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1 Introduction
Hidden Markov chain is an important branch of Markov chain theory. A classical hidden
Markov model was first introduced by Baum and Petrie [1]. It provides a flexible model
that is very useful in different areas of applied probability and statistics. Examples are
found in machine recognition, like speech and optical character recognition, and bioin-
formatics. The power of these models is that they can be very efficiently implemented and
simulated. In recent years, many new theories were introduced into hidden time inhomo-
geneous Markov chain (HTIMC) theory. G.Q. Yang et al. [2] gave a law of large numbers
for countable hidden time inhomogeneous Markov models. In addition, delayed sums of
random variables were first discussed by Zygmund [3]. Gut and Stradtmüller [4] studied
the strong law of large numbers for delayed sums of random fields. Wang and Yang [5]
studied the generalized entropy ergodic theorem with a.e. and L1 convergence for time
inhomogeneous Markov chains. Wang [6, 7] discussed the limit theorems of delayed sums
for row-wise conditionally independent stochastic arrays and a class of asymptotic prop-
erties of moving averages for Markov chains in Markovian environments.

In the classical studies there are two simplest models for predicting: the mean model and
the random walk model [8]. These two models use all the historical information. But we
often encounter time series that appear to be “locally stationary”, so we can take an average
of what has happened in some window of the recent past. Based on this idea and the above
researches, the main focus of this paper is to obtain a general strong limit theorem of
delayed sums of functions of random variables for an HTIMC, and as corollaries, some
strong laws of large numbers for HTIMC are established thereby.

The remainder of this paper is organized as follows: Sect. 2 gives a brief description of
the HTIMC and related lemmas. Section 3 presents the main results and the proofs.
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2 Preliminaries
In this section we list some fundamental definitions and related results that are needed in
the next section.

Let (�,F ,P) be the underling probability space and ζ = (ξ ,η) a random vector, where
ξ = (ξ0, ξ1, . . .) and η = (η0,η1, . . .) are two different stochastic processes, η is hidden
(η takes values in set Y = {ω0,ω1, . . . ,ωb}) and ξ is observable (ξ takes values in set
X = {θ0, θ1, . . . , θd}).

We first recall the definition of a hidden time inhomogeneous Markov chain (HTIMC)
ζ = (ξ ,η) = {ξn,ηn}∞n=0 with hidden chain {ηn}∞n=0 and observable process {ξn}∞n=0.

Definition 1 The process ζ = (ξ ,η) is called an HTIMC if it follows the following form
and conditions:

1. Suppose that a given time inhomogeneous Markov chain takes values in state space
Y , its starting distribution is

(
q(ω0), q(ω1); . . . ; q(ωb)

)
, q(ωi) > 0,ωi ∈ Y , (2.1)

and transition matrices are

Qk =
(
qk(ωj | ωi)

)
, qk(ωj | ωi) > 0,ωi,ωj ∈ Y , k ≥ 1, (2.2)

where

qk(ωj | ωi) = P(ηk = ωj | ηk–1 = ωi), k ≥ 1.

2. For any positive integer n,

P(ξ0 = x0, . . . , ξn = xn | η) =
n∏

k=0

P(ξk = xk | ηk) a.s. (2.3)

Some necessary and sufficient conditions for (2.3) have been given by G.Q. Yang et al.
[2].

(a) (2.3) holds if, for any n,

P(ξ0 = x0, . . . , ξn = xn | η0 = y0, . . . ,ηn = yn) =
n∏

k=0

P(ξk = xk | ηk = yk) (2.4)

holds.
(b) ζ = (ξ ,η) is a hidden time inhomogeneous Markov chain if and only if ∀n ≥ 0,

p(x0, y0, . . . , xn, yn) = q(y0)
n∏

k=1

qk(yk | yk–1)
n∏

k=0

pk(xk | yk), n ≥ 1. (2.5)

(c) ζ = (ξ ,η) is a hidden time inhomogeneous Markov chain if and only if ∀n ≥ 0,

