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1 Introduction
Let X be a Banach space, and let Ω be a nonempty closed convex subset of X. Let f : X →
R∪ {+∞} be a proper lower semicontinuous function. We assume that

S =
{

x ∈ Ω|f (x) ≤ 0
} �= ∅.

Let a ∈ S, τ > 0, and λ > 0. We say that f has a λ-order local error bound τ at a if there
exists δ > 0 such that

d(x, S)λ ≤ [
f (x)

]
+, ∀x ∈ a + δBX , (1.1)

where BX denotes the closed unit ball of X, d(x, S) = inf{‖x – y‖|y ∈ S}, and [f (x)]+ =
max{f (x), 0}. We say that f has a λ-order global error bound τ if a + δBX in (1.1) can be
replaced by the whole space X.

Error bounds play an important role in convergence and perturbation analysis of some
algorithms and mathematical programming [1–3]. In the last twenty years, many re-
searchers studied error bounds and obtained a lot of interesting results; see the survey
papers [2, 3] and the references therein. However, these results are mainly concerned
with error bounds in the case λ = 1. Recently, Huang [4] considered higher-order error
bounds for strongly convex multifunctions. Huang [5] and Huang and Li [6] also con-
sidered mixed-order error bounds for gamma paraconvex multifunctions. Zheng and Ng
[7] studied Hölder weak sharp minimizers, which closely relate to error bounds for lower
semicontinuous functions.

Recall that a function f : X →R∪{+∞} is said to be a difference (DC) function if f is the
difference of two (convex) functions. Many nonconvex optimization problems are differ-
ence structure optimization problems. In 2012, Le Thi, Pham Dinh, and Ngai [8] studied
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error bounds for DC functions in R
n. In 2014, Huang and Li [9] studied error bounds for

DC multifunctions. In 2016, Van Hang and Yao [10] established sufficient conditions for
the existence of error bounds for difference functions and applications. However, all re-
sults mentioned in this paragraph are concerned with λ = 1. It is natural for us to consider
higher-order error bounds for difference functions.

The rest of this paper is organized as follows. In Sect. 2, we give some notions. In Sect. 3,
we establish sufficient and necessary conditions for the existence of higher-order error
bounds for difference functions with set constraints in terms of nonsmooth analysis tools.

2 Preliminaries
Let X be a real Banach space, and let τ ,λ > 0. We say that f : X → R ∪ {+∞} is a λ-order
strongly convex function with modulus τ if for all x, y ∈ X and t ∈ (0, 1),

τ t(1 – t)‖x – y‖λ + f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y).

In the particular case τ = 0, strongly convex functions reduce to convex functions. We say
that f is proper if its domain dom(f ) := {x ∈ X|f (x) < +∞} �= ∅. Let x0 ∈ dom(f ). We say that
f is lower semicontinuous at x0 if

lim inf
x→x0

f (x) ≥ f (x0).

Let u ∈ X. We define

f ′(x0; u) = lim inf
t→0+

f (x0 + tu) – f (x0)
t

.

It is known that

f ′(x0; u) = f ′(x0; u) = lim
t→0+

f (x0 + tu) – f (x0)
t

if f is a convex function. For a convex function f and x̄ ∈ dom(f ), the subdifferential of f
at x̄ is defined as

∂f (x̄) =
{

x∗ ∈ X∗|〈x∗, x – x̄
〉 ≤ f (x) – f (x̄),∀x ∈ X

}
.

Let Ω be a closed convex subset of X, and let a ∈ Ω . The tangent cone of Ω at a is
defined as

T(Ω , a) =
{

v ∈ X|∃tn > 0, tn → 0+, vn ∈ X, vn → v such that a + tnvn ∈ Ω
}

.

Let A ⊂R
n and x ∈R

n. The projection of x on A is defined as

PA(x) =
{

y ∈ A|‖x – y‖ = d(x, A)
}

.

The limiting normal cone of A at a ∈ A [11] is defined as

N(A; a) =
{

v ∈R
n|∃xk ∈ R

n, xk → a, tk > 0, uk ∈ PA(xk)

such that tk(xk – uk) → v
}

.
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Let x̄ ∈ X and δ > 0. By B(x̄, δ) we denote the open ball with center at x̄ and radius δ and
by SX the unit sphere of X. By bdry(S) we denote the boundary of a set S.

3 Main results
In this section, we assume that X is a real Banach space unless stated otherwise, Ω ⊂ X
is a nonempty closed convex set, g, h : X → R ∪ {+∞} are two proper functions, and S =
{x ∈ Ω|g(x) – h(x) ≤ 0} �= ∅. We first establish sufficient conditions for the existence of
higher-order error bounds for difference functions.

