We call S(f , D, δ) a Riemann sum of f corresponding to D ∈
D(δ, [a, b]).

Definition 2.1 A function f : [a, b] → R is called Riemann integrable (R-integrable) on
[a, b] if there exists A ∈R such that, for each ε > 0, there exists δ > 0 such that

∣∣S(f ,D, δ) – A
∣∣ < ε

for every Riemann sum S of f corresponding to each D ∈ D(δ, [a, b]) and independent of
the choice of ξi ∈ [ti–1, ti] for 1 ≤ i ≤ n. In this case, A is called the R-integral of f on [a, b]
and is denoted by A = (R)

∫ b
a f (t) dt. The collection of all functions that are R-integrable

on [a, b] will be denoted by R([a,b]).

The following definition is a special case of the Riemann integral for set-valued maps
which was earlier given by Dinghas in 1956 [13].
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Definition 2.2 A function f : [a, b] → RI is called interval Riemann integrable (IR-
integrable) on [a, b] if there exists A ∈ RI such that, for each ε > 0, there exists δ > 0 such
that

d
(
S(f ,D, δ), A

)
< ε

for every Riemann sum S of f corresponding to each D ∈ D(δ, [a, b]) and independent of
the choice of ξi ∈ [ti–1, ti] for 1 ≤ i ≤ n. In this case, A is called the IR-integral of f on [a, b]
and is denoted by A = (IR)

∫ b
a f (t) dt. The collection of all functions that are IR-integrable

on [a, b] will be denoted by IR([a,b]).

Remark 2.3 The concept of IR-integral given in Definition 2.2 is equivalent to the IR-
integral given in [28, Definition 9.1].

The following theorem was obtained in [28].

Theorem 2.4 An interval-valued function f (t) ∈ IR([a,b]) if and only if f (t), f (t) ∈ R([a,b])

and

(IR)
∫ b

a
f (t) dt =

[
(R)

∫ b

a
f (t) dt, (R)

∫ b

a
f (t) dt

]
.

3 Generalized Jensen’s inequality for interval-valued functions
The following concepts are well known.

Definition 3.1 We say that f : [a, b] → R is a convex function if for all x, y ∈ [a, b] and
t ∈ [0, 1] we have

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y). (1)

If inequality (1) is reversed, then f is said to be concave.

Definition 3.2 (Breckner, [3]) Let s ∈ (0, 1]. A function f : [0,∞) → [0,∞) is called an
s-convex function (in the second sense) if

f
(
tx + (1 – t)y

) ≤ tsf (x) + (1 – t)sf (y)

for each x, y ∈ [0,∞) and t ∈ [0, 1].

Definition 3.3 (Dragomir et al., [17]) We say that f : [a, b] → R is a P-function if f is
non-negative and for all x, y ∈ [a, b] and t ∈ [0, 1] we have

f
(
tx + (1 – t)y

) ≤ f (x) + f (y).

Definition 3.4 (Varošanec, [46]) Let h : [c, d] → R be a non-negative function, (0, 1) ⊆
[c, d] and h �≡ 0. We say that f : [a, b] →R is an h-convex function, or that f belongs to the
class SX(h, [a, b],R), if f is non-negative and for all x, y ∈ [a, b] and t ∈ (0, 1) we have

f
(
tx + (1 – t)y

) ≤ h(t)f (x) + h(1 – t)f (y). (2)
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If inequality (2) is reversed, then f is said to be h-concave, i.e., f ∈ SV (h, [a, b],R). h is said
to be a supermultiplicative function if

h(xy) ≥ h(x)h(y) (3)

for all x, y ∈ [c, d]. If inequality (3) is reversed, then h is said to be a submultiplicative
function. If the equality holds in (3), then h is said to be a multiplicative function.

Obviously, if h(t) = t, then all non-negative convex functions belong to SX(h, [a, b]) and
all non-negative concave functions belong to SV (h, [a, b]).