P(ηn = yn | ξ0 = x0, . . . , ξn–1 = xn–1,η0 = y0, . . . ,ηn–1 = yn–1)

= P(ηn = yn | ηn–1 = yn–1), (2.6)
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P(ξn = xn | ξ0 = x0, . . . , ξn = xn,η0 = y0, . . . ,ηn–1 = yn–1)

= P(ξn = xn | ηn = yn). (2.7)

Let {an, bn} be two sequences of nonnegative integers with bn converging to infin-
ity as n → ∞. Let San ,bn (θi,ωj), Wan ,bn (ωi), Tan ,bn (θi), θi ∈ X , ωj ∈ Y be the number of
ordered couples (θi,ωj) in (ξan+1,ηan+1), (ξan+2,ηan+2), . . . , (ξan+bn ,ηan+bn ), with ωi among
ηan+1,ηan+2, . . . ,ηan+bn and θi among ξan+1, ξan+2, . . . , ξan+bn , respectively.

It is easy to verify that

San ,bn (θi,ωj) =
an+bn∑

k=an+1

1{θi}(ξk)1{ωj}(ηk), (2.8)

Wan ,bn (ωi) =
an+bn∑

k=an+1

1{ωi}(ηk), (2.9)

and

Tan ,bn (θi) =
an+bn∑

k=an+1

1{θi}(ξk), (2.10)

where 1A(·) denotes the indicator function of set A.

Lemma 1 Let ζ = (ξ ,η) = {(ξk ,ηk)}∞k=0 be an HTIMC which takes values in X × Y , let
{fk(x, y)}∞k=0 be a sequence of functions on X × Y , let Fm,n = σ {(ξm,ηm, . . . , ξn,ηn), 0 ≤ m ≤
n ∈ Z+}, and let {an, bn} be a sequence of pairs of positive integers with

∑∞
n=1 exp[–εbn] < ∞,

where ε > 0 is arbitrary. Define

A(α) =

{

ω : lim sup
n→∞

1
bn

an+bn∑

k=an+1

E
[
f 2
k (ξk ,ηk)eα|fk (ξk ,ηk )| |Fan ,k–1

]
= M(α,ω) < ∞

}

(α > 0). (2.11)

Then

lim
n→∞

1
bn

an+bn∑

k=an+1

{
fk(ξk ,ηk) – E

[
fk(ξk ,ηk) |Fan ,k–1

]}
= 0 a.s. ω ∈ A(α). (2.12)

Proof Let λ be a real number. We first define

tan ,bn (λ,ω) =
eλ

∑an+bn
k=an+1 fk (ξk ,ηk )

∏an+bn
k=an+1 E[eλfk (ξk ,ηk ) |Fan ,k–1]

. (2.13)

Note that

tan ,bn (λ,ω) = tan ,bn–1 (λ,ω)
eλfan+bn (ξan+bn ,ηan+bn)

E[eλfan+bn (ξan+bn ,ηan+bn) |Fan ,an+bn–1]
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and

E
[
tan ,bn (λ,ω)

]
= E

{
E

[
tan ,bn (λ,ω)

] |Fan ,an+bn–1
}

.

Hence, we have

E
[
tan ,bn (λ,ω) |Fan ,an+bn–1

]
= tan ,bn–1 (λ,ω) a.s.

It is easy to show that E[tan ,bn(λ,ω)] = 1; ∀n ≥ 1. This and the Markov inequality imply that,
for every ε > 0,

P

[
1
bn

log tan ,bn (λ,ω) ≥ ε

]
= P

[
tan ,bn (λ,ω) ≥ exp(nε)

] ≤ 1 · exp(–εbn).

