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1 Introduction
Consider the mean reflected stochastic differential equation (MR-SDE for short) described
by the following system:

⎧
⎨

⎩

Xt = X0 +
∫ t

0 b(Xs–) ds +
∫ t

0 σ (Xs–) dBs +
∫ t

0
∫

E F(Xs–, z)Ñ(ds, dz) + Kt ,

E[h(Xt)] ≥ 0,
∫ t

0 E[h(Xs)] dKs = 0, t ≥ 0,
(1)

where E = R \ {0}, b, σ , and F are Lipschitz functions from R to R, h is bi-Lipschitz con-
tinuous, Ñ is a compensated Poisson measure Ñ(ds, dz) = N(ds, dz) – ϑ(dz) ds, and {Bt}t≥0

is a standard Brownian motion independent of N . The integral of the function h with re-
spect to the law of the solution to the SDE is asked to be nonnegative. The solution to (1)
is the couple of continuous processes (X, K), where K is needed to ensure that the con-
straint is satisfied in a minimal way according to the last condition, namely the Skorokhod
condition.

MR-SDE is a very special type of reflected stochastic differentials equations (SDEs) in
which the constraint is not directly on the paths of the solution to the SDE as in the usual
case but on the law of the solution. This kind of processes has been introduced recently
by Briand, Elie, and Hu [4] in backward forms under the context of risk measures. Briand
et al. [3] studied the MR-SDE in forward forms, and they provided an approximation of
solution to the MR-SDE with the help of interacting particles systems.

Since the original work of Freidlin and Wentzell [11], the small noise large deviation
principles for stochastic (partial) differential equations have been extensively studied in
the literature. In this setting, one considers a small parameter multiplying the noise term
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and is interested in asymptotic probabilities of behavior as the parameter approaches zero.
Earlier works on this family of problems relied on approximations and exponential prob-
ability estimates, see [2, 9]. Later, Dupuis and Ellis [10] developed a weak convergence ap-
proach to the theory of large deviation. This approach is mainly based on some variational
representation formula about the Laplace transform of bounded continuous functionals.
The weak convergence approach has now been adopted for the study of large deviation
problems for stochastic partial differential equations, see [8, 13, 14, 16, 17], etc. It is also
used to study the moderate deviation problems for stochastic partial differential equations,
see [7, 12, 15].

We will use the weak convergence approach to study the large deviation principle for
MR-SDE. Here, a representation formula of K plays an important role to overcome the
difficulty coming from the fact that the reflection process K depends on the law of the
position.

The rest of this paper is organized as follows. In Sect. 2, we first give the definition of the
solution to Eq. (1), and then we state the main results of this paper. The weak convergence
criterion for the large deviation principle is recalled in Sect. 3. In Sect. 4, we shall prove
the main result.

2 Framework and main results
We consider the following conditions.

Condition 2.1
(i) Lipschitz assumption: For any p > 0, there exists a constant Cp > 0 such that, for all

x, x′ ∈ R, we have

∣
∣b(x) – b

(
x′)∣∣p +

∣
∣σ (x) – σ

(
x′)∣∣p +

∫

E

∣
∣F(x, z) – F

(
x′, z

)∣
∣p

ϑ(dz) ≤ Cp
∣
∣x – x′∣∣p.

(ii) The random variable X0 is square integrable independent of Bt and Nt .

Condition 2.2
(i) The function h : R →R is an increasing function, and there exist 0 < m < M such that

m|x – y| ≤ ∣
∣h(x) – h(y)

∣
∣ ≤ M|x – y| for all x, y ∈R.

(ii) The initial condition X0 satisfies E[h(X0)] ≥ 0.

Definition 2.1 A couple of continuous processes (X, K) is said to be a flat determinis-
tic solution to Eq. (1) if (X, K) satisfies (1) with K being a nondecreasing deterministic
function such that K0 = 0.

Theorem 2.3 ([5, Theorem 1, Proposition 1]) Under Conditions 2.1 and 2.2, the mean
reflected SDE (1) has a unique deterministic flat solution (X, K), and

Kt = sup
s≤t

inf
{

x ≥ 0,E
[
h(x + Us)

] ≥ 0
}

, (2)
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where (Ut)0≤t≤T is the process defined by

Ut = x +
∫ t

0
b(Xs– ) ds +

∫ t

0
σ (Xs– ) dBs +

∫ t

0

∫

E
F(Xs– , z)Ñ(ds, dz). (3)

Moreover, for any p ≥ 2, there exists a positive constant Kp, depending on T , b, σ , F , h, such
that

E

[
sup
t≤T

|Xt|p
]

≤ Kp
(
1 + E

[|X0|p
])

. (4)

In this paper, we are concerned with the large deviation principle (LDP for short) for
MR-SDEs of jump type on R:

⎧
⎨

⎩

Xε
t = X0 +

∫ t
0 b(Xε

s–) ds +
√

ε
∫ t

0 σ (Xε
s–) dBs +

∫ t
0
∫

E F(Xε
s–, z)Ñε–1 (ds, dz) + K ε

t ,

E[h(Xε
t )] ≥ 0,

∫ t
0 E[h(Xε

s )] dK ε
s = 0, t ≥ 0.

