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Abstract
Based on the Itô’s isometry and the properties of the solution operator defined by the
Mittag-Leffler function, this paper gives a detailed numerical analysis of the finite
element method for fractional stochastic Navier–Stokes equations driven by white
noise. The discretization in space is derived by the finite element method and the
time discretization is obtained by the backward Euler scheme. The noise is
approximated by using the generalized L2-projection operator. Optimal strong
convergence error estimates in the L2-norm are obtained.
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1 Introduction
Fractional calculus has been widely used in various applications in science and engineer-
ing. It can successfully describe many phenomena in physics, engineering, biology, chem-
istry, and even economics. Fractional differential equations are more appropriate for the
description of memorial and hereditary properties of various materials and processes than
the previously used integer order models, and, as a result, a number of numerical tech-
niques for fractional differential equations have been developed and their stability and
convergence have been investigated, see, e.g., [1–11]. Besides, many works have been done
theoretically or numerically on the stochastic differential equations [12–24].

Fractional Navier–Stokes equations (FNSEs) are widely regarded as some of the most
fascinating problems in fluid mechanics, in particular, they could even lead to a better
understanding of the physical phenomena and mechanisms of turbulence in fluids [25].
Furthermore, the presence of noises could give rise to some statistical features and impor-
tant phenomena, for example, a unique invariant measure and ergodic behavior driven
by degenerate noise have been established. At the same time, the stochastic perturbations
cannot be avoided in a physical system, sometimes they even cannot be ignored. Hence
fractional stochastic Navier–Stokes equations have been proposed, which display the be-
havior of a viscous velocity field of an incompressible liquid and have wide application
value in the fields of physics, chemistry, population dynamics, and so on [26–28].
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This article is devoted to the study of the error estimates of the finite element method
for the incompressible fractional stochastic Navier–Stokes equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + BαLu + u · ∇u + ∇p = Ẇ , in � × [0, T],

∇ · u = 0, in � × [0, T],

u(x, 0) = u0, in �

u = 0, on ∂� × [0, T],

(1.1)

where � ⊂ R2 is a bounded and connected polygonal domain, u represents the velocity
field, p is the associated pressure, u0 is the initial velocity and the right-hand side term
Ẇ denotes the white noise, Lu = –�u; Bα :=R D1–α

t is the Riemann–Liouville fractional
derivative in time defined for 0 < α < 1 by

Bαϕ(t) :=
∂

∂t
Iαϕ(t) :=

∂

∂t

∫ t

0
ωα(t – s)ϕ(s) ds with ωα(t) :=

tα–1

�(α)
, (1.2)

where Iα is the temporal Riemann–Liouville fractional integral operator of order α.
The above-mentioned problem has many physical applications in various areas. Partic-

ularly, when α = 1, problem (1.1) reduces to the classical stochastic Navier–Stokes equa-
tions, numerical approximations of which have been carried out by the authors [29, 30].
For the fractional stochastic Navier–Stokes equations, the well-posedness has been stud-
ied in [26, 27]. So far, for most fractional stochastic differential equations, it is very diffi-
cult to get exact solutions, so it is necessary to propose numerical methods. However, to
the best of our knowledge, numerical analysis of such a problem for fractional stochas-
tic Navier–Stokes equations is missing in the literature. Therefore, this article aims to fill
the gap, by studying and obtaining the strong convergence approximations of fractional
stochastic Navier–Stokes equations like (1.1).

