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Abstract
In this paper, in order to study the dissipativity of nonlinear neutral functional
differential equations, a generalization of the Halanay inequality is given. We apply
this generalized Halanay inequality to an analysis of the dissipativity of two classes of
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1 Introduction
In 1966, in order to discuss the stability of the zero solution of the delay differential equa-
tion

u′(t) = Au(t) + Bu(t – τ ), τ > 0,

Halanay introduced the following lemma (see [1] p. 378).

Lemma 1.1 (Basic Halanay inequality) Assume that τ ≥ 0 and v(t) is a positive function
defined on [t0 – τ , +∞), with derivative v′(t) on [t0, +∞). If

v′(t) ≤ –αv(t) + β sup
t–τ≤s≤t

v(s), t ≥ t0,

where α > β > 0, then there exist γ > 0 and k > 0 such that

v(t) ≤ k exp
(
–γ (t – t0)

)
, t ≥ t0.

The Halanay inequality became a powerful tool in the stability theory of delay differ-
ential equations, therefore many authors improved or generalized it to more general type
and used it for investigating the stability and dissipativity of various functional differential
equations. We refer the reader to the papers, for instance, of Baker and Tang [2], Agarwal,
Kim and Sen [3, 4], Baker [5], Liz and Trofimchuk [6], Tian [7], Wen, Yu and Wang [8, 9],
Liu et al. [10], Wang [11], Hien et al. [12], and Gan [13].
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On the other hand, many interesting problems in physics and engineering are modeled
by dissipative dynamical systems. These systems are characterized by the property of pos-
sessing a bounded absorbing set, which all trajectories enter in a finite time and thereafter
remain inside of. In the study of dissipative systems, this asymptotic behavior of the system
is of interest and important (see [14]). In 1994, Humphries and Stuart [15] first studied the
analytical and numerical dissipativity of initial value problems (IVPs) in ODEs. Hereafter,
a number of results on the analytical and numerical dissipativity with respect to various
types of differential equations are presented (such as found in [16–21]).

In this paper, we first present a more general Halanay-type inequality in Sect. 2. Then,
in Sect. 3, we use this inequality to discuss the analytical dissipativity of two classes of
nonlinear neutral delay integro-differential equations (NDIDEs) and some sufficient con-
ditions which ensure the systems to be dissipative are given. Finally, the paper ends with
a conclusion.

2 The generalized Halanay inequality
For simplicity of presentation, we denote f [t1,t2] := supt1≤ξ≤t2 f (ξ ) and f [t1,+∞) := supξ≥t1 f (ξ )
for a bounded function f .

Theorem 2.1 Assume that τ ≥ 0 and u(t), w(t) are non-negative functions defined on [t0 –
τ , +∞), with derivative u′(t) on [t0, +∞). If

⎧
⎨

⎩
u′(t) ≤ R1(t) + A(t)u(t) + B(t)u[t–τ ,t] + C(t)w(t) + D(t)w[t–τ ,t],

w(t) ≤ R2(t) + F(t)u(t) + G(t)u[t–τ ,t] + H(t)w[t–τ ,t],
(2.1)

for t ≥ t0 and

w[t0–τ ,t0] ≤ r2

1 – H0
+

F0 + G0

1 – H0
u[t0–τ ,t0], (2.2)

and there exists a constant σ > 0 such that

A(t) + B(t) +
(
C(t) + D(t)

)F0 + G0

1 – H0
≤ –σ , ∀t ≥ t0. (2.3)

Then, for t ≥ t0, we have
⎧
⎨

⎩
u(t) ≤ γ ∗

σ
+ φe–μ∗(t–t0),

w(t) ≤ γ2
1–H0

+ F0+G0
1–H0

γ ∗
σ

+ F0+G0eμ∗τ

1–H0eμ∗τ
φe–μ∗(t–t0),

(2.4)

where R1(t), R2(t), –A(t), B(t), C(t), D(t), F(t), G(t), H(t) are non-negative, continuous and
bounded functions defined on [t0, +∞);