(5)

Condition 2.4 The function F satisfies the following:
(1) There exists a function MF ∈ L1(ϑ) ∩ L2(ϑ) such that, for any (x, z) ∈R× E,

∣
∣F(x, z)

∣
∣2 ≤ MF (z)

(
1 + |x|2);

(2) There exists a function LF ∈ L1(ϑ) ∩ L2(ϑ) such that, for any (xi, z) ∈ R× E, i = 1, 2,

∣
∣F(x1, z) – F(x2, z)

∣
∣2 ≤ LF (z)|x1 – x2|2.

For any δ > 0, define a class of functions

Hδ :=
{

h : E →R :
∫

Γ

exp
(
δ
∣
∣h(v)

∣
∣2)

ϑ(dv) < ∞,∀Γ ∈ B(E) with ϑ(Γ ) < ∞
}

. (6)

Condition 2.5 The functions MF and LF are in the class Hδ for some δ > 0.

Remark 2.6 Condition 2.5 implies that, for all δ ∈ (0,∞) and Γ ∈ B([0, T] × E) satisfying
ϑT (E) < ∞,

∫

Γ

exp
(
δ
∣
∣MF (v)

∣
∣
)
ϑ(dv) ds < ∞ and

∫

Γ

exp
(
δ
∣
∣LF (v)

∣
∣
)
ϑ(dv) ds < ∞.

The main result of this paper is the following theorem.

Theorem 2.7 Suppose that Conditions 2.1, 2.2, 2.4, and 2.5 hold. Then the family {Xε}ε>0

satisfies a large deviation principle on D([0, T];R) in the topology of uniform convergence
with the rate function I defined as in (11) with G0 given by (22). More precisely, for any
Borel set Γ ∈ D([0, T];R), we have

– inf
γ∈Γ̊

I(γ ) ≤ lim inf
ε→0

ε logP
(
Xε ∈ Γ

)
lim sup

ε→0
ε logP

(
Xε ∈ Γ

) ≤ – inf
γ∈Γ

I(γ ).
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3 Poisson random measure and the weak convergence criterion
3.1 Poisson random measure and Brownian motion
Let E be a locally compact Polish space. Denote by C([0, T], E) and D([0, T], E) the spaces
of continuous functions and right continuous functions with left limits from [0, T] into E,
respectively; Cc(E) is the space of continuous functions with compact supports, MFC(E)
is the space of all measures ϑ on (E,B(E)) such that ϑ(K) < ∞ for every compact K in
E. Endow MFC(E) with the weakest topology such that, for every f ∈ Cc(E), the function
ϑ → 〈f ,ϑ〉 =

∫

E f (u) dϑ(u) is continuous. For any T ∈ (0,∞), let ET := [0, T] × E. For the
measure ϑ ∈MFC(E), let ϑT := λT ⊗ ϑ , where λT is the Lebesgue measure on [0, T].

Recall that a Poisson random measure n on ET with intensity measure ϑT is an
MFC(ET )-valued random variable such that, for each B ∈ B(ET ) with ϑT (B) < ∞, n(B) is
Poisson distributed with mean ϑT (B), and for disjoint B1, . . . , Bk ∈ B(ET ), n(B1), . . . , n(Bk)
are mutually independent random variables. Denote by P the measure induced by n on
(MFC(ET ),B(MFC(ET ))). Let M := MFC(ET ). Then P is the unique probability measure
on (M,B(M)) under which the canonical map N : M→ M, N(m) := m is a Poisson random
measure with intensity measure ϑT . For each θ > 0, let Pθ be the probability measure on
(M,B(M)) under which N is a Poisson random measure with intensity θϑT .

SetY := E×[0,∞) andYT := [0, T]×Y. Similarly, letM := MFC(YT ) andP be the unique
probability measure on (M,B(M)) under which the canonical map N : M →M, N(m) := m
is a Poisson random measure with intensity measure ϑT := λT ⊗ ϑ ⊗ λ∞, with λ∞ being
Lebesgue measure on [0,∞). Let Ft := σ {N((0, s] × O) : 0 ≤ s ≤ t, O ∈ B(Y)}, and denote
by F t the completion under P. Set P to be the predictable σ -field on [0, T] × M with
the filtration {F t : 0 ≤ t ≤ T} on (M,B(M)). Let A be the class of all (P ⊗B(E))/B[0,∞)-
measurable maps ϕ : ET × M → [0,∞). For ϕ ∈ A, define a counting process Nϕ on ET

by

Nϕ((0, t] × U) :=
∫

(0,t]×U

∫

(0,∞)
1[0,ϕ(s,x)](r)N( ds dx dr), t ∈ [0, T], U ∈ B(E). (7)

Nϕ is the controlled random measure with ϕ selecting the intensity for the points at loca-
tion x and time s.