In this article, our goal is to give some detailed numerical analysis of the finite ele-
ment method for problem (1.1). Because the mild solution of fractional stochastic Navier–
Stokes equations is provided by the solution operator E(t) defined through the Mittag-
Leffler function, it is different from the classic stochastic Navier–Stokes equations related
to the analytic semigroup e�t . The properties of the semigroup and the semigroup the-
ory have been studied in detail in [31, 32]. However, for the solution operator E(t), as far
as we are know, similar properties are less studied. The novelty of this paper is to derive
the properties of the solution operator E(t) which is defined through the Mittag-Leffler
function and establish the Hölder regularity of the weak solutions for fractional stochastic
Navier–Stokes equations. Firstly, we deduce some regularity results and stability proper-
ties of E(t) which play a key role in the error analysis. The discretization in space is derived
by the finite element method and the time discretization is obtained by the backward Eu-
ler scheme. Based on the error estimates for the corresponding deterministic problem and
Itô isometry, finally the strong convergence error estimates for the fully discrete schemes
of fractional stochastic Navier–Stokes equations are obtained.

The structure of this paper is as follows: In Sect. 2, we introduce some preliminaries
and notations, as well as give the definition of the Mittag-Leffler function. In Sect. 3, we
give the semidiscrete Galerkin approximations in space and then obtain the fully discrete
scheme. In Sect. 4, we present several lemmas about the operator E(t) which play a crucial
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role in the proof of the error estimate. Finally, in Sect. 5, we will give the fully discrete error
estimates for the fractional stochastic Navier–Stokes equations.

2 Preliminaries
Throughout the paper, we denote by C a constant that may not be of the same form from
one occurrence to another, even in the same line. In this section, we introduce some no-
tations and some important preliminaries.

Let ‖ · ‖U and ‖ · ‖H be the norms of separable Hilbert spaces U and H , respectively. Let
L(U , H) denote the space of bounded linear operators from U to H , and let L2(U , H) be
the space of Hilbert–Schmidt operators with norm

‖T‖2
L2(U ,H) :=

∞∑

k=1

‖Tek‖2
H < ∞,

where {ek}∞k=1 is an orthonormal basis of U . If U = H , then L(U) = L(U , U) and HS =
L2(U , U).

Let {Th} be a regular family of triangulations of � with hk = diam(K), h = maxK∈Th hK ,
and let Vh denote the space of piecewise linear continuous functions with respect to
Th which vanish on ∂�. Hence, Vh ⊂ H1

0 (�) = Ḣ1 = {v ∈ L2(�),∇v ∈ L2(�), v|∂�=0}. The
norms in the Sobolev spaces Hs(�), s ≥ 0, are denoted by ‖ · ‖s. And we assume that a
family {Vh} of finite-dimensional subspaces of H1

0 is such that, for some integer r ≥ 2 and
small h (cf. [31]),

inf
χ∈Vh

{‖v – χ‖ + h
∥
∥∇(v – χ )

∥
∥
} ≤ Chs‖v‖s, for 1 ≤ s ≤ r, (2.1)

v ∈ Hs ∩ H1
0 , where Hs denotes the Sobolev space of order s.

Let (�,F , P) be a probability space and let E be the expectation. For any Hilbert space,
we define

L2(�; H) =
{

v : E‖v‖2
H =

∫

�

∥
∥v(w)

∥
∥2

H dP(w) < ∞
}

,

with norm ‖v‖L2(�,H) = E(‖v‖2
H ) 1

2 .
Let Q be the covariance operator of W (t); Q ∈ L(U) is a linear, self-adjoint, positive

definite, bounded operator with finite trace, i.e., Tr(Q) < ∞, where Tr(Q) denotes the trace
of Q. The stochastic process W (t) is a U-valued Q-Wiener process with respect to the
filtration {Ft}t≥0 if

(i) W (0) = 0,
(ii) W has independent increments,

(iii) W has continuous trajectories (almost surely),
(iv) W (t) – W (s), 0 ≤ s ≤ t, is a U-valued Gaussian random variable with zero mean

and covariance operator (t – s)Q,
(v) {W (t)}t≥0 is adapted to {Ft},

(vi) the random variable W (t) – W (s) is independent of Fs for all fixed s ∈ [0, t].
It is known (see, e.g., Sect. 2.1 in [33]) that for a given Q-Wiener process satisfying (i)–

(iv) one can always find a normal filtration {Ft}t≥0 so that (v)–(vi) hold. Suppose that
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{(γj, ej)}∞j=1 are the eigenpairs of Q with orthonormal eigenvectors and {βj(t)}∞j=1 are real-
valued mutually independent standard Brownian motions. Then W (t) has the orthogonal
expansion

W (t) =
∞∑

j=1

γ 1/2
j βj(t)ej.