⎧
⎨

⎩
F0 = F [t0,+∞), G0 = G[t0,+∞), C0 = C[t0,+∞), D0 = D[t0,+∞),

H0 = H [t0,+∞), γ1 = R[t0,+∞)
1 , γ2 = R[t0,+∞)

2 , φ = u[t0–τ ,t0],

and 0 < H(t) ≤ H0 < 1, γ ∗ = γ1 + C0+D0
1–H0

γ2. The constant μ∗ > 0 is defined as

μ∗ = inf
t≥t0

{
μ(t) : μ(t) + A(t) + B(t)eμ(t)τ +

(
C(t) + D(t)eμ(t)τ )F0 + G0eμ(t)τ

1 – H0eμ(t)τ = 0
}

.
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Specially, if R1(t) = R2(t) ≡ 0, (2.4) degenerates into following form:

⎧
⎨

⎩
u(t) ≤ φe–μ∗(t–t0),

w(t) ≤ F0+G0eμ∗τ

1–H0eμ∗τ
φe–μ∗(t–t0),

t ≥ t0. (2.5)

Proof First, if τ = 0, from the second formula of (2.1), we have

w(t) ≤ R2(t)
1 – H(t)

+
F(t) + G(t)

1 – H(t)
u(t). (2.6)

Substituting (2.6) into the first formula of (2.1) shows that (2.1) degenerates into a differ-
ential inequality

u′(t) ≤ R(t) + Ã(t)u(t), t ≥ t0,

where
⎧
⎨

⎩
R(t) = R1(t) + (C(t) + D(t)) R2(t)

1–H(t) ,

Ã(t) = A(t) + B(t) + (C(t) + D(t)) F(t)+G(t)
1–H(t) .

Noting the condition (2.3), it is can be proved that

u(t) ≤ γ ∗

σ

(
1 – exp

(∫ t

t0

Ã(s) ds
))

+ u(t0) exp

(∫ t

t0

Ã(s) ds
)

.

The combination of this formula and (2.6) shows that (2.4) holds with

μ∗ = inf
t≥t0

{
–A(t) – B(t) –

(
C(t) + D(t)

)F(t) + G(t)
1 – H0

}
.

It is obvious that μ∗ > 0 under the assumption (2.3).
In the following we assume that τ > 0. For any given t ∈ [t0, +∞), we define function

E(μ) on [0, 1
τ

ln 1
H0

) by

E(μ) := μ + A(t) + B(t)eμτ +
(
C(t) + D(t)eμτ

)F0 + G0eμτ

1 – H0eμτ
. (2.7)

From (2.7) we can see that

E(0) < 0, lim
μ→ 1

τ ln 1
H0

–0
E(μ) = +∞, E′(μ) > 0.

Therefore, there exists a unique μ ∈ (0, 1
τ

ln 1
H0

) such that

μ + A(t) + B(t)eμτ +
(
C(t) + D(t)eμτ

)F0 + G0eμτ

1 – H0eμτ
= 0, (2.8)

which defines an implicit function μ(t) for t ≥ t0. It is obvious that μ∗ ≥ 0. Now we prove
that μ∗ > 0.
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In fact, if this is not true. Let H̃0 satisfying 0 < H0 < H̃0 < 1 and let 0 < ε1 < min{ σ
2 ,

– 1
τ

ln H̃0, 1
τ

ln( σ
2Q + 1)}, where

Q = B0 +
C0H̃0(G0 + F0H0) + D0H̃0(F0 + G0) + D0G0(1 – H0)

(H̃0 – H0)(1 – H0)
,

and B0 = B[t0,+∞).
Then there would exist t∗ ≥ t0 such that μ̂ := μ(t∗) < ε1 and

μ̂ + A
(
t∗) + B

(
t∗)eμ̂τ +

(
C

(
t∗) + D

(
t∗)eμ̂τ

)F0 + G0eμ̂τ

1 – H0eμ̂τ
= 0. (2.9)

Substituting (2.3) into (2.9) gives

0 = μ̂ + A
(
t∗) + B

(
t∗)eμ̂τ +

(
C

(
t∗) + D

(
t∗)eμ̂τ

)F0 + G0eμ̂τ

1 – H0eμ̂τ

≤ ε1 – σ +
(

B0 +
C0(F0H0 + G0) + D0(F0 + G0) + D0G0eε1τ (1 – H0))