Set W := C([0, T],R), V := W×M, and V := W×M. Define NV : V →M as NV(w, m) =
m for (w, m) ∈ V, and BV by βV(w, m) = w for (w, m) ∈ V. The maps NV : V → M and
BV = (BV are defined analogously. Define the σ -filtrationGV

t := σ {NV((0, s]×O), BV(s) : 0 ≤
s ≤ t, O ∈ B(E)}. For every θ > 0, PV

θ denotes the unique probability measure on (V,B(V))
such that:

(1) BV is a standard Brownian motion,
(2) NV is a Poisson random measure with intensity measure θϑT independent of BV.

Analogously, define (PV

θ ,GV

t ) and denotePV

θ=1 byPV. Denote by {FV

t } thePV-completion of

{GV

t } and by PV the predictable σ -field on [0, T] ×V with the filtration {FV

t } on (V,B(V)).

LetA be the class of all (PV⊗B(E))/B[0,∞)-measurable maps ϕ : ET ×V → [0,∞). Define
l : [0,∞) → [0,∞) by

l(r) := r log r – r + 1, r ∈ [0,∞).
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For any ϕ ∈A, the quantity

LT (ϕ) :=
∫

ET

l
(
ϕ(t, x,ω)

)
ϑT ( dt dx) (8)

is well defined as a [0,∞]-valued random variable.
Let

L2 :=
{

ψ : ψ is PV \B(R) measurable and
∫ T

0

∣
∣ψ(s)

∣
∣2 ds < ∞, a.s.-PV

}

. (9)

Set U := L2 ×A. Define

L̃T (ψ) :=
1
2

∫ T

0

∣
∣ψ(s)

∣
∣2 ds, ∀ψ ∈L2,

and

LT (u) := L̃T (ψ) + LT (ϕ), ∀u = (ψ ,ϕ) ∈ U . (10)

3.2 The weak convergence criterion
In this subsection, we recall a general criterion for a large deviation principle established
in [8]. Let {Gε}ε>0 be a family of measurable maps from V to U, where V is introduced
in Sect. 3.1 and U is a Polish space. We present a sufficient condition of large deviation
principle for the family Zε := Gε(

√
εB, εNε–1 ), as ε → 0.

Define

SΥ :=
{

g : ET → [0,∞); LT (g) ≤ Υ
}

and

S̃Υ :=
{

f : L2([0, T],R
)
; L̃T (f ) ≤ Υ

}
.

A function g ∈ SΥ can be identified with a measure ϑ
g
T ∈M defined by

ϑ
g
T (O) :=

∫

O
g(s, x)ϑT ( ds dx), O ∈ B(ET ).

This identification induces a topology on SΥ under which SΥ is a compact space, see the
Appendix of [6]. Throughout we use this topology on SΥ . We also use the weak topology
on S̃Υ . Set SΥ := S̃Υ × SΥ , S :=

⋃
Υ ≥1 SΥ , and

UΥ :=
{

u = (ψ ,ϕ) ∈ U : u(ω) ∈ SΥ ,PV-a.e. ω
}

.

The following condition is sufficient for establishing an LDP for a family {Zε}ε>0.

Condition 3.1 There exists a measurable map G0 : V → U such that the following condi-
tions hold:
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(a) For any Υ ∈N, let (fn, gn), (f , g) ∈ SΥ be such that (fn, gn) → (f , g) as n → ∞. Then

G0
(∫ ·

0
fn(s) ds,ϑ gn

T

)

−→ G0
(∫ ·

0
f (s) ds,ϑ g

T

)

in U.

(b) For any Υ ∈N, let φε = (ψε ,ϕε), φ = (ψ ,ϕ) ∈ UΥ be such that φε converges in
distribution to φ as ε → 0. Then

Gε

(√
εB +

∫ ·

0
ψε(s) ds, εNε–1ϕε

)

−→ G0
(∫ ·

0
ψ(s) ds,ϑϕ

T

)

in distribution.

For h ∈ U, define Sh := {(f , g) ∈ S : h = G0(
∫ ·

0 f (s) ds,ϑ g
T )}. Let I : U → [0,∞] be defined

by

I(h) := inf
q=(f ,g)∈Sh

{
LT (q)

}
, h ∈U, (11)

where LT (q) is given by (10). By convention, I(h) = ∞ if Sh = ∅.
Recall the following criterion from [8].

Theorem 3.2 ([8]) Suppose that Condition 3.1 holds. Then the family {Gε(
√

εB, εNε–1 )}ε>0

satisfies a large deviation principle with the rate function I given by (11).

For applications, the following strengthened form of Theorem 3.2 is useful. Let {Kn}n≥1

be an increasing sequence of compact sets in X such that
⋃∞

n=1 Kn = E. For each n, let

Ab,n :=
{
ϕ ∈A : 1/n ≤ ϕ(·, x, ·) ≤ n if x ∈ Kn;ϕ(·, x, ·) = 1 if x ∈ Kc

n
}

,

and let Ab :=
⋃∞

n=1 Ab,n, ŨΥ := UΥ ∩ {(ψ ,φ) : φ ∈Ab}.

Theorem 3.3 ([8]) Suppose Condition 3.1 holds with UΥ replaced by ŨΥ . Then the con-
clusions of Theorem 3.2 also hold.

