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Abstract
In this paper some Bellman–Steffensen type inequalities are generalized for positive
measures. Using sublinearity of a class of convex functions and Jensen’s inequality,
nonnormalized versions of Steffensen’s inequality are obtained. Further, linear
functionals, from obtained Bellman–Steffensen type inequalities, are produced and
their action on families of exponentially convex functions is studied.
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1 Introduction
Since its appearance in 1918 Steffensen’s inequality [1] has been a subject of investiga-
tion by many mathematicians because it plays an important role not only in the theory of
inequalities but also in statistics, functional equations, time scales, special functions, etc.
A comprehensive survey on generalizations and applications of Steffensen’s inequality can
be found in [2].

In 1959 Bellman gave an Lp generalization of Steffensen’s inequality (see [3]) for which
Godunova, Levin and Čebaevskaya noted that it is incorrect as stated (see [4]). Further, in
[5] Pečarić showed that the Bellman generalization of Steffensen’s inequality is true with
very simple modifications of conditions. Using some substitutions in his result from [5],
Pečarić also proved the following modification of Steffensen’s inequality in [6].

Theorem 1.1 Assume that two integrable functions f and G are defined on an interval
[a, b], f is nonincreasing, and

0 ≤ λG(t) ≤
∫ b

a
G(t) dt, for every t ∈ [a, b], (1.1)

where λ is a positive number. Then

1
λ

∫ b

b–λ

f (t) dt ≤
∫ b

a f (t)G(t) dt∫ b
a G(t) dt

≤ 1
λ

∫ a+λ

a
f (t) dt. (1.2)

In [7] Mitrinović and Pečarić gave necessary and sufficient conditions for inequal-
ity (1.2). The purpose of this paper is to generalize the aforementioned result for positive
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measures, using the approach from [8] and [9], and to give some applications related to
exponential convexity.

Let B([a, b]) be the Borel σ -algebra generated on [a, b]. In [10] the authors proved the
following measure theoretic generalization of Steffensen’s inequality.

Theorem 1.2 Let μ be a positive finite measure on B([a, b]), let g, h and k be μ-integrable
functions on [a, b] such that k is positive and h is nonnegative. Let λ be a positive constant
such that

∫
[a,a+λ]

h(t)k(t) dμ(t) =
∫

[a,b]
g(t)k(t) dμ(t). (1.3)

The inequality
∫

[a,b]
f (t)g(t) dμ(t) ≤

∫
[a,a+λ]

f (t)h(t) dμ(t) (1.4)

holds for every nonincreasing, right-continuous function f /k : [a, b] →R if and only if
∫

[a,x)
k(t)g(t) dμ(t) ≤

∫
[a,x)

k(t)h(t) dμ(t) and
∫

[x,b]
k(t)g(t) dμ(t) ≥ 0, (1.5)

for every x ∈ [a, b].

Remark 1.1 In [10] the authors proved that if the function f is nonnegative, condition (1.3)
can be replaced by the weaker condition

∫
[a,a+λ]

h(t)k(t) dμ(t) ≥
∫

[a,b]
g(t)k(t) dμ(t). (1.6)

We note that if f /k is nondecreasing, f and h are nonnegative, k is positive, and (1.6) holds,
then the inequality in (1.4) is reversed. Furthermore, if (f /k)(a) = 0, f /k is increasing, h is
nonnegative, k is positive, and (1.6) holds, then the inequality in (1.4) is reversed.

2 Main results
Motivated by Theorem 1.1 and necessary and sufficient conditions given in [7], we prove
some generalizations of Bellman–Steffensen type inequalities for positive measures.