(1 – H0eε1τ )(1 – H0)

)(
eε1τ – 1

)

≤ ε1 – σ + Q
(
eε1τ – 1

)
< ε1 – σ +

σ

2
< 0,

which is a contradiction.
In order to verify (2.4), we first show that, for any ε > 0,

⎧
⎨

⎩
u(t) < γ ∗

σ
+ ε + φe–μ∗(t–t0),

w(t) < γ2
1–H0

+ F0+G0
1–H0

( γ ∗
σ

+ ε) + F0+G0eμτ

1–H0eμτ φe–μ∗(t–t0),
t ≥ t0. (2.10)

In fact, when t = t0, (2.10) is evident by using (2.2).
If we suppose (2.10) is not true for t > t0, then there would exist some ε0 > 0 and ς > t0

such that when t < ς

⎧
⎨

⎩
u(t) < γ ∗

σ
+ ε0 + φe–μ∗(t–t0),

w(t) < γ2
1–H0

+ G0+F0
1–H0

( γ ∗
σ

+ ε0) + F0+G0eμ∗τ

1–H0eμ∗τ
φe–μ∗(t–t0),

(2.11)

while when t = ς , at least one of the following two equalities is true:

u(ς ) =
γ ∗

σ
+ ε0 + φe–μ∗(ς–t0) (2.12)

and

w(ς ) =
γ2

1 – H0
+

G0 + F0

1 – H0

(
γ ∗

σ
+ ε0

)
+

F0 + G0eμ∗τ

1 – H0eμ∗τ
φe–μ∗(ς–t0). (2.13)

However, from the second formula of (2.1), when ς – τ ≥ t0, we have

w(ς ) ≤ R2(ς ) + F(ς )u(ς ) + G(ς ) sup
ς–τ≤ξ≤ς

u(ξ ) + H(ς ) sup
ς–τ≤ξ≤ς

w(ξ )
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< R2(ς ) + F(ς )
(

γ ∗

σ
+ ε0 + φe–μ∗(ς–t0)

)
+ G(ς )

(
γ ∗

σ
+ ε0 + φe–μ∗(ς–τ–t0)

)

+ H(ς )
(

γ2

1 – H0
+

F0 + G0

1 – H0

(
γ ∗

σ
+ ε0

)
+

F0 + G0eμ∗τ

1 – H0eμ∗τ
φe–μ∗(ς–τ–t0)

)

= R2(ς ) + H(ς )
γ2

1 – H0
+

(
F(ς ) + G(ς ) + H(ς )

F0 + G0

1 – H0

)(
γ

σ
+ ε0

)

+
(

F(ς ) + G(ς )eμ∗τ +
F0 + G0eμ∗τ

1 – H0eμ∗τ
H0eμ∗τ

)
φe–μ∗(ς–t0)

≤ γ2

1 – H0
+

F0 + G0

1 – H0

(
γ ∗

σ
+ ε0

)
+

F0 + G0eμ∗τ

1 – H0eμ∗τ
φe–μ∗(ς–t0), (2.14)

and, when ς – τ < t0, we have

w(ς ) ≤ R2(ς ) + F(ς )u(ς ) + G(ς ) max
{

sup
t0–τ≤ξ≤t0

u(ξ ), sup
t0≤ξ≤ς

u(ξ )
}

+ H(ς ) max
{

sup
t0–τ≤ξ≤t0

w(ξ ), sup
t0≤ξ≤ς

w(ξ )
}

< R2(ς ) + F(ς )
(

γ ∗

σ
+ ε0 + φe–μ∗(ς–t0)

)
+ G(ς )

(
γ ∗

σ
+ ε0 + φ

)

+ H(ς )
(

γ2

1 – H0
+

F0 + G0

1 – H0

(
γ ∗

σ
+ ε0

)
+

F0 + G0eμ∗τ

1 – H0eμ∗τ
φ

)

≤ γ2

1 – H0
+

F0 + G0

1 – H0

(
γ ∗

σ
+ ε0

)
+

F0 + G0eμ∗τ

1 – H0eμ∗τ
φe–μ∗(ς–t0). (2.15)

Hence (2.14) and (2.15) show that (2.13) is not true. Therefore we need only consider the
case that (2.12) holds and we shall obtain a contradiction. Set

v(t) =
γ ∗

σ
+ ε0 + φe–μ∗(t–t0), z(t) = v(t) – u(t).