It is then possible to define the stochastic integral
∫ t

0 ψ(s) dW (s) together with Itô’s isom-
etry,

E
∥
∥
∥
∥

∫ t

0
ψ(s) dW (s)

∥
∥
∥
∥

2

H
=

∫ t

0
E
∥
∥ψ(s)Q1/2∥∥2

L2(U ,H) ds. (2.2)

The operator Ph : L2(�) → Vh denotes the projection operator defined by

(Phv,χ ) = (v,χ ), v ∈ L2(�),∀χ ∈ Vh. (2.3)

For the reader’s convenience, the definition of Mittag-Leffler function will be provided.
We shall use the extended Mittag-Leffler function Eα,β (z) [25] defined by

Eα,β (z) =
∞∑

k=0

zk

�(kα + β)
, z ∈C,

where �(·) is the standard Gamma function defined as

�(z) =
∫ ∞

0
tz–1e–t dt, (z) > 0.

3 Discretization of fractional stochastic problem
Let  be the divergence-free projection operator of the Helmholtz decomposition (cf., [34,
35]). In order to consider a velocity u satisfying P-a.s. (almost surely) ∇ · u = 0, we project
the fractional stochastic Navier–Stokes equation onto the space of divergence-free vector
fields, thereby removing the pressure p(x, t). Then, applying the Helmholtz projection 

on both sides of Eq. (1.1), we obtain

ut + BαAu + B(u, u) = Ẇ , in � × [0, T], (3.1)

where A = –�, B(u, u) := ((u · ∇)u). The bilinear operator B(·, ·) satisfies the following
inequality (cf., [36, 37]):

∥
∥B

(
u(s), u(s)

)∥
∥ ≤ C

∥
∥u(s)

∥
∥
∥
∥u(s)

∥
∥

1, (3.2)

which has important applications when establishing strong convergence error estimates
for the fully discrete schemes of fractional stochastic Navier–Stokes equations.

We shall assume that

∥
∥u(s)

∥
∥ ≤ M1,

∥
∥u(s)

∥
∥

1 ≤ M2, 0 ≤ s ≤ T .
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Also we assume that the operator A is self-adjoint and there exist eigenvectors ϕj corre-
sponding to eigenvalues λj such that (cf., [28, 29])

Aϕj = λjϕj, j ∈N
+.

In a standard way, the fractional powers As, s ∈R, of A are introduced by

Asv =
∞∑

j=1

λs
j (v,ϕj)ϕj, D

(
As/2) =

{

v ∈ H :
∥
∥As/2v

∥
∥2 =

∞∑

j=1

λs
j (v,ϕj)2 < ∞

}

.

Let Ḣs = D(As/2) with its norm denoted by

‖v‖s =
∥
∥As/2v

∥
∥ =

( ∞∑

j=1

λs
j (v,ϕj)2

)1/2

, v ∈ Ḣs. (3.3)

Now we introduce the operator E(t) by

E(t)v =
∞∑

j=1

Eα,1
(
–λjtα

)
(v,ϕj)ϕj, v ∈ Ḣs, (3.4)

where α ∈ (0, 1) denotes the Caputo fractional derivative of order α and Eα,1 is the Mittag-
Leffler function.

By making use of time fractional Duhamel’s priciple [38–40], the solution u(t) of (3.1) at
time t = tn can be written as

u(tn) = E(tn)u0 –
∫ tn

0
E(tn – s)B

(
u(s), u(s)

)
ds +

∫ tn

0
E(tn – s) dW . (3.5)

Let Ah : Vh → Vh denote the discrete analogue of the operator A, i.e.,

(Ahψ ,χ ) = (∇ψ ,∇χ ), ∀ψ ,χ ∈ Vh.