Theorem 2.1 Let μ be a finite, positive measure on B([a, b]), f , h be μ-integrable functions
such that h is positive and f : [a, b] →R nonincreasing, right-continuous. Then

∫
[a,b] f (t)G(t) dμ(t)∫

[a,b] G(t) dμ(t)
≤

∫
[a,a+λ] f (t)h(t) dμ(t)∫

[a,a+λ] h(t) dμ(t)
(2.1)

if and only if G : [a, b] →R is μ-integrable and λ is a positive constant such that
∫

[a,x) G(t) dμ(t)∫
[a,b] G(t) dμ(t)

≤
∫

[a,x) h(t) dμ(t)∫
[a,a+λ] h(t) dμ(t)

and
∫

[x,b]
G(t) dμ(t) ≥ 0, (2.2)

for every x ∈ [a, b], assuming
∫

[a,b] G(t) dμ(t) > 0.
For a nondecreasing, right-continuous function f : [a, b] →R, inequality (2.1) is reversed.
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Proof (Sufficiency) Let us define the function

g(t) =
G(t)

∫
[a,a+λ] h(t) dμ(t)∫

[a,b] G(t) dμ(t)
.

Since
∫

[a,b] g(t) dμ(t) =
∫

[a,a+λ] h(t) dμ(t) and the conditions in (1.5) (for k ≡ 1) are fulfilled,
we can apply inequality (1.4) (for k ≡ 1) and obtain inequality (2.1).

(Necessity) If we put the function

f (t) =

⎧⎨
⎩

1, t < x;

0, t ≥ x,

for a ≤ x ≤ a + λ into inequality (2.1), we obtain the conditions in (2.2). �

In the following lemma we recall the property of sublinearity of the class of convex func-
tions.

Lemma 2.1 If φ : [0,∞) → R is a convex function such that φ(0) = 0 then for any 0 ≤ a ≤ 1

φ(ax) ≤ aφ(x), for any x ∈ [0,∞).

Theorem 2.2 Let μ be a finite, positive measure on B([a, b]). Let f and h be nonnegative
nonincreasing functions on [a, b], and let φ be an increasing convex function on [0,∞) with
φ(0) = 0. If G is a nonnegative nondecreasing function on [a, b] such that there exists a
nonnegative function g1, defined by the equation

∫
[a,b]

g1(t)φ
(

G(t)
g1(t)

)
dμ(t) ≤

∫
[a,b]

h(t) dμ(t)

and
∫

[a,b] g1(t) dμ(t) ≤ 1, then the following inequality is valid:

φ

(∫
[a,b] f (t)G(t) dμ(t)∫

[a,b] G(t) dμ(t)

)
≤

∫
[a,a+λ] φ(f (t))h(t) dμ(t)∫

[a,a+λ] h(t) dμ(t)
,

where
∫

[a,a+λ]
h(t) dμ(t) = φ

(∫
[a,b]

G(t) dμ(t)
)

.

Proof Using Jensen’s inequality, we have

φ

(∫
[a,b] f (t)G(t) dμ(t)∫

[a,b] G(t) dμ(t)

)
≤

∫
[a,b] φ(f (t))G(t) dμ(t)∫

[a,b] G(t) dμ(t)
,

and since φ ◦ f is nonincreasing, we only have to check conditions in (2.2). Since G is
nonnegative, obviously

∫
[x,b] G(t) dμ(t) ≥ 0. So we only have to show

φ

(∫
[a,b]

G(t) dμ(t)
)∫

[a,x)
G(t) dμ(t) ≤

∫
[a,x)

h(t) dμ(t)
∫

[a,b]
G(t) dμ(t). (2.3)
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Using sublinearity from Lemma 2.1 and Jensen’s inequality, we have

φ

(∫
[a,b]

G(t) dμ(t)
)

= φ

(∫
[a,b]

g1(t) dμ(t)

∫
[a,b] G(t) dμ(t)∫
[a,b] g1(t) dμ(t)

)

≤
∫

[a,b]
g1(t) dμ(t)φ

(∫
[a,b] g1(t) G(t)

g1(t) dμ(t)∫
[a,b] g1(t) dμ(t)

)

≤
∫

[a,b]
g1(t)φ

(
G(t)
g1(t)

)
dμ(t) ≤

∫
[a,b]

h(t) dμ(t). (2.4)

Since G is a nonnegative nondecreasing function and h is a nonnegative nonincreasing
function, we see that for each x ∈ [a, b],