Then z(t) > 0 for t < ς and z(ς ) = 0 and z′(ς ) ≤ 0. Hence from the first formula of (2.1) we
have

z′(ς ) = v′(ς ) – u′(ς )

≥ –φμ∗e–μ∗(ς–t0)

–
(
R1(ς ) + A(ς )u(ς ) + B(ς )u[ς–τ ,ς ] + C(ς )w(ς ) + D(ς )w[ς–τ ,ς ]). (2.16)

If ς – τ ≥ t0, it follows from (2.11), (2.12), (2.16) and the definition of γ ∗ that

z′(ς ) ≥ –γ ∗ –
(

γ ∗

σ
+ ε0

)(
A(ς ) + B(ς ) +

(
C(ς ) + D(ς )

)F0 + G0

1 – H0

)

– φe–μ∗(ς–t0)

×
(

μ∗ + A(ς ) + B(ς )eμ∗τ +
(
C(ς ) + D(ς )eμ∗τ

)F0 + G0eμ∗τ

1 – H0eμ∗τ

)
. (2.17)
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From the definition of the function μ(t), we have

μ(ς ) + A(ς ) + B(ς )eμ(ς )τ +
(
C(ς ) + D(ς )eμ(ς )τ )F0 + G0eμ(ς )τ

1 – H0eμ(ς )τ = 0.

Therefore, it is easy to see that

μ∗ + A(ς ) + B(ς )eμ∗τ +
(
C(ς ) + D(ς )eμ∗τ

)F0 + G0eμ∗τ

1 – H0eμ∗τ

= μ∗ – μ(ς ) + B(ς )
(
eμ∗τ – eμ(ς )τ ) + C(ς )

(
F0 + G0eμ∗τ

1 – H0eμ∗τ
–

F0 + G0eμ(ς )τ

1 – H0eμ(ς )τ

)

+ D(ς )
(

F0 + G0eμ∗τ

1 – H0eμ∗τ
eμ∗τ –

F0 + G0eμ(ς )τ

1 – H0eμ(ς )τ eμ(ς )τ
)

≤ 0,

which substituting into (2.17) and noting the condition (2.3), gives

w′(ς ) = v′(ς ) – u′(ς ) ≥ σε0 > 0. (2.18)

If ς – τ < t0, it follows from (2.16) that

z′(ς ) ≥ –φμ∗e–μ∗(ς–t0) – R1(ς ) – A(ς )u(ς ) – B(ς ) max
{
φ, u[t0,ς ]}

– C(ς )w(ς ) – D(ς ) max
{

w[t0–τ ,t0], w[t0,ς ]}.

Thus we also can get (2.18) by simple derivation. This is in contradiction with our result
w′(ς ) ≤ 0. Therefore the inequality (2.10) must hold for any given ε > 0. Since ε > 0 is
arbitrary, we let ε → 0 and obtain (2.4), which completes the proof of Theorem 2.1. �

Remark 2.2 If R1(t) = R2(t) = C(t) = F(t) ≡ 0, we can obtain expression (2.5). Particularly,
if we further assume that C(t) = F(t) ≡ 0, then (2.5) degenerates into a conclusion which
is present in [11].

3 Dissipativity of two classes of nonlinear neutral functional differential
equations

In this section, we consider several simple applications of Theorem 2.1 to the study of
dissipativity for two classes of nonlinear neutral functional differential equations.

Let X be a real or complex, finite-dimensional or infinite-dimensional Hilbert space with
the inner product 〈·, ·〉 and the corresponding norm ‖ · ‖.