4 Proof of Theorem 2.7

Proof of Theorem 2.7 According to Theorem 3.3, we need to prove that Condition 3.1 is
fulfilled. The verification of Conditions (3.1.a) and (3.1.b) will be given by Proposition 4.4
and Proposition 4.8, respectively. �

To use the representation formula (2) of the process K , we recall a result from [3]. Define
the function

H : R×P(R) � (x,ν) �−→ H(x, v) =
∫

h(x + z)ν(dz),

and

G0 : P(R) � ν �−→ inf
{

x ≥ 0 : H(x, v) ≥ 0
}

. (12)
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With these notations, denoting by (μt)t∈[0,T] the family of marginal laws of (Ut)t∈[0,T], we
have

Kt = sup
s≤t

G0(μs). (13)

For any two measures ν and ν ′, the Wasserstein-1 distance between ν and ν ′ is defined
by

W1
(
ν,ν ′) = inf

X∼ν,Y∼ν′ E
[|X – Y |].

Lemma 4.1 ([3, Theorem 2.5]) Under (A.2), for any ν,ν ′ ∈P(R),

∣
∣G0(ν) – G0

(
ν ′)∣∣ ≤ M

m
W1

(
ν,ν ′).

From Remark 1 in [5], we have

Kt – Ks = sup
s≤r≤t

G0(Xs + Ur – Us). (14)

By the definition of G0(Xs) = 0, if s < t, using Lemma 4.1, we have

|Kt – Ks| = sup
s≤r≤t

G0(Xs + Ur – Us)

= sup
s≤r≤t

∣
∣G0(Xs + Ur – Us) – G0(Xs)

∣
∣

≤ M
m

sup
s≤r≤t

E
[|Ur – Us|

]
. (15)

The following lemma can be proved by using the argument in [6, Lemma 3.4], [7,
Lemma 4.3]. We omit its proof.

Lemma 4.2 Under Conditions 2.4 and 2.5, for the function G = MF or LF , we have
(i) For every Υ ∈N,

CΥ
1 := sup

g∈SΥ

∫

ET

∣
∣G(v)

∣
∣ · ∣∣g(s, v) – 1

∣
∣ϑ(dv) ds < ∞ (16)

and

CΥ
2 := sup

g∈SΥ

∫

ET

∣
∣G(v)

∣
∣2 · (g(s, v) + 1

)
ϑ(dv) ds < ∞. (17)

(ii) For ever η > 0, there exists δ > 0 such that, for any A ⊂ [0, T] satisfying λT (A) < δ,

sup
g∈SΥ

∫

A

∫

E

∣
∣G(v)

∣
∣ · ∣∣g(s, v) – 1

∣
∣ϑ(dv) ds ≤ η. (18)

The following lemma is from [6, Lemma 3.11].
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Lemma 4.3 Let k : [0, T] × E →R be a measurable function such that

∫

ET

∣
∣k(s, v)

∣
∣2

ϑ(dv) ds < ∞,

and for all δ ∈ (0,∞) and Γ ∈ B([0, T] × E) satisfying ϑT (Γ ) < ∞,

∫

Γ

exp
(
δ
∣
∣k(s, v)

∣
∣
)
ϑ(dv) ds < ∞.

For any Υ ∈N, let gn, g ∈ SΥ be such that gn → g as n → ∞. Then

lim
n→∞

∫

ET

k(s, v)
(
gn(s, v) – 1

)
ϑ(dv) ds =

∫

ET

k(s, v)
(
g(s, v) – 1

)
ϑ(dv) ds.

Under Conditions (A.1) and (A.2), Eq. (5) has a unique strong solution Xε . Therefore,
there exists a Borel-measurable function Gε : V̄ → D([0, T];R) such that, for any Poisson
random measure Nε–1 on [0, T] × E with intensity measure ε–1λT ⊗ ϑ , Gε(

√
εB, εNε–1 ) is

the unique solution of Eq. (5).
Next we introduce the map G0 which will be used to define the rate function and also

used for verification of Condition 3.1. Recall S defined in the last section. Under Condi-
tion 2.4, for every q = (f , g) ∈ S, the deterministic integral equation

⎧
⎪⎪⎨

⎪⎪⎩

Xq
t = X0 +

∫ t
0 b(Xq

s ) ds +
∫ t

0 σ (Xq
s )f (s) ds

+
∫ t

0
∫

E F(Xq
s , v)(g(s, v) – 1)ϑ(dz) ds + Kq

t ,

E[h(Xq
t )] ≥ 0,

∫ t
0 h(Xq

s ) dKq
s = 0, t ≥ 0,

(19)

has a unique continuous solution. Here

Kq
t = sup

s≤t
inf

{
x ≥ 0, h

(
x + Uq

s
) ≥ 0

}
, (20)

where (Ut)0≤t≤T is the process defined by

Uq
t = X0 +

∫ t

0
b
(
Xq

s
)

ds +
∫ t

0
σ
(
Xq

s
)
f (s) ds +

∫ t

0

∫

E
F
(
Xq

s , v
)(

g(s, v) – 1
)
ϑ(dz) ds. (21)

Define

G0
(∫ ·

0
f (s) ds,ϑ g

T

)

:= Xq for q = (f , g) ∈ S. (22)

Let I : D([0, T];R) → [0,∞] be defined as in (11) with G0 given by (22).
We first verify Condition (3.1.a).