∫
[a,x) G(t) dμ(t)∫
[a,x) h(t) dμ(t)

≤
∫

[a,b] G(t) dμ(t)∫
[a,b] h(t) dμ(t)

,

i.e.,
∫

[a,b]
h(t) dμ(t)

∫
[a,x)

G(t) dμ(t) ≤
∫

[a,x)
h(t) dμ(t)

∫
[a,b]

G(t) dμ(t),

so along with (2.4) we proved (2.3). Hence, the proof is completed. �

Remark 2.1 In Theorems 2.1 and 2.2 we proved similar results to those obtained by Liu in
[11] but we only need μ to be finite and positive instead of finite continuous and strictly
increasing as in [11].

We continue with some more general Bellman–Steffensen type inequalities related to
the function f /k.

Theorem 2.3 Let μ be a finite, positive measure on B([a, b]), f , h and k be μ-integrable
functions such that h is nonnegative, k is positive and f /k : [a, b] → R is nonincreasing,
right-continuous. Then

∫
[a,b] f (t)G(t) dμ(t)∫
[a,b] k(t)G(t) dμ(t)

≤
∫

[a,a+λ] f (t)h(t) dμ(t)∫
[a,a+λ] k(t)h(t) dμ(t)

(2.5)

if and only if G : [a, b] →R is a μ-integrable function and λ is a positive constant such that
∫

[a,x) k(t)G(t) dμ(t)∫
[a,b] k(t)G(t) dμ(t)

≤
∫

[a,x) k(t)h(t) dμ(t)∫
[a,a+λ] k(t)h(t) dμ(t)

and
∫

[x,b]
k(t)G(t) dμ(t) ≥ 0, (2.6)

for every x ∈ [a, b], assuming
∫

[a,b] k(t)G(t) dμ(t) > 0.
For a nondecreasing, right-continuous function f /k : [a, b] → R inequality (2.5) is re-

versed.

Proof (Sufficiency) Let us define the function

g(t) =
G(t)

∫
[a,a+λ] k(t)h(t) dμ(t)∫

[a,b] k(t)G(t) dμ(t)
.
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Since
∫

[a,b] k(t)g(t) dμ(t) =
∫

[a,a+λ] k(t)h(t) dμ(t) and (1.5) are fulfilled, we can apply (1.4),
and so (2.5) is valid.

(Necessity) If we put the function

f (t) =

⎧⎨
⎩

k(t), t < x;

0, t ≥ x,

for a ≤ x ≤ a + λ in (2.5), we get (2.6). �

Theorem 2.4 Let μ be a finite, positive measure on B([a, b]). Let h and f /k be nonnegative,
nonincreasing functions on [a, b] such that k is positive, and let φ be an increasing convex
function on [0,∞) with φ(0) = 0. If G is a nonnegative, nondecreasing function on [a, b]
such that there exists a nonnegative function g1 defined by the equation

∫
[a,b]

g1(t)φ
(

k(t)G(t)
g1(t)

)
dμ(t) ≤

∫
[a,b]

k(t)h(t) dμ(t)

and
∫

[a,b] g1(t) dμ(t) ≤ 1, then the following inequality is valid:

φ

(∫
[a,b] f (t)G(t) dμ(t)∫
[a,b] k(t)G(t) dμ(t)

)
≤

∫
[a,a+λ] φ( f (t)

k(t) )k(t)h(t) dμ(t)∫
[a,a+λ] k(t)h(t) dμ(t)

, (2.7)

where

∫
[a,a+λ]

k(t)h(t) dμ(t) = φ

(∫
[a,b]

k(t)G(t) dμ(t)
)

. (2.8)

Proof Using Jensen’s inequality, we have

φ

(∫
[a,b] f (t)G(t) dμ(t)∫
[a,b] k(t)G(t) dμ(t)

)
= φ

(∫
[a,b]

f (t)
k(t) k(t)G(t) dμ(t)∫

[a,b] k(t)G(t) dμ(t)

)

≤
∫

[a,b] φ( f (t)
k(t) )k(t)G(t) dμ(t)∫

[a,b] k(t)G(t) dμ(t)
.