We can introduced now the following concept of function.

Definition 3.5 Let h : [c, d] →R be a non-negative function, (0, 1) ⊆ [c, d] and h �≡ 0. We
say that f : [a, b] → R

+
I is an h-convex interval-valued function if for all x, y ∈ [a, b] and

t ∈ (0, 1) we have

h(t)f (x) + h(1 – t)f (y) ⊆ f
(
tx + (1 – t)y

)
. (4)

If set inclusion (4) is reversed, then f is said to be h-concave. f is h-affine if it is both h-
concave and h-convex. The set of all h-convex (h-concave, h-affine) interval-valued func-
tions is denoted by

SX
(
h, [a, b],R+

I
) (

SV
(
h, [a, b],R+

I
)
, SA

(
h, [a, b],R+

I
)
, respectively

)
.

Remark 3.6 It is clear that if h(t) = ts, then Definition 3.5 implies a special case of convexity
introduced by Breckner [4].

Theorem 3.7 Let f : [a, b] →R
+
I be an interval-valued function such that f (t) = [f (t), f (t)].

Then f ∈ SX(h, [a, b],R+
I) if and only if f ∈ SX(h, [a, b],R+) and f ∈ SV (h, [a, b],R+).

Proof Suppose that f ∈ SX(h, [a, b],R+
I), and consider x, y ∈ [a, b], t ∈ (0, 1). Then we have

h(t)f (x) + h(1 – t)f (y) ⊆ f
(
tx + (1 – t)y

)
,

that is,

[
h(t)f (x) + h(1 – t)f (y), h(t)f (x) + h(1 – t)f (y)

]
⊆ [

f
(
tx + (1 – t)y

)
, f

(
tx + (1 – t)y

)]
. (5)

It follows that

h(t)f (x) + h(1 – t)f (y) ≥ [f
(
tx + (1 – t)y

)

and

h(t)f (x) + h(1 – t)f (y) ≤ f
(
tx + (1 – t)y

)
.
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This shows that f ∈ SX(h, [a, b],R+) and f ∈ SV (h, [a, b],R+). Conversely, if f ∈ SX(h, [a, b],
R

+) and f ∈ SV (h, [a, b],R+), then from Definition 3.3 and set inclusion (5) it follows that
f ∈ SX(h, [a, b],R+

I) and the proof is complete. �

Theorem 3.8 Let f : [a, b] →R
+
I be an interval-valued function such that f (t) = [f (t), f (t)].

Then f ∈ SV (h, [a, b],R+
I) if and only if f ∈ SV (h, [a, b],R+) and f ∈ SX(h, [a, b],R+).

Proof The proof is similar to that of Theorem 3.7, so we omit it. �

Theorem 3.9 (Varošanec, [46]) Let w1, w2, . . . , wn be positive real numbers (n ≥ 2). If h is a
non-negative supermultiplicative function and if f ∈ SX(h, [a, b],R+), x1, x2, . . . , xn ∈ [a, b],
then

f

(
1

Wn
·

n∑
i=1

wixi

)
≤

n∑
i=1

h
(

wi

Wi

)
f (xi), (6)

where Wn =
∑n

i=1 wi. If h is submultiplicative and f ∈ SV (h, [a, b],R+), then inequality (6)
is reversed.

Theorem 3.10 Let g ∈R([a,b]) such that g : [a, b] → [m, M], h : I → [0,∞) be a supermul-
tiplicative function and f : [m, M] → [0,∞) be h-convex and continuous. If the following
limit exists, is finite, and

lim
t→0+

h(t)
t

= k > 0,

then

f
(∫ b

a g(s) ds
b – a

)
≤ k

b – a

∫ b

a
f
(
g(s)

)
ds.