Then the semidiscrete problem corresponding to (3.1) is to find the process uh(t) ∈ Vh

such that

uht + BαAhuh + PhB(uh, uh) = PhẆ , with uh(0) = Phu0. (3.6)

The operator Eh(t) is introduced by

Eh(t)vh =
∞∑

j=1

Eα,1
(
–λh

j tα
)(

v,ϕh
j
)
ϕh

j , vh ∈ Xh, (3.7)

where {λh
j }N

j=1 and {ϕh
j }N

j=1 are respectively the eigenvalues and eigenfunctions of the dis-
crete Laplace operator Ah. Then the semidiscrete problem (3.6) has the abstract integral
equation given by

uh(tn) = Eh(tn)Phu0 –
∫ tn

0
Eh(tn – s)PhB

(
uh(s), uh(s)

)
ds +

∫ tn

0
Eh(tn – s)Ph dW .
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For a fixed time step size �t > 0, we put tn = n�t and define a piecewise-constant ap-
proximation Un

h ≈ u(tn) by applying the DG method [41–43], namely

Un
h – Un–1

h +
∫ tn

tn–1

D1–α
t AUh(t) dt +

∫ tn

tn–1

B(Uh, Uh) ds =
∫ tn

tn–1

dW for n ≥ 1,

U0 = Phu0,
(3.8)

where Un
h = Uh(t–

n ) = limt→t–
n Uh(t) denotes the one-sided limit from below at the nth time

level. Thus, Uh(t) = Un
h for tn–1 < t ≤ tn. A short calculation shows that

∫ tn

tn–1

D1–α
t AUh(t) dt = �tα

n∑

j=1

βn–jAUj
h,

with

β0 = �t–α

∫ tn

tn–1

(tn – t)α–1

�(α)
dt =

1
�(1 + α)

,

and, for j ≥ 1,

βj = �t–α

∫ tn–j

tn–j–1

(tn – t)α–1 – (tn–1 – t)α–1

�(α)
dt =

(j + 1)α – 2jα + (j – 1)α

�(1 + α)
.

Then, the fully discrete mild formulation for (3.1) can be obtained as

Un
h = Bn,hPhu0 –

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
Uk–1

h , Uk
h
)

ds +
n∑

k=1

∫ tk

tk–1

Bn–k+1,hPh dW , (3.9)

where the detailed definition of Bn,h can be found in [44].

4 Some important lemmas for operator E(t)
In order to give the error estimates for the stochastic fractional problem, we will derive
some lemmas for operator E(t).

The following lemma presents the stability and smoothing estimate for operator E(t),
which play a key role in the error analysis of FEM approximations.

Lemma 4.1 ([3]) For α ∈ (0, 1), we have the following estimates:

∥
∥
(
Dα

t
)�E(t)v

∥
∥

p ≤ Ct–α(�+ p–q
2 )‖v‖q, t > 0, (4.1)

where, for � = 0, 0 ≤ q ≤ p ≤ 2, and, for � = 1, 0 ≤ p ≤ q ≤ 2 and q ≤ p + 2.

Next, several important properties of the Mittag-Leffler function Eα,β(·) will be given.

Lemma 4.2 ([45]) For λ > 0, α > 0 and a positive integer m ∈N, it holds

dm

dtm Eα,1
(
–λtα

)
= –λtα–mEα,α–m+1

(
–λtα

)
.
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In particular, if m = 1, we obtain

d
dt

Eα,1
(
–λtα

)
= –λtα–1Eα,α

(
–λtα

)
.

The following estimates are crucial for the error analysis in the sequel.

Lemma 4.3 Let

E(t)v =
∞∑

j=1

tα–1Eα,α
(
–λjtα

)
(v,ϕj)ϕj.