Proposition 4.4 Let Υ ∈ N and let qn := (fn, gn), q := (f , g) ∈ S̄Υ be such that qn → q as
n → ∞ in S̄Υ . Then

G0
(∫ ·

0
fn(s) ds,ϑ gn

T

)

−→ G0
(∫ ·

0
f (s) ds,ϑ g

T

)

in C
(
[0, T];R

)
.
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Proof Recall that G0(
∫ ·

0 fn(s) ds,ϑ gn
T ) = Xqn . For simplicity, we denote Xn := Xqn , X := Xq.

Since X ∈ C([0, T];R), we know that M := supt∈[0,T] |X(t)| < +∞. Notice that

Xn
t – Xt =

∫ t

0

[
b
(
Xn

s
)

– b(Xs)
]

ds +
∫ t

0

[
σ
(
Xn

s
)
fn(s) – σ (Xs)f (s)

]
ds

+
∫ t

0

∫

X

[
G

(
Xn

s , z
)(

gn(s, z) – 1
)

– G(Xs, z)
(
g(s, z) – 1

)]
ϑ(dz) ds

+ Kqn
t – Kq

t

=
∫ t

0

[
b
(
Xn

s
)

– b(Xs)
]

ds +
∫ t

0

[
σ
(
Xn

s
)
fn(s) – σ (Xs)fn(s)

]
ds

+
∫ t

0

[
σ (Xs)fn(s) – σ (Xs)f (s)

]
ds

+
∫ t

0

∫

E

[
G

(
Xn

s , z
)(

gn(s, z) – 1
)

– G(Xs, z)
(
gn(s, v) – 1

)]
ϑ(dv) ds

+
∫ t

0

∫

E

[
G(Xs, v)

(
gn(s, v) – 1

)
– G(Xs, v)

(
g(s, v) – 1

)]
ϑ(dv) ds

+ Kqn
t – Kq

t

=: In
1 (t) + In

2 (t) + In
3 (t) + In

4 (t) + In
5 (t) + In

6 (t). (23)

Set κn(t) := supu∈[0,t] |Xn(u) – X(u)|. By the Lipschitz condition of b, we have

∣
∣In

1 (t)
∣
∣ ≤

∫ t

0

∣
∣b

(
Xn

s
)

– b(Xs)
∣
∣ds ≤ C

∫ t

0
κn(s) ds. (24)

By the Lipschitz condition of σ , we have

∣
∣In

2 (t)
∣
∣ ≤ C

∫ t

0
κn(s) · ∣∣fn(s)

∣
∣ds. (25)

By the linear growth of σ , we know that

sup
t∈[0,T]

∣
∣σ (Xt)

∣
∣2 ≤ K

(
1 + 2M2). (26)

Since fn → f weakly in L2([0, T];R), there exists a constant C(f ) such that

∫ T

0

∣
∣fn(s)

∣
∣2 ds ≤ C(f ) and

∫ T

0

∣
∣f (s)

∣
∣2 ds ≤ C(f ).

Thus, by the Cauchy–Schwarz inequality, we have

sup
t∈[0,T]

∣
∣In

3 (t)
∣
∣ ≤

∫ T

0

∣
∣σ (Xs)

(
fn(s) – f (s)

)∣
∣ds

≤
(∫ T

0

∣
∣σ (Xs)

∣
∣2 ds

) 1
2 ·

(∫ T

0

∣
∣fn(s) – f (s)

∣
∣2 ds

) 1
2

≤
(

T · sup
t∈[0,T]

∣
∣σ (Xt)

∣
∣2

) 1
2 ·

(

2
∫ T

0

(∣
∣fn(s)

∣
∣2 +

∣
∣f (s)

∣
∣2)ds

) 1
2

≤ [
CT

(
1 + 2M2)C(f )

] 1
2 < ∞.
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Similarly, we have, for any 0 ≤ t1 < t2 ≤ T ,

∣
∣In

3 (t2) – In
3 (t1)

∣
∣ ≤ [

C(t2 – t1)
(
1 + 2M2)C(f )

] 1
2 ,

which means that the sequence {In
3 : n ≥ 1} is equicontinuous. By the Arzéla–Ascoli the-

orem, we know that {In
3 : n ≥ 1} is relatively compact in C([0, T];Rd).

By using (26) and the fact that fn → f weakly in L2([0, T];R), we obtain that, for any
t ∈ [0, T],

In
3 (t) =

∫ t

0

(
fn(s) – f (s)

)
σ (Xs) ds −→ 0, as n → ∞.