Theorem 3.1 Let g : X → R∪{+∞} be a lower semicontinuous function, and let h : X →R

be a continuous function. Let τ > 0, δ > 0, λ > 0, and x̄ ∈ S. Suppose that, for each x ∈ Ω \ S
such that ‖x – x̄‖ < δ, there exists u ∈ T(Ω ; x) ∩ SX such that

g ′(x; u) + τd(x, S)
1
λ ≤ h′(x; u). (3.1)

Then

τ

4 · 2
1
λ

d(x, S)
1+λ
λ ≤ [

g(x) – h(x)
]

+, ∀x ∈ Ω ∩ B
(

x̄,
2
3
δ

)
. (3.2)

Proof Suppose on the contrary that (3.2) is not true. Then there exists x̃ ∈ Ω such that
‖x̃ – x̄‖ < 2

3δ and

[
g(x̃) – h(x̃)

]
+ <

τ

4 · 2
1
λ

d(x̃, S)
1+λ
λ . (3.3)

Since infx∈Ω [g(x) – h(x)]+ = 0, it follows from (3.3) that

[
g(x̃) – h(x̃)

]
+ < inf

x∈Ω

[
g(x) – h(x)

]
+ +

τ

4 · 2
1
λ

d(x̃, S)
1+λ
λ .

By the completeness of X and the closedness of Ω we know that Ω is a complete metric
space with respect to the metric induced by the norm of X. By the Ekeland variational
principle [12] there exists x0 ∈ Ω such that

‖x0 – x̃‖ ≤ 1
2

d(x̃, S) (3.4)

and

[
g(x0) – h(x0)

]
+ <

[
g(x) – h(x)

]
+ +

τ

2 · 2
1
λ

d(x̃, S)
1
λ ‖x – x0‖, ∀x ∈ Ω \ {x0}. (3.5)

From (3.4) we have that x0 /∈ S, and so g(x0) – h(x0) > 0. Let u ∈ T(Ω ; x0) ∩ SX . Since Ω is
a convex set, there exists t0 > 0 such that x0 + tu ∈ Ω for all t ∈ (0, t0). Since g – h is lower
semicontinuous at x0, there exists t1 ∈ (0, t0) such that

[
g(x0 + tu) – h(x0 + tu)

]
+ = g(x0 + tu) – h(x0 + tu)
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for all t ∈ (0, t1). It follows from (3.5) that

g(x0) – h(x0) < g(x0 + tu) – h(x0 + tu) +
τ

2 · 2
1
λ

d(x̃, S)
1
λ ‖x0 + tu – x0‖

for all t ∈ (0, t1), that is,

h(x0 + tu) – h(x0) < g(x0 + tu) – g(x0) +
τ

2 · 2
1
λ

d(x̃, S)
1
λ t

since ‖u‖ = 1. Therefore

h(x0 + tu) – h(x0)
t

<
g(x0 + tu) – g(x0)

t
+

τ

2 · 2
1
λ

d(x̃, S)
1
λ .

Taking lim inf as t → 0+, we get

h′(x0; u) ≤ g ′(x0; u) +
τ

2 · 2
1
λ

d(x̃, S)
1
λ . (3.6)

By (3.4) we have

d(x̃, S) ≤ d(x0, S) + ‖x̃ – x0‖ ≤ d(x0, S) +
1
2

d(x̃, S),

and so d(x̃, S) ≤ 2d(x0, S). This inequality and (3.6) imply that

h′(x0; u) ≤ g ′(x0; u) +
τ

2 · 2
1
λ

2
1
λ d(x0, S)

1
λ = g ′(x0; u) +

τ

2
d(x0, S)

1
λ . (3.7)

By (3.4) we get

‖x0 – x̄‖ ≤ ‖x0 – x̃‖ + ‖x̃ – x̄‖ ≤ 1
2

d(x̃, S) + ‖x̃ – x̄‖

≤ 1
2
‖x̃ – x̄‖ + ‖x̃ – x̄‖ < δ.

(3.8)

Inequalities (3.7) and (3.8) are a contradiction to (3.1). The proof is completed. �

We now give necessary conditions for the existence of higher-order error bounds for
difference functions.