Then, for all t > 0, we have

∥
∥E(t)v

∥
∥

p ≤ C

⎧
⎨

⎩

ct–1+α(1+ q–p
2 )‖v‖q, p – 2 ≤ q ≤ p,

ct–1+α‖v‖q, p < q.
(4.2)

Besides, we get

d
dt

E(t)v = –AE(t)v. (4.3)

Proof For the proof of (4.2), we refer to [3] and omit it here. Subsequently, we will give the
detailed proof of equality (4.3). By virtue of Lemma 4.2, we have

d
dt

E(t)v =
d
dt

∞∑

j=1

Eα,1
(
–λjtα

)
(v,ϕj)ϕj

=
∞∑

j=1

(–λj)tα–1Eα,α
(
–λjtα

)
(v,ϕj)ϕj

= –AE(t)v,

which completes the proof. �

Next we will derive the properties of operator E(t) which will be used throughout this
paper.

Lemma 4.4 Let 0 ≤ μ ≤ 1, 0 ≤ α ≤ 1. Then there exists a constant C such that
(i) ‖AμE(t)‖ ≤ Ct–μα .

(ii) ‖A–μ(E(t) – I)‖ ≤ Ctμα .

Proof Firstly, we prove (i). By Lemma 4.1, with � = q = 0, p = 2μ, one has

∥
∥AμE(t)ϕ

∥
∥ =

∥
∥E(t)ϕ

∥
∥

2μ
≤ Ct–μα‖ϕ‖,

which gives

∥
∥AμE(t)

∥
∥ ≤ Ct–μα .

The proof of (i) is completed.
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For (ii), by making use of (4.3), we obtain

∥
∥E(t)v – v

∥
∥ =

∥
∥
∥
∥

∫ t

0
AE(s)v ds

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ t

0
A1–μE(s)Aμv ds

∥
∥
∥
∥

≤ c
∫ t

0
s–1+μα

∥
∥Aμv

∥
∥ds

≤ ctμα
∥
∥Aμv

∥
∥,

the second to last inequality of which is derived from (4.2) with p = 2 – 2μ, q = 0 in
Lemma 4.3. This completes the proof of the lemma. �

In the following, the regularity of the mild solution in time will be given.

Theorem 4.1 (Temporal regularity) Let u be the solution of (3.1). Then for t1, t2 ∈ [0, T],
0 ≤ μ ≤ 1, 0 ≤ α ≤ 1, there exists a constant C such that

∥
∥u(t1) – u(t2)

∥
∥

L2(�;H) ≤ C(t1 – t2)μα .

Proof Let 0 ≤ t1 < t2 ≤ T be arbitrary. By making use of the mild solution formulation
(3.5), it can be obtained that

u(t1) – u(t2) =
(
E(t1) – E(t2)

)
u0

–
∫ t1

0
E(t1 – s)B

(
u(s), u(s)

)
ds +

∫ t2

0
E(t2 – s)B

(
u(s), u(s)

)
ds

+
∫ t1

0
E(t1 – s) dW –

∫ t2

0
E(t2 – s) dW

= L1 + L2 + L3,

where

L1 =
(
E(t1) – E(t2)

)
u0,

L2 = –
∫ t1

0
E(t1 – s)B

(
u(s), u(s)

)
ds +

∫ t2

0
E(t2 – s)B

(
u(s), u(s)

)
ds,

L3 =
∫ t1

0
E(t1 – s) dW –

∫ t2

0
E(t2 – s) dW .

In the sequel, each term will be estimated separately.
For the first term L1, by virtue of Lemmas 4.3 and 4.4, one has

‖L1‖L2(�;H) =
∥
∥
(
E(t1) – E(t2)

)
u0

∥
∥

L2(�;H)

=
∥
∥
∥
∥–

∫ t2

t1

E′(s)dsu0

∥
∥
∥
∥

L2(�;H)

=
∥
∥
∥
∥

∫ t2

t1

AE(s)dsu0

∥
∥
∥
∥

L2(�;H)
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=
∥
∥
∥
∥

∫ t2

t1

A1–μE(s)dsAμu0

∥
∥
∥
∥

L2(�;H)