From (2.5) for f 	→ (φ ◦ (f /k)) · k, since φ ◦ (f /k) is nonincreasing, we have

∫
[a,b] φ( f (t)

k(t) )k(t)G(t) dμ(t)∫
[a,b] k(t)G(t) dμ(t)

≤
∫

[a,a+λ] φ( f (t)
k(t) )k(t)h(t) dμ(t)∫

[a,a+λ] k(t)h(t) dμ(t)

if conditions in (2.6) are satisfied. Obviously,
∫

[x,b] k(t)G(t) dμ(t) ≥ 0 since k and μ are
positive and G is nonnegative. Hence, we have to show

φ

(∫
[a,b]

k(t)G(t) dμ(t)
)∫

[a,x)
k(t)G(t) dμ(t)

≤
∫

[a,b]
k(t)G(t) dμ(t)

∫
[a,x)

k(t)h(t) dμ(t). (2.9)
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Using sublinearity from Lemma 2.1 and Jensen’s inequality, we have

φ

(∫
[a,b]

k(t)G(t) dμ(t)
)

= φ

(∫
[a,b]

g1(t) dμ(t)

∫
[a,b] k(t)G(t) dμ(t)∫

[a,b] g1(t) dμ(t)

)

≤
∫

[a,b]
g1(t) dμ(t)φ

(∫
[a,b] g1(t) k(t)G(t)

g1(t) dμ(t)∫
[a,b] g1(t) dμ(t)

)

≤
∫

[a,b]
g1(t)φ

(
k(t)G(t)

g1(t)

)
dμ(t)

≤
∫

[a,b]
k(t)h(t) dμ(t). (2.10)

Since G and h are nonnegative nondecreasing and k is positive, we have
∫

[a,x) k(t)G(t) dμ(t)∫
[a,x) k(t)h(t) dμ(t)

≤
∫

[a,b] k(t)G(t) dμ(t)∫
[a,b] k(t)h(t) dμ(t)

,

i.e.,
∫

[a,b]
k(t)h(t) dμ(t)

∫
[a,x)

k(t)G(t) dμ(t) ≤
∫

[a,x)
k(t)h(t) dμ(t)

∫
[a,b]

k(t)G(t) dμ(t).

So, along with (2.10), we have proved (2.9). Hence the theorem is proved. �

3 Applications
In this section we use classes of log-convex, exponentially convex and n-exponentially con-
vex functions. Definitions and properties of these classes of functions can be found, e.g.,
in Pečarić, Proschan and Tong [12], Bernstein [13], Pečarić and Perić [14], and Jakšetić,
Pečarić [15].

The following example will be useful in our applications.

Example 3.1
(i) f (x) = eαx is exponentially convex on R, for any α ∈R.

(ii) g(x) = x–α is exponentially convex on (0,∞), for any α > 0.

The following families of functions given in the next two lemmas will be useful in con-
structing exponentially convex functions.

Lemma 3.1 Let k be a positive function and p ∈R. Let ϕp : (0,∞) → R be defined by

ϕp(x) =

⎧⎨
⎩

xp

p k(x), p 
= 0;

k(x) log x, p = 0.
(3.1)

Then x 	→ (ϕp/k)(x) is increasing on (0,∞) for each p ∈ R and p 	→ (ϕp/k)(x) is exponen-
tially convex on (0,∞) for each x ∈ (0,∞).

Proof Since d
dx ( ϕp(x)

k(x) ) = xp–1 > 0 on (0,∞) for each p ∈ R we have that x 	→ (ϕp/k)(x) is
increasing on (0,∞). From Example 3.1 the mappings p 	→ ep log x and p 	→ 1

p are exponen-
tially convex, and since p 	→ xp

p = ep log x · 1
p , the second conclusion follows. �
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Similarly we obtain the following lemma.

