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Abstract
In this paper, we obtain the Köthe–Toeplitz duals of the domain of an arbitrary
invertible summability matrix E in the space �p. As a consequence, we apply our
results to the Fibonacci and Euler sequence spaces and show that some recent works
by Altay, Başar, and Mursaleen (Inf. Sci. 176:1450–1462, 2006) are all the special cases
of our results.
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1 Introduction and preliminaries
Let ω, �∞, �p, and c be the sets of all sequences, bounded sequences, p-absolutely
summable sequences, and convergent sequences, respectively. The multiplier space of the
sequence spaces X and Y is defined by

M(X, Y ) =
{

z = (zn) ∈ ω : xz = (xnzn) ∈ Y ,∀x = (xn) ∈ X
}

, (1.1)

and the α-, β-, and γ -duals of the space X, which are denoted by Xα , Xβ , and Xγ , are

Xα := M(X,�1), Xβ := M(X, cs), and Xγ := M(X, bs).

Here

bs =

{

(xn) ∈ ω : ‖x‖bs = sup
n

∣∣∣
∣∣

n∑

k=0

xk

∣∣∣
∣∣

< ∞
}

and

cs =

{

(xn) ∈ ω :

( n∑

k=0

xk

)

n

∈ c

}

.

For an infinite matrix A, the domain of A in the space X, which is a sequence space, is
defined by

XA = {x ∈ ω, Ax ∈ X}.
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Recently in [9], the author defined and studied the domain of an arbitrary invertible
summability matrix E = (En,k)n,k≥0 in the space �p, i.e., Ep := (�p)E . One can easily show that
the sequence space Ep is a normed space with ‖x‖Ep := ‖Ex‖�p , and the inclusion Eq ⊆ Ep

holds while 1 ≤ q ≤ p. Moreover, applying Hölder’s inequality, we have

‖x‖Ep ≤
(

sup
k∈N

∥∥{En,k}n∈N
∥∥

�1

)1/p‖x‖�p ,

which implies the inclusion �p ⊆ Ep for 1 ≤ p < ∞ provided that

sup
k∈N

∥∥{En,k}n∈N
∥∥

�1
< ∞.

Eventually, one can easily check that if the map E : Ep → �p is onto, then the space Ep is
linearly isomorphic to �p and in such a case the columns of the matrix E–1 form a Schauder
basis for Ep, where 1 ≤ p < ∞.

It is known that, for the infinite summability matrix E, there may be left or right inverses,
or even if both exist, they may not be unique. In this paper we deal with the case in which
the left and right inverses are equal, and we denote it by E–1. Further, to give full knowl-
edge on the definitions and calculations with infinite matrices, we refer the readers to the
textbook [3].

In this paper, we are going to find out the α-, β-, and γ -duals of the space Ep for p ∈
[1,∞]. We assume throughout thatF is the collection of all finite subsets ofN and 1

p + 1
q = 1.

Further, we denote by (X : Y ) the class of all infinite matrices which transform X into Y .

2 Main results
In this section, we assume that the transformation E : Ep → �p is surjective and state the-
orems determining the α-, β-, and γ -duals of Ep, where p ∈ [1,∞]. We consider only the
case 1 < p < ∞ in the proof of Theorems 2.1–2.3 below, because the cases p = 1 and p = ∞
can be proved similarly.

Theorem 2.1 Define the sets Gq and G∞ as follows:

Gq =
{

(bn) ∈ ω : sup
K∈F

∑

k

∣∣∣∣
∑

n∈K

E–1
n,kbn

∣∣∣∣

q

< ∞
}

and

G∞ =
{

(bn) ∈ ω : sup
K∈F

∑

k

∣∣∣∣
∑

n∈K

E–1
n,kbn

∣∣∣∣ < ∞
}

.

Then (E1)α = G∞ and (Ep)α = Gq, where 1 < p ≤ ∞.