≤ C|t1 – t2|μα‖u0‖L2(�;H2μ)

≤ C|t1 – t2|μα . (4.4)

The second term L2 can be split into two terms:

L2 = –
∫ t2

0

(
E(t1 – s) – E(t2 – s)

)
B
(
u(s), u(s)

)
ds –

∫ t1

t2

E(t1 – s)B
(
u(s), u(s)

)
ds

= L21 + L22,

where L21 and L22 are estimated as follows.
For L21, by making use of Lemma 4.4, as well as property (3.2) of B(·, ·),

‖L21‖L2(�;H) =
∥
∥
∥
∥

∫ t2

0

(
E(t1 – s) – E(t2 – s)

)
B
(
u(s), u(s)

)
ds

∥
∥
∥
∥

L2(�;H)

=
∥
∥
∥
∥

∫ t2

0

∫ t2

t1

–E′(τ – s)B
(
u(s), u(s)

)
dτ ds

∥
∥
∥
∥

L2(�;H)

=
∥
∥
∥
∥

∫ t2

0

∫ t2

t1

AE(τ – s)B
(
u(s), u(s)

)
dτ ds

∥
∥
∥
∥

L2(�;H)

=
∥
∥
∥
∥

∫ t2

0

∫ t2

t1

A1–μE(τ – s)AμB
(
u(s), u(s)

)
dτ ds

∥
∥
∥
∥

L2(�;H)

≤ C(t1 – t2)μα . (4.5)

By Lemma 4.4,

‖L22‖L2(�;H) =
∥
∥
∥
∥

∫ t1

t2

E(t1 – s)B
(
u(s), u(s)

)
ds

∥
∥
∥
∥

L2(�;H)

≤ C(t1 – t2)μα . (4.6)

Similarly, the third term L3 can be written as

L3 =
∫ t2

0

(
E(t1 – s) – E(t2 – s)

)
dW +

∫ t1

t2

E(t1 – s) dW

= L31 + L32.

By making use of Itô’s isometry and Lemma 4.4, it can be deduced that

‖L31‖2
L2(�;H) =

∥
∥
∥
∥

∫ t2

0

(
E(t1 – s) – E(t2 – s)

)
dW

∥
∥
∥
∥

2

L2(�;H)

≤
∫ t2

0

∥
∥E(t1 – s) – E(t2 – s)

∥
∥2 ds

≤ C(t1 – t2)2μα . (4.7)
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The term L32 is estimated analogously by using Lemma 4.4, namely

‖L32‖L2(�;H) ≤ C(t1 – t2)μα . (4.8)

Combining (4.4)–(4.8) yields the result. �

5 Error estimates for the stochastic fractional N–S equations
In this section, we will give the fully discrete error estimates for the stochastic fractional
Navier–Stokes equations.

Let en = Un
h – u(tn). Then, by (3.9) and (3.5), it can be obtained that

en =
[
Bn,hPh – E(tn)

]
u0

+
∫ tn

0
E(tn – s)B(u, u) ds –

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
Uk–1

h , Uk
h
)

ds

+
n∑

k=1

∫ tk

tk–1

Bn–k+1,hPh dW –
∫ tn

0
E(tn – s) dW

=: I + II + III,

where

I =
[
Bn,hPh – E(tn)

]
u0,

II =
∫ tn

0
E(tn – s)B(u, u) ds –

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
Uk–1

h , Uk
h
)

ds,

III =
n∑

k=1

∫ tk

tk–1

Bn–k+1,hPh dW –
∫ tn

0
E(tn – s) dW .

Next, each term will be estimated in turn.
In order to prove the main error estimates, we need the following useful conclusions for

the corresponding deterministic problem, see [44] for more details.

Lemma 5.1 ([44]) Let 0 ≤ β ≤ 2, Fn,h = Bn,hPh – E(tn). Then

‖Fn,h‖ ≤ C
(
hβ + k

)
.