This, together with the relative compactness of {In
3 : n ≥ 1} in C([0, T];R), implies that

lim
n→∞ sup

t∈[0,T]

∣
∣In

3 (t)
∣
∣ = 0. (27)

By Lemma 4.2, we have

∣
∣In

4 (t)
∣
∣ ≤ 2

∫ t

0
κn(s)

∣
∣LF (v)

∣
∣ · ∣∣gn(s, v) – 1

∣
∣ds. (28)

By Condition 2.4, Remark 2.6, and Lemma 4.3, we know that as n → ∞,

In
5 (t) =

∫ t

0

∫

E
G(Xs, v)

[
gn(s, v) – g(s, v)

]
ϑ(dv) ds −→ 0, ∀t ∈ [0, T]. (29)

By Lemma 4.2, we know that the sequence {In
5 : n ≥ 1} is uniformly bounded and equicon-

tinuous, which implies that {In
5 : n ≥ 1} is relatively compact in C([0, T];Rd) by the Arzéla–

Ascoli theorem. Consequently, by (29), we know

lim
n→∞ sup

t∈[0,T]

∣
∣In

5 (t)
∣
∣ → 0. (30)

Recalling the definition of Kq
t given by (21), we have

Kqn
t – Kq

t = sup
s≤t

inf
{

x ≥ 0, h
(
x + Uq

s
) ≥ 0

}
. (31)

According to Lemma 4.1, we know that

Kqn
t – Kq

t ≤ M
m

sup
0≤s≤t

∣
∣Uqn

s – Uq
s
∣
∣ =

M
m

sup
0≤s≤t

5∑

i=1

∣
∣In

i
∣
∣(s). (32)

Putting (23), (24), (25), (28), (32) together, we have

κn(t) ≤ C
(∫ t

0
κn(s) ds +

∫ t

0
κn(s) · ∣∣fn(s)

∣
∣ds +

∫ t

0
κn(s) · ∣∣LG(v)

∣
∣ · ∣∣gn(s, v) – 1

∣
∣ds

)

+ 2 sup
t∈[0,T]

∣
∣In

3 (t)
∣
∣ + 2 sup

t∈[0,T]

∣
∣In

5 (t)
∣
∣.
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Then, by Lemma 4.2, (27), (30), and Gronwall’s lemma, we have

κn(T) ≤ 2
(

sup
t∈[0,T]

∣
∣In

3 (t)
∣
∣ + sup

t∈[0,T]

∣
∣In

5 (t)
∣
∣
)

× exp

{

C(T)
(∫ T

0

∣
∣fn(s)

∣
∣ds + 4

∫ T

0

∣
∣LG(v)

∣
∣ · ∣∣gn(s, v) – 1

∣
∣ds

)}

≤ C
(

sup
t∈[0,T]

∣
∣In

3 (t)
∣
∣ + sup

t∈[0,T]

∣
∣In

5 (t)
∣
∣
)

−→ 0.

The proof is complete. �

We now verify the second part of Condition 3.1.
Let φε = (ψε ,ϕε) ∈ ŨΥ and ϑε = 1

ϕε
. The following lemma follows from [8, Lemma 2.3].

Lemma 4.5 ([8, Lemma 2.3]) The processes

Eε
t (ϑε) := exp

{∫

(0,t]×E×[0,ε–1ϕε ]
log

(
ϑε(s, x)

)
N( ds dx dr)

+
∫

(0,t]×E×[0,ε–1ϕε ]

(
–ϑε(s, x) + 1

)
ϑT ( ds dx dr)

}

and

Ẽε
t (ψε) := exp

{
1√
ε

∫ t

0
ψε(s) dB(s) –

1
2ε

∫ t

0

∣
∣ψε(s)

∣
∣2 ds

}

are {F̄ V̄

t }-martingales. Set

Ēε
t (ψε ,ϑε) := Ẽε

t (ψε) · Eε
t (ϑε).

Then

Q
ε
t (G) :=

∫

G
Ēε

t (ψε ,ϑε) dP̄V̄, for G ∈ B(V̄)

defines a probability measure on V̄.

Since (
√

εB +
∫ ·

0 ψε(s) ds, εNε–1ϕε ) under Q
ε
T has the same law as that of (

√
εB, εNε–1 )

under PV, there exists a unique solution to the following controlled stochastic evolution
equation X̃ε :

dX̃ε
t = b

(
X̃ε

t
)

dt +
√

εσ
(
X̃ε

t
)

dB(t) + σ
(
X̃ε

t
)
ψε(t) dt

+
∫

E
F
(
X̃ε

t–, z
)(

εNε–1ϕε ( dt dz) – ϑ(dz) dt
)

+ K̃ ε
t

= b
(
X̃ε

t
)

dt +
√

εσ
(
X̃ε

t
)

dB(t) + σ
(
X̃ε

t
)
ψε(t) dt

+
∫

E
F
(
X̃ε

t–, v
) · (ϕε(t, v) – 1

)
ϑ(dv) dt

+ ε

∫

E
F
(
X̃ε

t–, v
)(

Nε–1ϕε ( dt dv) – ε–1ϕε(t, v)ϑ(dv) dt
)

+ dK̃ ε
t . (33)
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Here K̃ ε
t is given by

K̃ ε
t = sup

s≤t
inf

{
x ≥ 0,E

[
h
(
x + Ũε

s
)] ≥ 0

}
(34)

with the process (Ũε
t )0≤t≤T defined by

Ũε
t = X0 +

∫ t

0
b
(
X̃ε

s
)

ds +
√

ε

∫ t

0
σ
(
X̃ε

s
)

dB(s) +
∫ t

0
σ
(
X̃ε

s
)
ψε(s) ds

+
∫ t

0

∫

E
F
(
X̃ε

s–, z
)(

εNε–1ϕε ( ds dz) – ϑ(dz) ds
)
. (35)

Then

Gε

(√
εB +

∫ ·

0
ψε(s) ds, εNε–1ϕε

)

= X̃ε . (36)

The following estimate can be proved in a similar way to (4), which is omitted here.