Proof Consider the division D ∈D(δ, [a, b]T) be given by

D = {a = t0 < t1 < · · · < tn–1 < tn = b},

where ti = a + i
n (b – a) for 0 ≤ i ≤ n. In each interval [ti–1, ti], where 1 ≤ i ≤ n, choose

ξi = ti–1 = a + i–1
n (b – a) and form the Riemann sum

S(f , D, δ) =
n∑

i=1

f (ξi)(ti – ti–1).

Thanks to g ∈R([a,b]), then

∫ b

a
g(s) ds = lim

n→∞

n∑
i=1

g(ξi)(ti – ti–1) = lim
n→∞

b – a
n

·
n∑

i=1

g
(

a +
i
n

(b – a)
)

.

Since f : [m, M] → [0,∞) is continuous, the composite function f (g) ∈R([a,b]) and

∫ b

a
f
(
g(s)

)
ds = lim

n→∞
b – a

n
·

n∑
i=1

f
(

g
(

a +
i
n

(b – a)
))

.
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In addition, f is h-convex, then we have

f

(
1

b – a
· b – a

n
·

n∑
i=1

g
(

a +
i
n

(b – a)
))

≤
n∑

i=1

h
(

1
n

)
f
(

g
(

a +
i
n

(b – a)
))

=
1

b – a
h( 1

n )
1
n

n∑
i=1

b – a
n

f
(

g
(

a +
i
n

(b – a)
))

.

Consequently, we obtain

lim
n→∞ f

(
1

b – a
· b – a

n
·

n∑
i=1

g
(

a +
i
n

(b – a)
))

= f
(∫ b

a g(s) ds
b – a

)
.

Also

lim
t→0+

h(t)
t

= k > 0,

then

f
(∫ b

a g(s) ds
b – a

)
≤ k

b – a

∫ b

a
f
(
g(s)

)
ds.

The proof is complete. �

Remark 3.11 It is clear, if h(t) = t then k = 1, and we get the following Jensen’s inequality:

f
(∫ b

a g(s) ds
b – a

)
≤ 1

b – a

∫ b

a
f
(
g(s)

)
ds.

Theorem 3.12 Let g ∈ R([a,b]) such that g : [a, b] → [m, M], h : I → [0,∞) be a submul-
tiplicative function and f : [m, M] → [0,∞) be h-concave and continuous. If the following
limit exists, is finite, and

lim
t→0+

h(t)
t

= k > 0,

then

f
(∫ b

a g(s) ds
b – a

)
≥ k

b – a

∫ b

a
f
(
g(s)

)
ds.

Proof The proof is similar to that of Theorem 3.10 and hence is omitted. �

As a consequence of Theorems 3.10 and 3.12, we have the following result.
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Theorem 3.13 Let g ∈R([a,b]) such that g : [a, b] → [m, M], h : I → [0,∞) be a multiplica-
tive function, and f : [m, M] → [0,∞) be h-affine and continuous. If the following limit
exists, is finite, and

lim
t→0+

h(t)
t

= k > 0,

then

f
(∫ b

a g(s) ds
b – a

)
=

k
b – a

∫ b

a
f
(
g(s)

)
ds.

Theorem 3.14 Let g ∈R([a,b]) such that g : [a, b] → [m, M], h : I → [0,∞) be a multiplica-
tive function and f : [m, M] → R

+
I be h-convex and continuous such that f (t) = [f (t), f (t)].

If the following limit exists, is finite, and

lim
t→0+

h(t)
t

= k > 0,

then

k
b – a

(IR)
∫ b

a
f
(
g(s)

)
ds ⊆ f

( (R)
∫ b

a g(s) ds
b – a

)
.

Proof The proof is a combination of Theorems 1.1, 2.4, 3.10, and 3.12. �

Remark 3.15 It is clear that if h(t) = t, then k = 1, and we have

1
b – a

(IR)
∫ b

a
f
(
g(s)

)
ds ⊆ f

( (R)
∫ b

a g(s) ds
b – a

)
.

If [a, b] = [0, 1], then we get the following Jensen’s inequality [9, Theorem 3.5]:

(IR)
∫ 1

0
f
(
g(s)

)
ds ⊆ f

(
(R)

∫ 1

0
g(s) ds

)
.