Theorem 3.2 Let g, h : X → R be two continuous convex functions. Let τ > 0, δ > 0, λ > 0,
and x̄ ∈ S. Suppose that

τd(x, S)
1+λ
λ ≤ [

g(x) – h(x)
]

+, ∀x ∈ Ω ∩ B(x̄, δ). (3.9)

Then, for each x ∈ Ω \ S such that ‖x – x̄‖ < δ
2 , there exist a ∈ S and u ∈ T(Ω ; x) ∩ SX such

that

g ′(x; u) +
τ

2
d(x, S)

1
λ ≤ h′(a; u). (3.10)
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Proof Let x ∈ Ω \ S be such that ‖x – x̄‖ < δ
2 . Take a ∈ bdry(S) such that‖x – a‖ < 2d(x, S).

Then

‖x – a‖ < 2d(x, S) ≤ 2‖x – x̄‖ < δ.

As a ∈ bdry(S), we have g(a) – h(a) = 0. By (3.9),

τ

2
d(x, S)

1
λ ‖x – a‖ ≤ τd(x, S)

1+λ
λ ≤ g(x) – h(x) –

[
g(a) – h(a)

]
,

that is,

h(x) – h(a) +
τ

2
d(x, S)

1
λ ‖x – a‖ ≤ g(x) – g(a). (3.11)

Let x∗ ∈ ∂g(x) and a∗ ∈ ∂h(a). Then

〈
x∗, a – x

〉 ≤ g(a) – g(x),
〈
a∗, x – a

〉 ≤ h(x) – h(a).

It follows from (3.11) that

〈
a∗,

x – a
‖x – a‖

〉
+

τ

2
d(x, S)

1
λ ≤

〈
x∗,

x – a
‖x – a‖

〉
.

Denote u := a–x
‖a–x‖ . Then u ∈ T(Ω ; x) ∩ SX since Ω is a convex set. The last inequality im-

plies that

– max
a∗∈∂h(a)

〈
a∗, u

〉
+

τ

2
d(x, S)

1
λ ≤ – max

x∗∈∂g(x)

〈
x∗, u

〉
.

Since h′(a; u) = maxa∗∈∂h(a)〈a∗, u〉 and g ′(x; u) = maxx∗∈∂g(x)〈x∗, u〉, from this inequality it
follows that

–h′(a; u) +
τ

2
d(x, S)

1
λ ≤ –g ′(x; u).

Therefore (3.10) is verified. �

Corollary 3.1 Let g : X → R be a continuous convex function, and let λ > 0. Then the
following two statements are equivalent:

(i) There exist τ > 0 and δ > 0 such that

τd(x, S)
1+λ
λ ≤ [

g(x)
]

+, ∀x ∈ Ω ∩ B(x̄, δ);

(ii) There exist τ ′ > 0 and δ′ > 0 such that, for each x ∈ Ω \ S with ‖x – x̄‖ < δ′, there
exists u ∈ T(Ω ; x) ∩ SX such that

g ′(x; u) ≤ –τ ′d(x, S)
1
λ .

Proof The conclusion directly follows from Theorems 3.1 and 3.2 by taking h = 0. �
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Theorem 3.3 Let g : X → R be a λ-order strongly convex function with modulus τ , and
let h : X →R be a convex function. If for each x ∈ Ω \ S, there exists y ∈ bdry(S) such that

g ′(y; x – y) + h′(x; y – x) ≥ 0, (3.12)

then

τd(x, S)λ ≤ [
g(x) – h(x)

]
+, ∀x ∈ Ω .

Proof Let x ∈ Ω . Without loss of generality, we may assume that x ∈ Ω \S. Take y ∈ bdry(S)
such that (3.12) holds. Let t ∈ (0, 1). Since g is a λ-order strongly convex function with
modulus η, we have

τ t(1 – t)‖x – y‖λ ≤ tg(x) + (1 – t)g(y) – g
(
tx + (1 – t)y

)
,

that is,

τ (1 – t)‖x – y‖λ ≤ g(x) – g(y) –
g(y + t(x – y)) – g(y)

t
.

Letting t → 0+, we get

τ‖x – y‖λ ≤ g(x) – g(y) – g ′(y; x – y). (3.13)

Since h is a convex function, we have

0 ≤ h(y) – h(x) – h′(x; y – x). (3.14)

Adding (3.13) and (3.14), we have

τ‖x – y‖λ ≤ g(x) – h(x) –
[
g(y) – h(y)

]
–

[
g ′(y; x – y) + h′(x; y – x)

]

≤ g(x) – h(x), (3.15)

due to assumption (3.12) and the equality g(y) – h(y) = 0. Since y ∈ bdry(S), it follows from
(3.15) that

τd(x, S)λ ≤ g(x) – h(x) =
[
g(x) – h(x)

]
+. �

We now give an example to illustrate Theorem 3.3.