Lemma 4.6 There exists some constant ε0 > 0 such that

sup
0<ε≤ε0

E

[
sup

0≤t≤T

∣
∣X̃ε

t
∣
∣2

]
< +∞.

Let {Yε}ε∈(0,1) be a sequence of random elements of D([0, T];R), and {τε , δε} be such that:
(a) For each ε, τε is a stopping time with respect to the natural σ -field and takes only

finitely many values.
(b) The constant δε ∈ [0, T] satisfies that δε → 0 as ε → 0.
We introduce the following condition on {Yε}:

Condition (A) For each sequence {τε , δε} satisfying (a) and (b), Yε(τε + δε) – Yε(τε) → 0 in
probability, as ε → 0. Recall the following lemma from Aldous [1].

Lemma 4.7 ([1]) Suppose that {Yε}ε∈(0,1) satisfies Condition (A) and {Yε(t)}ε∈(0,1) is tight
on R for each t ∈ [0, T], then {Yε}ε∈(0,1) is tight in D([0, T];R).

Proposition 4.8 Fix Υ ∈N, and let φε = (ψε ,ϕε), φ = (ψ ,ϕ) ∈ ŨΥ be such that φε converges
in distribution to φ = (ψ ,ϕ) as ε → 0. Then

Gε

(√
εB +

∫ ·

0
ψε(s) ds, εNε–1ϕε

)

�⇒ G0
(∫ ·

0
ψ(s) ds,ϑϕ

)

.

Proof First, we prove that X̃ε = Gε(
√

εβ +
∫ ·

0 ψε(s) ds, εNε–1ϕε ) is tight in D([0, T];R). With
the help of Aldous’ criterion in Lemma 4.7, we only need to check that X̃ε satisfies the
condition of Lemma 4.7.

By Lemma 4.6,

sup
0<ε<ε0

P
(∣
∣X̃ε

t
∣
∣ > L

) ≤ C/L2.
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Hence {X̃ε
t } is tight on R for each t ∈ [0, T]. Thus it remains to prove that {X̃ε

t } satisfies
Condition (A). For any sequences {τε , δε} satisfying (a) and (b),

X̃ε
τε+δε

– X̃ε
τε

=
∫ τε+δε

τε

b
(
X̃ε

s
)

ds +
√

ε

∫ τε+δε

τε

σ
(
X̃ε

s
)

dβ(s) +
∫ τε+δε

τε

σ
(
X̃ε

s
)
ψε(s) ds

+
∫ τε+δε

τε

∫

E
F
(
X̃ε

s , v
)(

ϕε(s, v) – 1
)
ϑ(dv) ds

+
∫ τε+δε

τε

∫

E
εF

(
X̃ε

s , v
)(

Nε–1ϕε ( ds dv) – ε–1ϕε(s, v)ϑ(dv) ds
)

+
(
K̃ ε

τε+δε
– K̃ ε

τε

)

=: IIε
1 + IIε

2 + IIε
3 + IIε

4 + IIε
5 + IIε

6. (37)

By the linear growth of b and σ , we have

E
[∣
∣IIε

1
∣
∣
] ≤ E

[∫ τε+δε

τε

∣
∣b

(
X̃ε

s
)∣
∣ds

]

≤ δεK
1
2 E

[
1 + 2 sup

0≤t≤T

∣
∣X̃ε

t
∣
∣2

] 1
2

≤ δεK
1
2
(

1 + 2E
[

sup
0≤t≤T

∣
∣X̃ε

t
∣
∣2

]) 1
2 , (38)

E
[∣
∣IIε

2
∣
∣2] ≤ εE

[∫ τε+δε

τε

∣
∣σ

(
X̃ε

s
)∣
∣2 ds

]

≤ εE

[∫ τε+δε

τε

K
(

1 + 2 sup
0≤t≤T

∣
∣X̃ε

t
∣
∣2

)
ds

]

≤ εδεK
(

1 + 2E
[

sup
0≤t≤T

∣
∣X̃ε

t
∣
∣2

])
, (39)

and

E
[∣
∣IIε

3
∣
∣
] ≤ E

[∫ τε+δε

τε

∣
∣σ

(
X̃ε

s
)∣
∣ · ∣∣ψε(s)

∣
∣ds

]

≤ E

[∫ τε+δε

τε

K
1
2 E

[
1 + 2 sup

0≤t≤T

∣
∣X̃ε

t
∣
∣2

] 1
2 · ∣∣ψε(s)

∣
∣ds

]