It is important to note that the above Jensen’s inequality for convex set-valued maps is due
to Matkowski and Nikodem [24].

Similarly, we can get the following theorem which gives a generalization of [9, Theo-
rem 3.4].

Theorem 3.16 Let g ∈R([a,b]) such that g : [a, b] → [m, M], h : I → [0,∞) be a multiplica-
tive function, and f : [m, M] →R

+
I be h-concave and continuous such that f (t) = [f (t), f (t)].

If the following limit exists, is finite, and

lim
t→0+

h(t)
t

= k > 0,

then

k
b – a

(IR)
∫ b

a
f
(
g(s)

)
ds ⊇ f

( (R)
∫ b

a g(s) ds
b – a

)
.
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Next theorem follows from Theorems 3.14 and 3.16.

Theorem 3.17 Let g ∈R([a,b]) such that g : [a, b] → [m, M], h : I → [0,∞) be a multiplica-
tive function and f : [m, M] →R

+
I be h-affine and continuous such that f (t) = [f (t), f (t)]. If

the following limit exists, is finite, and

lim
t→0+

h(t)
t

= k > 0,

then

f
( (R)

∫ b
a g(s) ds

b – a

)
=

k
b – a

(IR)
∫ b

a
f
(
g(s)

)
ds.

4 Hermite–Hadamard type inequality for interval-valued functions
Now, the application of Theorems 1.1, 2.4, 3.7, and 3.8 gives the following result.

Theorem 4.1 Let f : [a, b] →R
+
I be an interval-valued function such that f (t) = [f (t), f (t)]

and f ∈ IR([a,b]), h : [0, 1] → R be a non-negative function and h( 1
2 ) �= 0. If f ∈ SX(h, [a, b],

R
+
I), then

1
2h( 1

2 )
f
(

a + b
2

)
⊇ 1

b – a

∫ b

a
f (x) dx ⊇ [

f (a) + f (b)
]∫ 1

0
h(t) dt.

If f ∈ SV (h, [a, b],R+
I), then

1
2h( 1

2 )
f
(

a + b
2

)
⊆ 1

b – a

∫ b

a
f (x) dx ⊆ [

f (a) + f (b)
]∫ 1

0
h(t) dt.

Remark 4.2 It is clear that if h(t) = ts, then Theorem 4.1 reduces to the result of Osuna-
Gómez et al. [38, Theorem 4]:

2s–1f
(

a + b
2

)
⊇ 1

b – a

∫ b

a
f (x) dx ⊇ 1

s + 1
[
f (a) + f (b)

]
.

If h(t) = t, then Theorem 4.1 reduces to the result for convex function:

f
(

a + b
2

)
⊇ 1

b – a

∫ b

a
f (x) dx ⊇ f (a) + f (b)

2
.

If h(t) = 1, then Theorem 4.1 reduces to the result for P-function:

1
2

f
(

a + b
2

)
⊇ 1

b – a

∫ b

a
f (x) dx ⊇ (

f (a) + f (b)
)
.

If f (t) = f (t), then Theorem 4.1 reduces to the result of Sarikaya et al. [43, Theorem 6]:

1
2h( 1

2 )
f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ [

f (a) + f (b)
]∫ 1

0
h(t) dt.
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The next result generalizes Theorem 3.1 of [32].

Theorem 4.3 Let f : [a, b] →R
+
I be an interval-valued function such that f (t) = [f (t), f (t)]

and f ∈ IR([a,b]), h : [0, 1] → R be a non-negative function and h( 1
2 ) �= 0. If f ∈ SX(h, [a, b],

R
+
I), then

1
4[h( 1

2 )]2
f
(

a + b
2

)
⊇ �1 ⊇ 1

b – a

∫ b

a
f (x) dx

⊇ �2 ⊇ [
f (a) + f (b)

][1
2

+ h
(

1
2

)]∫ 1

0
h(t) dt,

where

�1 =
1

4h( 1
2 )

[
f
(

3a + b
4

)
+ f

(
a + 3b

4

)]

and

�2 =
[

f (a) + f (b)
2

+ f
(

a + b
2

)]∫ 1

0
h(t) dt.