Hence

∞∑

n=1

P

[
1
bn

log tan ,bn (λ,ω) ≥ ε

]
≤

∞∑

n=1

exp(–εbn) < ∞,

which, by the first Borel–Cantelli Lemma, allows us to conclude that lim supn
1

bn
log tan ,bn (s,

ω) < ε a.s., since ε is arbitrary, thus

lim sup
n→∞

1
bn

log tan ,bn (λ,ω) ≤ 0 a.s. (2.14)

follows since 1
bn

log n2 = 2 log n
bn

→ 0 (n → ∞). We have by Eqs. (2.13) and (2.14) that

lim sup
n→∞

1
bn

{

λ

an+bn∑

k=an+1

fk(ξk ,ηk) –
an+bn∑

k=an+1

logE
[
eλfk (ξk ,ηk ) |Fan ,k–1

]
}

≤ 0 a.s. (2.15)

Taking 0 < λ ≤ α, and dividing both sides of Eq. (2.15) by λ, we get

lim sup
n→∞

1
bn

{ an+bn∑

k=an+1

fk(ξk ,ηk) –
an+bn∑

k=an+1

logE[eλfk (ξk ,ηk ) |Fan ,k–1]
λ

}

≤ 0 a.s. (2.16)

We have by Eq. (2.16) and inequalities log x ≤ x – 1 (x > 0), 0 ≤ ex – 1 – x ≤ 1
2 x2e|x| that

lim sup
n→∞

1
bn

an+bn∑

k=an+1

{
fk(ξk ,ηk) – E

[
fk(ξk ,ηk) |Fan ,k–1

]}

≤ lim sup
n→∞

1
bn

an+bn∑

k=an+1

{
logE[eλfk (ξk ,ηk ) |Fan ,k–1]

λ
– E

[
fk(ξk ,ηk) |Fan ,k–1

]}

≤ lim sup
n→∞

1
bn

an+bn∑

k=an+1

{
E[eλfk (ξk ,ηk ) |Fan ,k–1] – 1

λ
– E

[
fk(ξk ,ηk) |Fan ,k–1

]}
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≤ λ

2
lim sup

n→∞
1
bn

an+bn∑

k=an+1

E
[
f 2
k (ξk ,ηk)eα|fk (ξk ,ηk )| |Fan ,k–1

]

=
λ

2
M(α,ω) a.s. ω ∈ A(α). (2.17)

Letting λ ↘ 0+ in Eq. (2.17), we get

lim sup
n→∞

1
bn

an+bn∑

k=an+1

{
fk(ξk ,ηk) – E

[
fk(ξk ,ηk) |Fan ,k–1

]} ≤ 0 a.s. ω ∈ A(α). (2.18)

Taking –α < λ ≤ 0, similarly, we have

lim inf
n→∞

1
bn

an+bn∑

k=an+1

{
fk(ξk ,ηk) – E

[
fk(ξk ,ηk) |Fan ,k–1

]}

≥ λ

2
M(α,ω) a.s. ω ∈ A(α).

Putting λ ↗ 0–, we have

lim inf
n→∞

1
bn

an+bn∑

k=an+1

{
fk(ξk ,ηk) – E

[
fk(ξk ,ηk) |Fan ,k–1

]} ≥ 0 a.s. ω ∈ A(α). (2.19)

From Eqs. (2.18) and (2.19), we obtain

lim
n→∞

1
bn

an+bn∑

k=an+1

{
fk(ξk ,ηk) – E

[
fk(ξk ,ηk) |Fan ,k–1

]}
= 0 a.s. ω ∈ A(α).

Thus we complete the proof of Lemma 1. �

Lemma 2 Assume that ζ = (ξ ,η) = {(ξk ,ηk)}∞k=0 is an HTIMC defined as in Lemma 1. Then,
for every j < k; k ≥ 1,

E
[
fk(ξk ,ηk) |Fj,k–1

]
= E

[
fk(ξk ,ηk) | ηk–1

]
a.s. (2.20)

Proof From definition of Hidden Markov chain, we have, for every xi ∈ X , yj ∈ Y , m ≤ n;
n ≥ 1,

p(ξn = xn,ηn = yn | ξm = xm,ηm = ym, . . . , ξn-1 = xn-1,ηn-1 = yn-1)

= p(ξn = xn | ξm = xm,ηm = ym, . . . , ξn-1 = xn-1,ηn-1 = yn-1,ηn = yn)

×p(ηn = yn | ξm = xm,ηm = ym, . . . , ξn-1 = xn-1,ηn-1 = yn-1, ξn = xn)

= p(ξn = xn | ηn = yn) ·p(ηn = yn | ηn-1 = yn-1, ξn = xn)

= p(ξn = xn,ηn = yn | ηn-1 = yn-1).