Lemma 3.2 For p ∈ R let φp : [0,∞) →R be defined by

φp(x) =
xp

p(p – 1)
, p > 1. (3.2)

Then x 	→ φp(x) is convex on [0,∞) for each p > 1 and p 	→ φp(x) and p 	→ φ′
p(x) are expo-

nentially convex on (1,∞) for each x ∈ [0,∞).

Using the Bellman–Steffensen type inequality given by (2.5), under the assumptions of
Theorem 2.3, we can define a linear functional L by

L(f ) =

∫
[a,b] f (t)G(t) dμ(t)∫
[a,b] k(t)G(t) dμ(t)

–

∫
[a,a+λ] f (t)h(t) dμ(t)∫
[a,a+λ] k(t)h(t) dμ(t)

. (3.3)

We have that the functional L is nonnegative on the class of nondecreasing, right-
continuous functions f /k : [a, b] →R.

Theorem 3.1 Let f 	→ L(f ) be the linear functional defined by (3.3) and let � : R → R be
defined by

�(p) = L(ϕp),

where ϕp is defined by (3.1). Then the following statements hold:
(i) The function � is continuous on R.

(ii) If n ∈N and p1, . . . , pn ∈R are arbitrary, then the matrix

[
�

(
pj + pk

2

)]n

j,k=1

is positive semidefinite.
(iii) The function � is exponentially convex on R.
(iv) The function � is log-convex on R.
(v) If p, q, r ∈R are such that p < q < r, then

�(q)r–p ≤ �(p)r–q�(r)q–p.

Proof (i) Continuity of the function p 	→ �(p) is obvious for p ∈ R \ {0}. For p = 0 it is
directly checked using Heine characterization.

(ii) Let n ∈ N, pi ∈ R, i = 1, . . . , n be arbitrary. Let us define an auxiliary function � :
(0,∞) →R by

�(x) =
n∑

j,k=1

ξjξkϕ pj+pk
2

(x).

Now

(
�(x)
k(x)

)′
=

n∑
j,k=1

ξjξkx
pj+pk

2 –1 =

( n∑
j=1

ξjx
pj–1

2

)2

≥ 0
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implies that �/k is nondecreasing on (0,∞), so L(�) ≥ 0. This means that

[
�

(
pj + pk

2

)]n

j,k=1

is a positive semidefinite matrix.
Claims (iii), (iv), (v) are simple consequences of (i) and (ii). �

Let k be a positive function and let {θp/k : p ∈ (0,∞)} be the family of functions defined
on [0,∞) by

θp(x) =
xp

p
k(x). (3.4)

Similarly as in Lemma 3.1 we conclude that x 	→ (θp/k)(x) is increasing on [0,∞) for each
p ∈ R and p 	→ (θp/k)(x) is exponentially convex on (0,∞) for each x ∈ [0,∞).

Let us define a linear functional M by

M(f ) =
∫

[a,b]
f (t)g(t) dμ(t) –

∫
[a,a+λ]

f (t)h(t) dμ(t). (3.5)

Under the assumptions of Remark 1.1, we have that the linear functional M is nonnegative
acting on nondecreasing functions f /k : [a, b] →R with the property (f /k)(a) = 0.

Theorem 3.2 Let f 	→M(f ) be the linear functional defined by (3.5) and let F : (0,∞) →R

be defined by

F(p) = M(θp),

where θp is defined by (3.4). Then the following statements hold:
(i) The function F is continuous on (0,∞).

(ii) If n ∈N and p1, . . . , pn ∈ (0,∞) are arbitrary, then the matrix

[
F
(

pj + pk

2

)]n

j,k=1

is positive semidefinite.
(iii) The function F is exponentially convex on (0,∞).
(iv) The function F is log-convex on (0,∞).
(v) If p, q, r ∈ (0,∞) are such that p < q < r, then

F(q)r–p ≤ F(p)r–qF(r)q–p.