If f ∈ SV (h, [a, b],R+
I), then

1
4[h( 1

2 )]2
f
(

a + b
2

)
⊆ �1 ⊆ 1

b – a

∫ b

a
f (x) dx

⊆ �2 ⊆ [
f (a) + f (b)

][1
2

+ h
(

1
2

)]∫ 1

0
h(t) dt.

Proof The proof is completed by combining Theorems 2.4, 3.7 and the result by Noor et
al. [32, Theorem 3.1]. �

Example 4.4 Suppose that [a, b] = [0, 2]. Let h(t) = t for all t ∈ [0, 1] and f : [a, b] →R
+
I be

defined by

f (x) =
[
x2, 10 – ex]

for all x ∈ [0, 2]. We have

1
4[h( 1

2 )]2
f
(

a + b
2

)
= [1, 10 – e],

�1 =
1
2

[
f
(

1
2

)
, f

(
3
2

)]
=

[
5
4

, 10 –
√

e + e
√

e
2

]
,

1
b – a

∫ b

a
f (x) dx =

[
4
3

,
21 – e2

2

]
,

�2 =
1
2

([
2,

19 – e2

2

]
+ [1, 10 – e]

)
=

[
3
2

,
39 – 2e – e2

4

]
,
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and

[
f (a) + f (b)

][1
2

+ h
(

1
2

)]∫ 1

0
h(t) dt =

[
2,

19 – e2

2

]
.

Then we obtain that

[1, 10 – e] ⊇
[

5
4

, 10 –
√

e + e
√

e
2

]
⊇

[
4
3

,
21 – e2

2

]
⊇

[
3
2

,
39 – 2e – e2

4

]
⊇

[
2,

19 – e2

2

]
.

Consequently, Theorem 4.3 is verified.

The next result generalizes Theorem 7 of [43].

Theorem 4.5 Let f , g : [a, b] → R
+
I be two interval-valued functions such that f (t) =

[f (t), f (t)], g(t) = [g(t), g(t)] and fg ∈ IR([a,b]), h1, h2 : [0, 1] → R be non-negative contin-
uous functions. If f ∈ SX(h1, [a, b],R+

I), g ∈ SX(h2, [a, b],R+
I), then

1
b – a

∫ b

a
f (x)g(x) dx ⊇ M(a, b)

∫ 1

0
h1(t)h2(t) dt + N(a, b)

∫ 1

0
h1(t)h2(1 – t) dt,

where

M(a, b) = f (a)g(a) + f (b)g(b)

and

N(a, b) = f (a)g(b) + f (b)g(a).

Proof The proof is completed by combining Theorems 2.4, 3.7, 3.10 and the result by
Sarikaya, Saglam, and Yildirim [43, Theorem 7]. �

Theorem 4.6 Let f , g : [a, b] → R
+
I be two interval-valued functions such that f (t) =

[f (t), f (t)], g(t) = [g(t), g(t)] and fg ∈ IR([a,b]), h1, h2 : [0, 1] → R be non-negative contin-
uous functions and h1( 1

2 )h2( 1
2 ) �= 0. If f ∈ SX(h1, [a, b],R+

I), g ∈ SX(h2, [a, b],R+
I), then

1
2h1( 1

2 )h2( 1
2 )

f
(

a + b
2

)
g
(

a + b
2

)

⊇ 1
b – a

∫ b

a
f (x)g(x) dx + M(a, b)

∫ 1

0
h1(t)h2(1 – t) dt

+ N(a, b)
∫ 1

0
h1(t)h2(t) dt.