Hence, we have

E
[
fk(ξk ,ηk) |Fj,k–1

]
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=
∑

xk∈X

∑

yk∈Y
fk(xk , yk)p(ξk = xk ,ηk = yk | ξj = xj,ηj = yj, . . . , ξk–1 = xk–1,ηk–1 = yk–1)

=
∑

xk∈X

∑

yk∈Y
fk(xk , yk)p(ξk = xk ,ηk = yk | ηk–1 = yk–1)

= E
[
fk(ξk ,ηk) | ηk–1

]
. �

According to Theorem 1 of Wang [5], it is easy to verify the following lemma.

Lemma 3 Suppose that η = (η0,η1, . . .) is a time inhomogeneous Markov chain which takes
value in state space Y , its starting distribution is

(
q(ω0), q(ω1); . . . ; q(ωb)

)
, q(ωi) > 0,ωi ∈ Y , (2.21)

and transition matrices are

Qk =
(
qk(ωj | ωi)

)
, qk(ωj | ωi) > 0,ωi,ωj ∈ Y , k ≥ 1, (2.22)

where

qk(ωj | ωi) = P(ηk = ωj | ηk–1 = ωi), k ≥ 1.

Assume that � = (q(ωi,ωj)), q(ωi,ωj) > 0, ωi,ωj ∈ Y is another transition matrix which
satisfies the following condition:

lim
n→∞

1
bn

an+bn∑

k=an+1

∣
∣qk(ωi,ωj) – q(ωi,ωj)

∣
∣ = 0 ∀ωi,ωj ∈ Y . (2.23)

Then, for each ωs ∈ Y ,

lim
n→∞

1
bn

an+bn∑

k=an+1

1{ωs}(ηk–1) = πs a.s., (2.24)

where (π0,π1,π2, . . . ,πb) is the stationary distribution determined by �.

3 Main results
Theorem 1 Let ζ = (ξ ,η) = {(ξk ,ηk)}∞k=0 be an HTIMC which takes values in X ×Y , f (x, y)
be a function on X ×Y .

Let � = (q(ωi,ωj)), q(ωi,ωj) > 0, ωi,ωj ∈ Y be another transition matrix and p(θi |
ωj), (θi,ωj) ∈X ×Y be conditional probabilities which satisfy

lim
n→∞

1
bn

an+bn∑

k=an+1

∣
∣qk(ωi,ωj) – q(ωi,ωj)

∣
∣ = 0 ∀ωi,ωj ∈ Y , (3.1)

lim
n→∞

1
bn

an+bn∑

k=an+1

∣∣pk(θi | ωj) – p(θi | ωj)
∣∣ = 0 ∀(θi,ωj) ∈X ×Y . (3.2)
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If the transition matrix � has a stationary distribution π = (π0,π1,π2, . . . ,πb), then

lim
n→∞

1
bn

an+bn∑

k=an+1

f (ξk ,ηk) =
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs) a.s. (3.3)

Proof Since f (x, y) is bounded, we have by Lemmas 1 and 2 that

lim
n→∞

1
bn

an+bn∑

k=an+1

{
f (ξk ,ηk) – E

[
f (ξk ,ηk) | ηk–1

]}
= 0 a.s. (3.4)

Observe that

E
[
f (ξk ,ηk) | ηk–1

]
=

∑

θi∈X

∑

ωj∈Y
f (θi,ωj)qk(ηk–1,ωj)pk(θi | ηk–1).