Example 3.1 Let g, h : R →R be defined as

g(x) = x2, h(x) = x, ∀x ∈ R.

Clearly, g is a second-order strongly convex function with modulus τ = 1. It is easy to
calculate that S = {x ∈R|g(x)–h(x) ≤ 0} = [0, 1]. Take Ω = (–∞, 1]. Let x ∈ Ω \S = (–∞, 0).
There exists y = 0 ∈ bdry(S) such that

g ′(y; x – y) + h′(x; y – x) = –x > 0.
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All conditions of Theorem 3.3 are satisfied. By Theorem 3.3 we have

d(x, S)2 ≤ [
g(x) – h(x)

]
+, ∀x ∈ Ω .

Theorem 3.4 Take X = R
n, and let f : Rn → R be an mth-order smooth function (m is a

positive integer number), δ > 0, S := {x ∈ R
n|f (x) ≤ 0} �= ∅, and x̄ ∈ bdry(S). Suppose that,

for each x ∈ B(x̄, δ) \ S, there exists u ∈ PS(x) such that

f (p)(u)(x – u)p ≥ 0, p = 1, 2, . . . , m – 1,

and

f (m)(x̄)
(
vm)

> 0, ∀v ∈ N(S, x̄) \ {0}. (3.16)

Then there exist τ > and η > 0 such that

τd(x, S)m ≤ [
f (x)

]
+, ∀x ∈ B(x̄,η).

Proof Suppose on the contrary that there exists a sequence {xk} ⊂ B(x̄, δ) with xk → x̄ such
that

d(xk , S)m

k
>

[
f (xk)

]
+. (3.17)

Clearly, xk /∈ S for all k. By the assumption we can take uk ∈ PS(xk) such that

f (p)(uk)(xk – uk)p ≥ 0, p = 1, 2, . . . , m – 1. (3.18)

Clearly, ‖xk – uk‖ = d(xk , S). Letting k → ∞, we have uk → x̄. By (3.17) we get

‖xk – uk‖m

k
> f (xk) – f (uk) (3.19)

since f (uk) = 0. By the Taylor theorem,

f (xk) – f (uk) = f ′(uk)(xk – uk) +
1
2!

f ′′(uk)(xk – uk)2 + · · ·

+
f (m)(θkxk + (1 – θk)uk)

m!
(xk – uk)m (3.20)

for some θk ∈ (0, 1), and (3.18)–(3.20) imply that

‖xk – uk‖m

k
≥ f ′(uk)(xk – uk) +

1
2!

f ′′(uk)(xk – uk)2 + · · ·

+
f (m)(θkxk + (1 – θk)uk)

m!
(xk – uk)m

≥ f (m)(θkxk + (1 – θk)uk)
m!

(xk – uk)m,
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that is,

m!
k

≥ f (m)(θkxk + (1 – θk)uk
)( xk – uk

‖xk – uk‖
)m

. (3.21)

Since uk ∈ PS(xk) and { xk –uk
‖xk –uk‖ } is bounded, without loss of generality, we may assume that

xk –uk
‖xk –uk‖ → v ∈ N(S, x̄). Letting k → ∞ in (3.21), we have

f (m)(x̄)
(
vm) ≤ 0.

This contradicts (3.16). The proof is completed. �

We now give an example to illustrate Theorem 3.4.

Example 3.2 Let f : R2 →R be defined by

f (ξ1, ξ2) = ξ 2
1 + ξ 2

2 , ∀x = (ξ1, ξ2) ∈R
2.

Clearly, S = {(0, 0)}. Take x̄ = (0, 0) ∈ bdry(S). Then N(S, x̄) = R
2. Let x ∈R

2 \S. There exists
u = (0, 0) ∈ PS(x) such that f ′(u)(x – u) = 0 and

f ′′(x̄)
(
v2) = 2

(
v2

1 + v2
2
)

> 0, ∀v = (v1, v2) ∈ N(S, x̄) \ {0}.

All conditions of Theorem 3.4 are satisfied. By Theorem 3.4 there exists τ > 0 (τ = 1) such
that

τd(x, S)2 ≤ [
f (x)

]
+, ∀x ∈ R

2.

4 Conclusion
In this paper, we establish two existence theorems of higher-order error bounds for dif-
ference functions and an existence theorem of higher-order error bounds for mth-order
smooth functions. Moreover, the coefficients in Theorems 3.1–3.4 can be calculated. It is
interesting for us to consider higher-order error bounds for DC multifunctions.
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