Proof (i) Continuity of the function p 	→ F(p) is obvious.
(ii) Let n ∈ N, pi ∈ (0,∞), i = 1, . . . , n be arbitrary. Let us define an auxiliary function

� : [0,∞) →R by

�(x) =
n∑

j,k=1

ξjξkθ pj+pk
2

(x).
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Now

(
�(x)
k(x)

)′
=

( n∑
j=1

ξjx
pj–1

2

)2

≥ 0

implies that �/k is nondecreasing on [0,∞) and nonnegative since (�/k)(0) = 0. Hence,
M(�) ≥ 0 and we conclude that

[
F
(

pj + pk

2

)]n

j,k=1

is a positive semidefinite matrix.
Claims (iii), (iv), (v) are simple consequences of (i) and (ii). �

In the following theorem we give the Lagrange-type mean value theorem.

Theorem 3.3 Let f 	→ M(f ) be the linear functional defined by (3.5), let k be a positive
function on [a, b] and ψ/k ∈ C1[a, b] such that (ψ/k)(a) = 0. Then there exists ξ ∈ [a, b]
such that

M(ψ) =
(

ψ(ξ )
k(ξ )

)′
M(e1),

where e1(x) = (x – a)k(x).

Proof Since ψ/k ∈ C1[a, b] there exist

m = min
x∈[a,b]

ψ ′(x)k(x) – ψ(x)k′(x)
k2(x)

and M = max
x∈[a,b]

ψ ′(x)k(x) – ψ(x)k′(x)
k2(x)

.

Denote

h1(x) = M(x – a)k(x) – ψ(x) and h2(x) = ψ(x) – m(x – a)k(x).

Then (h1/k)(a) = (h2/k)(a) = 0 and
(

h1(x)
k(x)

)′
= M –

ψ ′(x)k(x) – ψ(x)k′(x)
k2(x)

≥ 0,

(
h2(x)
k(x)

)′
=

ψ ′(x)k(x) – ψ(x)k′(x)
k2(x)

– m ≥ 0,

so h1/k and h2/k are nondecreasing, nonnegative functions on [a, b], which means that
M(h1),M(h2) ≥ 0, i.e.,

mM(e1) ≤ M(ψ) ≤ MM(e1).

If M(e1) = 0, the proof is complete. If M(e1) > 0, then

m ≤ M(ψ)
M(e1)

≤ M

and the existence of ξ ∈ [a, b] follows. �
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Using the standard Cauchy type mean value theorem, we obtain the following corollary.

Corollary 3.1 Let f 	→ M(f ) be the linear functional defined by (3.5), let k be a positive
function on [a, b] and ψ1/k,ψ2/k ∈ C1[a, b] such that (ψ1/k)(a) = (ψ2/k)(a) = 0, then there
exists ξ ∈ [a, b] such that

( ψ1(ξ )
k(ξ ) )′

( ψ2(ξ )
k(ξ ) )′

=
M(ψ1)
M(ψ2)

, (3.6)

provided that the denominator on the right-hand side is nonzero.

Remark 3.1 By (3.6) we can define various means (assuming that the inverse of (ψ1/k)′/
(ψ2/k)′ exists). Hence,

ξ =
( ( ψ1

k )′

( ψ2
k )′

)–1(
M(ψ1)
M(ψ2)

)
. (3.7)

If we substitute ψ1(x) = θp(x),ψ2(x) = θq(x) (where θp is defined by (3.4)) in (3.7) and use
the continuous extension, we obtain the following expressions:

M(p, q) =

⎧⎨
⎩

(M(θp)
M(θq) )

1
p–q , p 
= q;

exp(M(θ0θp)
M(θp) – 1

p ), p = q,

where θ0(x) = log x and p, q ∈ (0,∞).
Using the characterization of convexity by the monotonicity of the first order divided

differences, it follows (see [12, p. 4]): if p, q, u, v ∈ (0,∞) are such that p ≤ u, q ≤ v then

M(p, q) ≤ M(u, v).