We have that, by Eq. (3.4),

lim sup
n→∞

∣∣∣
∣∣

1
bn

an+bn∑

k=an+1

f (ξk ,ηk) –
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs)

∣∣∣
∣∣

≤ lim sup
n→∞

∣∣
∣∣
∣

1
bn

an+bn∑

k=an+1

E
[
f (ξk ,ηk) | ηk–1

]
–

∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs)

∣∣
∣∣
∣

= lim sup
n→∞

∣
∣∣∣
∣

1
bn

an+bn∑

k=an+1

∑

θi∈X

∑

ωj∈Y
f (θi,ωj)qk(ηk–1,ωj)pk(θi | ηk–1)

–
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs)

∣
∣∣
∣∣

= lim sup
n→∞

∣∣∣
∣∣

1
bn

an+bn∑

k=an+1

∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
1{ωs}(ηk–1)πsf (θi,ωj)qk(ωs,ωj)pk(θi | ωs)

–
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs)

∣∣∣
∣∣

= lim sup
n→∞

∣∣
∣∣
∣

1
bn

an+bn∑

k=an+1

∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
1{ωs}(ηk–1)f (θi,ωj)

× [(
qk(ωs,ωj) – q(ωs,ωj)

)
pk(θi | ωs)

+ q(ωs,ωj)
(
pk(θi | ωs) – p(θi | ωs)

)
+ p(θi | ωs)q(ωs,ωj)

]

–
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs)

∣∣∣
∣∣

≤ lim sup
n→∞

∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
sup

θi∈X ,ωj∈Y

∣∣f (θi,ωj)
∣∣
{∣∣

∣∣
∣

1
bn

an+bn∑

k=an+1

∣∣qk(ωs,ωj) – q(ωs,ωj)
∣∣
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+
1
bn

an+bn∑

k=an

∣
∣pk(θi | ωs) – p(θi | ωs)

∣
∣

∣∣
∣∣
∣

}

= 0.

Therefore Eq. (3.3) holds. �

Corollary 1 Under the conditions of Theorem 1, we have for each θi′ ∈X , ωj′ ,ωs ∈ Y ,

lim
n→∞

1
bn

San ,bn (θi′ ,ωj′ ) =
∑

ωs∈Y
πsq(ωs,ωj′ )p(θi′ | ωs) a.s. (3.5)

Proof Put f (x, y) = 1{θi′ }(x)1{ωj′ }(y), (θi′ ,ωj′ ) ∈X ×Y in Theorem 1. Then

lim
n→∞

1
bn

an+bn∑

k=an+1

f (ξk ,ηk) –
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs)

= lim
n→∞

1
bn

an+bn∑

k=an+1

1{θi′ }(ξk)1{ωj′ }(ηk)

–
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
1{θi′ }(θi)1{ωj′ }(ωj)πsq(ωs,ωj)p(θi | ωs)

= lim
n→∞

1
bn

San ,bn (θi′ ,ωj′ ) –
∑

ωs∈Y
πsq(ωs,ωj′ )p(θi′ | ωs) = 0 a.s.

�

Corollary 2 Under the assumptions of Theorem 1, we have, for each θi′′ ∈X , ωs ∈ Y ,

lim
n→∞

1
bn

Tan ,bn (θi′′ ) =
∑

ωs∈Y
πsp(θi′′ | ωs) a.s. (3.6)

Proof Put f (x, y) = 1{θi′′ }(x), (x, y) ∈X ×Y in Theorem 1. Then

lim
n→∞

1
bn

an+bn∑

k=an+1

f (ξk ,ηk) –
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
πsf (θi,ωj)q(ωs,ωj)p(θi | ωs)

= lim
n→∞

1
bn

an+bn∑

k=an+1

1{θi′′ }(ξk) –
∑

θi∈X

∑

ωj∈Y

∑

ωs∈Y
1{θi′′ }(θi)πsq(ωs,ωj)p(θi | ωs)

= lim
n→∞

1
bn

Tan ,bn (θi′′ ) –
∑

ωs∈Y
πsp(θi′′ | ωs) = 0 a.s.

�
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