Proof First, consider the following equations:

bnxn =
∞∑

k=0

E–1
n,kbnyk = (Ay)n (n ∈N), (2.1)
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in which the rows of the matrix A are the product of the rows of the matrix E–1 with the
sequence b = (bn) and y is the E-transform of the sequence x. Therefore, we realize by
(2.1) that bx = (bnxn) ∈ �1 while x ∈ Ep if and only if Ay ∈ �1 whenever y ∈ �p. That is,
b = (bn) ∈ (Ep)α if and only if A ∈ (�p : �1). So, by 76 of [8], we obtain that

sup
K∈F

∑

k

∣∣∣∣
∑

n∈K

E–1
n,kbn

∣∣∣∣

q

< ∞.

This implies that (Ep)α = Gq. �

Theorem 2.2 Define the sets H1, H2, H3, and Dq by

H1 =

{

(bn) ∈ ω :
∞∑

n=0

E–1
n,kbn exists for any k ∈N

}

,

H2 =

{

(bn) ∈ ω : sup
n,k∈N

∣∣∣∣∣

n∑

j=0

E–1
j,k bj

∣∣∣∣∣
< ∞

}

,

H3 =

{

(bn) ∈ ω : lim
n→∞

∞∑

k=0

∣∣∣∣∣

n∑

j=0

E–1
j,k bj

∣∣∣∣∣
=

∞∑

k=0

∣∣∣∣∣

∞∑

j=0

E–1
j,k bj

∣∣∣∣∣

}

,

and

Dq =

{

(bn) ∈ ω : sup
n∈N

n∑

k=0

∣∣∣∣∣

n∑

j=0

E–1
j,k bj

∣∣∣∣∣

q

< ∞
}

(1 < q < ∞).

Then (E1)β = H1 ∩ H2, (E∞)β = H1 ∩ H3, and (Ep)β = H1 ∩ Dq, where 1 < p < ∞.

Proof Consider the equation

n∑

k=0

bkxk =
n∑

k=0

[ ∞∑

j=0

E–1
k,j yj

]

bk

=
∞∑

k=0

[ n∑

j=0

E–1
j,k bj

]

yk = (Sy)n, (2.2)

in which y is the E-transform of x and S = (sn,k) is defined by

sn,k =
n∑

j=0

E–1
j,k bj (2.3)

for all n, k ∈N. Accordingly, we derive from (2.2) that bx = (bnxn) ∈ cs whenever x = (xn) ∈
Ep if and only if Sy ∈ c while y = (yn) ∈ �p. This implies that b = (bn) ∈ (Ep)β if and only if
S ∈ (�p : c). Hence, we deduce from 16 of [8] that

∞∑

n=0

E–1
n,kbn exists for any k ∈N and
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sup
n∈N

n∑

k=0

∣∣∣∣∣

n∑

j=0

E–1
j,k bj

∣∣∣∣∣

q

< ∞,

which shows that (Ep)β = H1 ∩ Dq. �

Theorem 2.3 Define the set D1 by

D1 =

{

(bn) ∈ ω : sup
n∈N

n∑

k=0

∣∣∣∣∣

n∑

j=0

E–1
j,k bj

∣∣∣∣∣
< ∞

}

.

Then (E1)γ = H2, (E∞)γ = D1, and (Ep)γ = Dq, where 1 < p < ∞.

Proof Using 1, 5, and 6 of [8], the proof can be easily adopted from one of Theorems 2.1
and 2.2 above, and so we omit the details. �

3 Special cases
In the following we present several special cases of Theorems 2.1–2.3. First, consider the
Fibonacci sequence spaces defined by

Fp =

{

(xn) ∈ ω :
∞∑

n=0

∣∣∣∣∣
1

fnfn+1

n∑

k=0

f 2
k xk

∣∣∣∣∣

p

< ∞
}

(1 ≤ p < ∞)

and

F∞ =

{

(xn) ∈ ω : sup
n∈N

∣∣∣∣∣
1

fnfn+1

n∑

k=0

f 2
k xk

∣∣∣∣∣

p

< ∞
}

,

which are the matrix domain of the Fibonacci matrix in �p [5], where the Fibonacci matrix
F = (Fn,k)n,k≥0 is defined by

Fn,k =

⎧
⎨

⎩

f 2
k

fnfn+1
, 0 ≤ k ≤ n,

0, otherwise.