Using (2.7), under assumptions of Theorem 2.4, we can define a linear functional N by

N(φ) =

∫
[a,a+λ] φ( f (t)

k(t) )k(t)h(t) dμ(t)∫
[a,a+λ] k(t)h(t) dμ(t)

– φ

(∫
[a,b] f (t)G(t) dμ(t)∫
[a,b] k(t)G(t) dμ(t)

)
. (3.8)

We have that the linear functional N is nonnegative on the class of increasing convex
functions φ on [0,∞) with the property φ(0) = 0.

Theorem 3.4 Let f 	→N(f ) be the linear functional defined by (3.8) and let H : (1,∞) →R

be defined by

H(p) = N(φp),

where φp is defined by (3.2). Then the following statements hold:
(i) The function H is continuous on (1,∞).

(ii) If n ∈N and p1, . . . , pn ∈ (1,∞) are arbitrary, then the matrix
[

H
(

pj + pk

2

)]n

j,k=1

is positive semidefinite.
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(iii) The function H is exponentially convex on (1,∞).
(iv) The function H is log-convex on (1,∞).
(v) If p, q, r ∈ (1,∞) are such that p < q < r, then

H(q)r–p ≤ H(p)r–qH(r)q–p.

Proof (i) Continuity of the function p 	→ H(p) is obvious.
(ii) Let n ∈ N, pi ∈ (1,∞) (i = 1, . . . , n) be arbitrary and define an auxiliary function ψ :

[0,∞) →R by

ψ(x) =
n∑

j,k=1

ξjξkφ pj+pk
2

(x). (3.9)

Now

ψ ′(0) =
n∑

j,k=1

ξjξkφ
′
pj+pk

2
(0) = 0. (3.10)

Further,

ψ ′′(x) =

( n∑
j=1

ξjx
pj–2

2

)2

≥ 0. (3.11)

Relations (3.10) and (3.11), together with ψ(0) = 0, imply that ψ is a convex increasing
function, and then

L(ψ) ≥ 0.

This means that the matrix

[
H

(
pj + pk

2

)]n

j,k=1

is positive semidefinite.
Claims (iii), (iv), (v) are simple consequences of (i) and (ii). �

Similar to Corollary 3.1 we also have the following corollary.

Corollary 3.2 Let f 	→ N(f ) be the linear functional defined by (3.8) and ψ1,ψ2 ∈ C2[0, a]
such that ψ1(0) = ψ2(0) = ψ ′

1(0) = ψ ′
2(0) = 0 and such that ψ ′′

2 (x) does not vanish for any
value of x ∈ [0, a], then there exists ξ ∈ [0, a] such that

ψ ′′
1 (ξ )

ψ ′′
2 (ξ )

=
N(ψ1)
N(ψ2)

, (3.12)

provided that the denominator on the right-hand side is nonzero.
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Remark 3.2 By (3.12) we can define various means (assuming that the inverse of ψ ′′
1 /ψ ′′

2

exists). That is,

ξ =
(

ψ ′′
1

ψ ′′
2

)–1(
N(ψ1)
N(ψ2)

)
. (3.13)

If we substitute ψ1(x) = φp(x),ψ2(x) = φq(x) in (3.13) and use the continuous extension, we
obtain the following expressions:

N(p, q) =

⎧⎨
⎩

(N(φp)
N(φq) )

1
p–q , p 
= q;

exp(N(φ0φp)
N(φp) + 3–2p

(p–1)(p–2) ), p = q,

where φ0(x) = log x and p, q ∈ (1,∞).
Again, by the monotonicity one has: if p, q, u, v ∈ (1,∞) are such that p ≤ u, q ≤ v then

N(p, q) ≤ N(u, v).

For a fixed n ≥ 2, let us define

Cn = {ψp : p ∈ J},

a family of functions from C([0, a]) such that ψp(0) = ψ ′
p(0) = 0, and p 	→ ψ ′′

p (x) is n-
exponentially convex in the Jensen sense on J for every x ∈ [0, a].