Proof By hypothesis, one has

h1

(
1
2

)
f
(
ta + (1 – t)b

)
+ h1

(
1
2

)
f
(
(1 – t)a + tb

) ⊆ f
(

a + b
2

)
,

h2

(
1
2

)
g
(
ta + (1 – t)b

)
+ h2

(
1
2

)
g
(
(1 – t)a + tb

) ⊆ g
(

a + b
2

)
.
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Then

f
(

a + b
2

)
g
(

a + b
2

)

⊇ h1

(
1
2

)
h2

(
1
2

)[
f
(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)
+ f

(
ta + (1 – t)b

)
g
(
(1 – t)a + tb

)

+ f
(
(1 – t)a + tb

)
g
(
ta + (1 – t)b

)
+ f

(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)
,

f
(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)
+ f

(
ta + (1 – t)b

)
g
(
(1 – t)a + tb

)
+ f

(
(1 – t)a + tb

)
g
(
ta + (1 – t)b

)
+ f

(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)]

= h1

(
1
2

)
h2

(
1
2

)[
f
(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)
, f

(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)]

+ h1

(
1
2

)
h2

(
1
2

)[
f
(
ta + (1 – t)b

)
g
(
(1 – t)a + tb

)
, f

(
ta + (1 – t)b

)
g
(
(1 – t)a + tb

)]

+ h1

(
1
2

)
h2

(
1
2

)[
f
(
(1 – t)a + tb

)
g
(
ta + (1 – t)b

)
, f

(
(1 – t)a + tb

)
g
(
ta + (1 – t)b

)]

+ h1

(
1
2

)
h2

(
1
2

)[
f
(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)
, f

(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)]

= h1

(
1
2

)
h2

(
1
2

)[
f
(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)
+ f

(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)]

+ h1

(
1
2

)
h2

(
1
2

)[
f
(
ta + (1 – t)b

)
g
(
(1 – t)a + tb

)

+ f
(
(1 – t)a + tb

)
g
(
ta + (1 – t)b

)]

⊇ h1

(
1
2

)
h2

(
1
2

)[
f
(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)
+ f

(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)]

+ h1

(
1
2

)
h2

(
1
2

)[(
h1(t)f (a) + h1(1 – t)f (b)

)(
h2(1 – t)g(a) + h2(t)g(b)

)

+
(
h1(1 – t)f (a) + h1(t)f (b)

)(
h2(t)g(a) + h2(1 – t)g(b)

)]

= h1

(
1
2

)
h2

(
1
2

)[
f
(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)
+ f

(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)]

+ h1

(
1
2

)
h2

(
1
2

)[(
h1(t)h2(1 – t) + h1(1 – t)h2(t)

)
M(a, b)

+
(
h1(t)h2(t) + h1(1 – t)h2(1 – t)

)
N(a, b)

]
.

Integrating over [0, 1], we have

1
2h1( 1

2 )h2( 1
2 )

f
(

a + b
2

)
g
(

a + b
2

)

⊇ 1
b – a

∫ b

a
f (x)g(x) dx + M(a, b)

∫ 1

0
h1(t)h2(1 – t) dt

+ N(a, b)
∫ 1

0
h1(t)h2(t) dt.

This concludes the proof. �
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5 Results and discussion
We obtain some Jensen and Hermite–Hadamard type inequalities for h-convex interval-
valued functions. Our results not only improve upon work by Costa but also generalize the
results of Sarikaya et al. Because of the lack of “interval derivatives” with good properties,
we have not investigated inequalities involving interval derivatives.

6 Conclusions
This paper introduced the h-convex (concave, affine) concept for interval-valued func-
tions. Under the above concept, we presented some Jensen and Hermite–Hadamard type
inequalities for interval-valued functions. Our results generalize the previous inequalities
presented by Costa et al. The next step in the research direction proposed here is to inves-
tigate Jensen and Hermite–Hadamard type inequalities for interval-valued functions and
fuzzy-valued functions on time scales.
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