≤ K
1
2

(

E

[∫ τε+δε

τε

(
1 + 2 sup

0≤t≤T

∣
∣X̃ε

t
∣
∣2

)
ds

]) 1
2 ·

(

E

∫ τε+δε

τε

∣
∣ψε(s)

∣
∣2 ds

) 1
2

≤ K
1
2 δ

1
2
ε

(
E

[
1 + 2 sup

0≤t≤T

∣
∣X̃ε

t
∣
∣2

]) 1
2 ·

(

E

[∫ T

0

∣
∣ψε(s)

∣
∣2 ds

]) 1
2

≤ √
2Υ δ

1
2
ε K

1
2
(

1 + 2E
[

sup
0≤t≤T

∣
∣X̃ε

t
∣
∣2

]) 1
2 . (40)

For any η > 0, when δε < δ, where δ is the constant in Lemma 4.2(ii), we have, by Lemma 4.2,

E
[∣
∣IIε

4
∣
∣
] ≤ E

[∫ τε+δε

τε

∫

E

(
1 + 2 sup

0≤t≤T

∣
∣X̃ε

t
∣
∣
)

· ∣∣MF (v)
∣
∣ · ∣∣ϕε(s, v) – 1

∣
∣ϑ(dv) ds

]
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≤ E

[
1 + 2 sup

0≤t≤T

∣
∣X̃ε

t
∣
∣
]
·
[∫ τε+δε

τε

∫

E

∣
∣MF (v)

∣
∣ · ∣∣ϕε(s, v) – 1

∣
∣ϑ(dv) ds

]

≤ ηE
[
1 + 2 sup

0≤t≤T

∣
∣X̃ε

t
∣
∣
]
. (41)

For the fifth term,

E
[∣
∣IIε

5
∣
∣2] ≤ εE

[∫ τε+δε

τε

∫

E

∣
∣F

(
X̃ε

s , v
)∣
∣2 · ϕε(s, v)ϑ(dv) ds

]

≤ ε
(

1 + 2E
[

sup
0≤t≤T

∣
∣X̃ε

t
∣
∣
])

sup
g∈SΥ

∫ T

0

∫

E

∣
∣MF (v)

∣
∣2 · g(s, v)ϑ(dv) ds. (42)

According to Lemma 4.1, we know that

∣
∣Kqn

t – Kq
t
∣
∣ ≤ M

m
sup

0≤s≤t
E

[∣
∣Ũε

s – Ũε
s
∣
∣
]

=
M
m

sup
0≤s≤t

5∑

i=1

E
[∣
∣In

i (s)
∣
∣
]
. (43)

By (37)–(43), Lemma 4.2, and Chebyshev’s inequality, we obtain Condition (A). Thus
we have proved that X̃ε = Gε(

√
εB +

∫ ·
0 ψε(s) ds, εNε–1ϕε ) is tight in D([0, T];R).

Finally, we prove that G0(
∫ ·

0 ψ(s) ds,ϑϕ) is the unique limit of Gε(
√

εB +
∫ ·

0 ψε(s) ds,
εNε–1ϕε ).

Recall (33). Denote

Mε(t) :=
√

ε

∫ t

0
σ
(
X̃ε

s
)

dB(s)

and

Mε :=
∫ t

0

∫

E
εF

(
X̃ε

s , v
)(

Nε–1ϕε ( ds dv) – ε–1ϕε(s, v)ϑ(dv) ds
)
.

Similar to the proof of (39), we know that Mε �⇒ 0 and Mε �⇒ 0 as ε → 0.
Choose a subsequence along which (X̃ε ,φε , Mε , Mε) converges to (X̃,φ, 0, 0) in distri-

bution. By the Skorokhod representation theorem, we may assume that (X̃ε ,φε , Mε , Mε)
converges to (X̃,φ, 0, 0) almost surely.

Note that convergence in Skorokhod topology to a continuous limit is equivalent to the
uniform convergence, and C([0, T];R) is a closed subset of D([0, T];R). Hence

lim
ε→0

sup
s∈[0,T]

∣
∣Mε

∣
∣2 = 0, P-a.s.

Since X̃ε – Mε ∈ C([0, T];R) and X̃ε – Mε → X̃ almost surely in D([0, T];R), we have
X̃ ∈ C([0, T];R), and

lim
ε→0

sup
s∈[0,T]

∣
∣X̃ε(s) – X̃(s)

∣
∣ = 0, P-a.s.
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Letting ε → 0, along the lines of the proof of Proposition 4.4, we see that X̃ must solve

⎧
⎪⎪⎨

⎪⎪⎩

X̃t = X0 +
∫ t

0 b(X̃s–) ds +
∫ t

0 σ (X̃s–)ψ ds

+
∫ t

0
∫

E F(X̃s–, v)(ϕ(s, v) – 1)ϑ(dv) ds + K̃t ,

E[h(X̃t)] ≥ 0,
∫ t

0 E[h(X̃s)] dK̃s = 0, t ≥ 0.

(44)

By the uniqueness, this gives that X̃ = G0(
∫ ·

0 ψ(s) ds,ϑϕ).
The proof is complete. �
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