Theorem 3.5 Let f 	→ N(f ) be the linear functional defined by (3.8) and let S : J → R be
defined by

S(p) = N(ψp),

where ψp ∈ Cn. Then the following statements hold:
(i) S is n-exponentially convex in the Jensen sense on J .

(ii) If S is continuous on J , then it is n-exponentially convex on J and for p, q, r ∈ J such
that p < q < r, we have

S(q)r–p ≤ S(p)r–qS(r)q–p.

(iii) If S is positive and differentiable on J , then for every p, q, u, v ∈ J such that
p ≤ u, q ≤ v, we have

M̃(p, q) ≤ M̃(u, v),

where M̃(p, q) is defined by

M̃(p, q) =

⎧⎨
⎩

( S(p)
S(q) )

1
p–q , p 
= q;

exp(
d

dp (S(p))
S(p) ), p = q.
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Proof (i) Choose any n points ξ1, . . . , ξn ∈R, any p1, . . . , pn ∈ J . Define an auxiliary function
� : [0, a] →R by

�(x) =
n∑

k,m=1

ξkξmψ pk +pm
2

(x). (3.14)

Then �(0) = � ′(0) = 0 and

� ′′(x) =
n∑

k,m=1

ξkξmψ ′′
pk +pm

2
(x) ≥ 0

by definition of Cn. Hence, � is an increasing convex function, and then L(�) ≥ 0, which
is equivalent to

n∑
k,m=1

ξkξmS
(

pk + pm

2

)
≥ 0.

(ii) Since S is continuous on J , then it is n-exponentially convex.
(iii) This is a consequence of the characterization of convexity by the monotonicity of

the first order divided differences (see [12, p. 4]). �

We also can further refine previous results using divided differences. Let

D = {χp : p ∈ J},

be a family of functions from C([0, a]) such that χp(0) = 0, p 	→ [x, y;χp] is exponentially
convex on J for every choice of two distinct points x, y ∈ [0, a], and p 	→ [x0, x1, x2;χp] is
exponentially convex on J for every choice of three distinct points x0, x1, x2 ∈ [0, a].

Theorem 3.6 Let f 	→ N(f ) be the linear functional defined by (3.8) and let H : J → R be
defined by

H(p) = N(χp),

where χp ∈D. Then the following statements hold:
(i) If n ∈N and p1, . . . , pn ∈R are arbitrary, then the matrix

[
H

(
pk + pm

2

)]n

k,m=1

is positive semidefinite.
(ii) If the function H is continuous on J , then H is exponentially convex on J .

(iii) If H is positive and differentiable on J , then for every p, q, u, v ∈ J such that
p ≤ u, q ≤ v, we have

M̂(p, q) ≤ M̂(u, v),
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where M̂(p, q) is defined by

M̂(p, q) =

⎧⎨
⎩

( H(p)
H(q) )

1
p–q , p 
= q;

exp(
d

dp (H(p))
H(p) ), p = q.

Proof (i) Let n ∈N, p1, . . . , pn ∈R be arbitrary and define an auxiliary function � : [0, a] →
R by

�(x) =
n∑

k,m=1

ξkξmχ pk +pm
2

(x).

Then

[x, y;�] =
n∑

k,m=1

ξkξm[x, y;χ pk +pm
2

] ≥ 0

by definition of D and exponential convexity. This implies that � is a nondecreasing
function on [0, a]. Similarly, [x0, x1, x2;�] ≥ 0, for every choice of three distinct points
x0, x1, x2 ∈ [0, a]. This implies that � is a nondecreasing, convex function on [0, a] such
that �(0) = 0. Hence L(�) ≥ 0, which is equivalent to

n∑
k,m=1

ξkξmH
(

pk + pm

2

)
≥ 0.

(ii) This follows from part (i).
(iii) This is a consequence of the characterization of convexity by the monotonicity of

the first order divided differences (see [12, p. 4]). �
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9. Jakšetić, J., Pečarić, J., Smoljak Kalamir, K.: Some measure theoretic aspects of Steffensen’s and reversed Steffensen’s

inequality. J. Math. Inequal. 10, 459–469 (2016)
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