3.1 Dissipativity of nonlinear neutral delay integro-differential equations
(NNDIDEs)

Consider the IVPs in NNDIDEs as follows:
⎧
⎨

⎩
y′(t) = f (t, y(t), y(t – τ ), y′(t – τ ),

∫ t
t–τ

g(t, ξ , y(ξ )) dξ ), t ≥ t0,

y(t) = φ(t), y′(t) = φ′(t), t0 – τ ≤ t ≤ t0,
(3.1)
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where τ are positive constant, the functions f : [t0, +∞) × X × X × X × X → X, g :
[t0, +∞) × [t0 – τ , +∞) × X → X, φ : [t0 – τ , t0] → X are assumed to be continuous func-
tions and for any t ≥ t0, y, u, v, w ∈ X, f and g satisfy the conditions:

⎧
⎪⎪⎨

⎪⎪⎩

2 Re〈f (t, y, u, v, w), y〉 ≤ α‖y‖2 + β‖f (t, 0, u, v, w)‖2,

‖f (t, y, u, v, w)‖2 ≤ γ1 + Ly‖y‖2 + ω‖f (t, 0, u, v, w)‖2,

‖f (t, 0, u, v, w)‖2 ≤ γ2 + Lu‖u‖2 + Lv‖v‖2 + Lw‖w‖2,

(3.2)

and

∥∥g(t, ξ , u)
∥∥ ≤ λ‖u‖, t – τ ≤ ξ ≤ t, t ≥ t0, (3.3)

where –α,β ,γ1,γ2,ω,λ, Ly, Lu, Lv, Lw are all non-negative real constants.

Theorem 3.1 Let problem (3.1) satisfy (3.2) and (3.3) with Lvω < 1, and initial value func-
tion φ(t) satisfy

max
t0–τ≤t≤t0

∥
∥φ′(t)

∥
∥2 ≤ γ1 + ωγ2

1 – ωLv
+

Ly + ω(Lu + λ2τ 2Lw)
1 – ωLv

max
t0–τ≤t≤t0

∥
∥φ(t)

∥
∥2.

Let y(t) be the solution of (3.1). Assume that there exists a constant σ > 0 such that

α +
β(Lu + LvLy + λ2τ 2Lw)

1 – Lvω
≤ –σ . (3.4)

Then
(1) for any t ≥ t0 we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖y(t)‖2 ≤ β(γ2+Lvγ1)
(1–Lvω)σ + φ0e–μ∗(t–t0),

‖y′(t)‖2 ≤ γ1+ωγ2
1–ωLv

+ Ly+ω(Lu+λ2τ2Lw)
1–ωLv

β(γ2+Lvγ1)
(1–Lvω)σ

+ Ly+ω(Lu+λ2τ2Lw)eμ∗τ

1–ωLveμ∗τ
φ0e–μ∗(t–t0),

(3.5)

where φ0 = maxt0–τ≤t≤t0 ‖φ(t)‖2, μ∗ > 0 is given as follows:

μ∗ = inf
t≥t0

{
μ(t) : μ(t) + α + β

(
Lu + λ2τ 2Lw

)
eμ(t)τ

+
Ly + ω(Lu + Lwλ2τ 2)eμ(t)τ

1 – ωLveμ(t)τ βLveμ(t)τ = 0
}

. (3.6)

(2) the system is dissipative, for any ε > 0 the open ball

B = B
(

0,

√
β(γ2 + Lvγ1)
(1 – Lvω)σ

+ ε

)

is an absorbing set.
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Proof Let

⎧
⎨

⎩
u(t) = ‖y(t)‖2,

w(t) = ‖y′(t)‖2,
t ≥ t0 – τ (3.7)

and

z(t) =
∫ t

t–τ

g
(
t, ξ , y(ξ )

)
dξ , t ≥ t0.