Here {fk}∞k=0 is a sequence of Fibonacci numbers defined by fn = fn–1 + fn–2 for all n ≥ 1,
where f–1 = 0 and f0 = 1. The inverse of the Fibonacci matrix, F–1 = (cn,k), is

cn,k =

⎧
⎨

⎩
(–1)n–k fk fk+1

f 2
n

, k ≤ n ≤ k + 1,

0, otherwise.

Applying Theorems 2.1, 2.2, and 2.3, we have the following results.

Corollary 3.1 The α-, β-, and γ -duals of Fibonacci sequence spaces Fp (1 ≤ p ≤ ∞) are
as follows:

1. (F1)α = {(bn) ∈ ω : supn,k∈N
∑k+1

n=k |(–1)n–k fk fk+1
f 2
n

bn| < ∞},

2. (Fp)α = {(bn) ∈ ω : supK∈F
∑

k |∑n∈K∩{k,k+1}(–1)n–k fk fk+1
f 2
n

bn|q < ∞},

3. (F∞)α = {(bn) ∈ ω : supK∈F
∑

k |∑n∈K∩{k,k+1}(–1)n–k fk fk+1
f 2
n

bn| < ∞},
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4. (F1)β = (F1)γ = {(bn) ∈ ω : supn,k∈N |∑k+1
n=k (–1)n–k fk fk+1

f 2
n

bn| < ∞},

5. (Fp)β = (Fp)γ = {(bn) ∈ ω : supn∈N
∑n

k=0 |∑k+1
j=k (–1)j–k fk fk+1

f 2
j

bj|q < ∞},

6. (F∞)β = {(bn) ∈ ω :
∑

k |∑k+1
j=k (–1)j–k fk fk+1

f 2
j

bj| converges uniformly in n},

7. (F∞)γ = {(bn) ∈ ω : supn∈N
∑n

k=0 |∑k+1
j=k (–1)j–k fk fk+1

f 2
j

bj| < ∞}.

Next consider the Euler sequence spaces of order θ , defined as

eθ
p =

{

(xn) ∈ ω :
∞∑

n=0

∣∣∣∣∣

n∑

k=0

(
n
k

)

(1 – θ )n–kθ kxk

∣∣∣∣∣

p

< ∞
}

(1 ≤ p < ∞)

and

eθ
∞ =

{

(xn) ∈ ω : sup
n∈N

∣∣∣∣∣

n∑

k=0

(
n
k

)

(1 – θ )n–kθ kxk

∣∣∣∣∣

p

< ∞
}

,

which are the matrix domain of the Euler matrix in �p [1], where the Euler matrix E(θ ) =
(en,k) is defined by

en,k =

⎧
⎨

⎩

(n
k
)
(1 – θ )n–kθ k , 0 ≤ k ≤ n,

0, k > n.

Since the inverse of E(θ ) is E( 1
θ

), we observe that Theorems 4.4, 4.5, and 4.6 of [1] are all the
special cases of Theorems 2.1, 2.2, and 2.3, respectively, in which the matrix E is replaced
by E(θ ).

We refer the readers to [1, 2, 4, 6], and [7] for some results which are all the special cases
of Theorems 2.1, 2.2, and 2.3.

4 Conclusions
In this study, we obtain the α-, β-, and γ -duals of the domain of an arbitrary invertible
summability matrix E in �p and show that the recent works by Altay, Başar, and Mursaleen
are all the special cases of our results.
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