Then when t ≥ t0, from (3.2) we have

u′(t) =
d
dt

〈
y(t), y(t)

〉

= 2 Re
〈
y(t), f

(
t, y(t), y(t – τ ), y′(t – τ ), z(t)

)〉

≤ αu(t) + β
∥
∥f

(
t, 0, y(t – τ ), y′(t – τ ), z(t)

)∥∥2

≤ αu(t) + β
(
γ2 + Luu(t – τ ) + Lvw(t – τ ) + Lw

∥∥z(t)
∥∥2). (3.8)

Noting (3.3) one obtains

∥∥z(t)
∥∥ ≤ λ

∫ t

t–τ

∥∥y(ξ )
∥∥dξ

≤ λτ max
t–τ≤ξ≤t

∥
∥y(ξ )

∥
∥,

which gives

∥
∥z(t)

∥
∥2 ≤ λ2τ 2 max

t–τ≤ξ≤t
u(ξ ). (3.9)

Substituting (3.9) into (3.8), we have

u′(t) ≤ βγ2 + αu(t) + β
(
Lu + Lwλ2τ 2)u[t–τ ,t] + βLvw(t – τ ). (3.10)

On the other hand, from the second formula of (3.2) and (3.9) we have

w(t) =
∥
∥f

(
t, y(t), y(t – τ ), y′(t – τ ), z(t)

)∥∥2

≤ γ1 + Lyu(t) + ω
(
γ2 + Luu(t – τ ) + Lvw(t – τ ) + Lw

∥∥z(t)
∥∥2)

≤ γ1 + ωγ2 + Lyu(t) + ωLvw(t – τ ) + ω
(
Lu + Lwλ2τ 2)u[t–τ ,t]. (3.11)

Therefore, combining of (3.10) and (3.11), for t ≥ t0 we have

⎧
⎨

⎩
u′(t) ≤ βγ2 + αu(t) + β(Lu + Lwλ2τ 2)u[t–τ ,t] + βLvw[t–τ ,t],

w(t) ≤ γ1 + ωγ2 + Lyu(t) + ω(Lu + Lwλ2τ 2)u[t–τ ,t] + ωLvw[t–τ ,t].
(3.12)
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Let
⎧
⎨

⎩
R1 = βγ2, A = α, B = β(Lu + Lwλ2τ 2), C = 0, D = βLv,

R2 = γ1 + ωγ2, F = Ly, G = ω(Lu + Lwλ2τ 2), H = ωLv.

From Theorem 2.1 we can obtain (3.5) immediately. This completes the proof of Theo-
rem 3.1. �

3.2 Dissipativity of nonlinear neutral Volterra integro-differential equations
(NNVIDEs)

Consider the IVPs in NNVIDEs as follows:
⎧
⎨

⎩
y′(t) = f (t, y(t), y(t – τ ),

∫ t
t–τ

K(t, s, y(s), y′(s)) ds), t ≥ t0,

y(t) = φ(t), y′(t) = φ′(t), t ∈ [t0 – τ , t0],
(3.13)

where τ > 0 is constant, φ is a continuous function, and the functions f : [t0, +∞) × X ×
X × X → X and K : [t0, +∞) × [t0 – τ , +∞) × X × X → X satisfy the conditions for any
t ≥ t0, y, u, v ∈ X:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 Re〈f (t, y, u, v), y〉 ≤ γ + α‖y‖2 + β1‖f (t, 0, u, v)‖2,

‖f (t, y, u, v)‖2 ≤ Ly‖y‖2 + β2‖f (t, 0, u, v)‖2,

‖f (t, 0, u, v)‖2 ≤ Lu‖u‖2 + Lv‖v‖2,

‖K(t, s, u, v)‖ ≤ μ‖u‖ + Lk‖v‖, (t, s) ∈ D,

(3.14)

where D = {(t, s) : t ∈ [t0, +∞), s ∈ [t –τ , t]}, γ ,β1,β2,μ, Ly, Lu, Lv are non-negative real con-
stants and α ≤ 0.

Theorem 3.2 Assume that (3.13) satisfies (3.14) with 2β2τ
2LvL2

k < 1, and initial value
function φ(t) satisfies

max
t0–τ≤t≤t0

∥∥φ′(t)
∥∥2 ≤ Ly + β2(Lu + 2τ 2μ2Lv)

1 – 2β2τ 2LvL2
k

max
t0–τ≤t≤t0

∥∥φ(t)
∥∥2.

Assume there exists a constant σ > 0 such that

α + β1
Lu + 2τ 2Lv(L2

kLy + μ2)
1 – 2β2τ 2LvL2

k
≤ –σ . (3.15)

Let y(t) be the solution of (3.13). Then
(1) for any t ≥ t0 we have

⎧
⎨

⎩

‖y(t)‖2 ≤ γ

σ
+ φ0e–μ∗(t–t0),

‖y′(t)‖2 ≤ Ly+β2(Lu+2τ2μ2Lv)
1–2β2τ2LvL2

k

γ

σ
+ Ly+β2(Lu+2τ2μ2Lv)eμ∗τ

1–2β2τ2LvL2
k eμ∗τ

φ0e–μ∗(t–t0),

where φ0 = supt0–τ≤ξ≤t0 ‖φ(ξ )‖2, μ∗ > 0 is defined as

μ∗ = inf
t≥t0

{
μ(t) : μ(t) + α +

Lu + 2τ 2Lv(L2
kLy + μ2)

1 – 2β2τ 2LvL2
keμ(t)τ β1eμ(t)τ = 0

}
.
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(2) the system is dissipative, for any ε > 0 the open ball

B = B
(

0,
√

γ

σ
+ ε

)

is an absorbing set.

Proof Let

⎧
⎨

⎩
u(t) = ‖y(t)‖2,

w(t) = ‖y′(t)‖2,
t ≥ t0 – τ

and

z(t) =
∫ t

t–τ

K
(
t, s, y(s), y′(s)

)
ds), t ≥ t0.

From (3.14) we can obtain

∥
∥z(t)

∥
∥2 ≤ τ 2

(
μ max

t–τ≤ξ≤t

∥
∥y(ξ )

∥
∥ + Lk max

t–τ≤ξ≤t

∥
∥y′(ξ )

∥
∥
)2

≤ 2τ 2(μ2u[t–τ ,t] + L2
kw[t–τ ,t])

and

u′(t) = 2 Re
〈
f
(
t, y(t), y(t – τ ), z(t)

)
, y(t)

〉

≤ γ + αu(t) + β1
∥∥f

(
t, 0, y(t – τ ), z(t)

)∥∥2

≤ γ + αu(t) + β1
(
Luu(t – τ ) + Lv

∥∥z(t)
∥∥2)

≤ γ + αu(t) + β1
(
Lu + 2μ2τ 2Lv

)
u[t–τ ,t] + 2β1τ

2LvL2
kw[t–τ ,t] (3.16)

and

w(t) =
∥∥f

(
t, y(t), y(t – τ ), z(t)

)∥∥2

≤ Ly
∥∥y(t)

∥∥2 + β2
∥∥f

(
t, 0, y(t – τ ), z(t)

)∥∥2

≤ Ly
∥
∥y(t)

∥
∥2 + β2

[
Luu(t – τ ) + Lv

∥
∥z(t)

∥
∥2]

≤ Lyu(t) + β2
(
Lu + 2Lvτ

2μ2)u[t–τ ,t] + 2β2τ
2LvL2

kw[t–τ ,t]. (3.17)

It can be summarized from (3.16) and (3.17) that
⎧
⎨

⎩
u′(t) ≤ γ + αu(t) + β1(Lu + 2τ 2μ2Lv)u[t–τ ,t] + 2β1τ

2LvL2
kw[t–τ ,t],

w(t) ≤ Lyu(t) + β2(Lu + 2τ 2μ2Lv)u[t–τ ,t] + 2β2τ
2LvL2

kw[t–τ ,t].
(3.18)

We denote

γ1 = γ , A = α, B = β1
(
Lu + 2τ 2μ2Lv

)
, C = 0, D = 2β1τ

2LvL2
k ,
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γ2 = 0, F = Ly, G = β2
(
Lu + 2τ 2μ2Lv

)
, H = 2β2τ

2LvL2
k .

Then from Theorem 2.1 we can complete the proof of Theorem 3.2. �

Remark 3.3 From a numerical point of view, it is important to study the potential of nu-
merical methods in preserving the qualitative behavior of the analytical solutions. There-
fore, the results of Theorem 3.1 and Theorem 3.2 presented in this paper, provide the
theoretical foundation for analyzing the dissipativity of the numerical methods when they
are applied to the underlying systems.
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