The following lemma is the time discrete version with smooth initial data.

Lemma 5.2 ([43]) Let Un = Bn,hPhu0, u(tn) = Eh(t)Phu0. Then

∥
∥Un – u(tn)

∥
∥ ≤ Ctrα–1

n �t
∥
∥Aru0

∥
∥, 0 ≤ r ≤ min{2, 1/α}.

Remark 5.1 From the above lemma, it is not difficult to find that

‖Bn,h‖ ≤ C, for all n ≥ 1, h > 0.
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Firstly, we derive the error estimate of the second term II of the main error en.

Lemma 5.3 Let II be defined as above. For 0 < μ < 1, 0 < α < 1, 0 ≤ β ≤ 2, there exists a
constant C such that

‖II‖L2(�;H) ≤ Ckμα + C
(
hβ + k

)
+ Ck

n∑

k=1

∥
∥ek–1∥∥2

1.

Proof The second term II can be split into the following five terms, and each term will be
estimated separately.

II =
∫ tn

0
E(tn – s)B

(
u(s), u(s)

)
ds –

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
Uk–1

h , Uk
h
)

ds

=
n∑

k=1

∫ tk

tk–1

E(tn – s)B
(
u(s), u(s)

)
ds –

n∑

k=1

∫ tk

tk–1

E(tn – s)B
(
u(tk), u(tk)

)
ds

+
n∑

k=1

∫ tk

tk–1

E(tn – s)B
(
u(tk), u(tk)

)
ds –

n∑

k=1

∫ tk

tk–1

E(tn – tk–1)B
(
u(tk), u(tk)

)
ds

+
n∑

k=1

∫ tk

tk–1

E(tn – tk–1)B
(
u(tk), u(tk)

)
ds –

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
u(tk), u(tk)

)
ds

+
n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
u(tk), u(tk)

)
ds –

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
u(tk–1), u(tk)

)
ds

+
n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
u(tk–1), u(tk)

)
ds –

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPhB
(
Uk–1

h , Uk
h
)

ds

=: II1 + II2 + II3 + II4 + II5.

The term II1 is estimated by applying Lemma 4.4 and Theorem 4.1, which yield

‖II1‖L2(�;H) =

∥
∥
∥
∥
∥

n∑

k=1

∫ tk

tk–1

E(tn – s)
[
B
(
u(s), u(s)

)
– B

(
u(tk), u(tk)

)]
ds

∥
∥
∥
∥
∥

L2(�;H)

≤ C
n∑

k=1

∫ tk

tk–1

‖B(u(s), u(s) – B
(
u(tk), u(tk)

)‖ds

≤ C
n∑

k=1

∫ tk

tk–1

(‖B
(
u(s), u(s) – B

(
u(tk), u(s)

)‖

+
∥
∥B

(
u(tk), u(s)

)
– B

(
u(tk), u(tk)

)∥
∥
)

ds

≤ C
n∑

k=1

∫ tk

tk–1

(s – tk)μα ds

≤ Ckμα . (5.1)
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For the term II2, by making use of Lemma 4.4 and property (3.2) of B(·, ·), one can arrive
at

‖II2‖L2(�;H) = ‖
n∑

k=1

∫ tk

tk–1

(
E(tn – s) – E(tn – tk–1)

)
B
(
u(tk), u(tk)

)
ds

≤ C
n∑

k=1

∫ tk

tk–1

∥
∥
(
E(tn – s) – E(tn – tk–1)

)∥
∥ds

≤ Ckμα . (5.2)

The estimate for II3 is a straightforward application of Lemma 5.1 and property (3.2) of
B(·, ·) yielding

‖II3‖L2(�;H) =
n∑

k=1

∫ tk

tk–1

(
E(tn – tk–1) – Bn–k+1,hPh

)
B
(
u(tk), u(tk)

)
ds

≤ C
n∑

k=1

∫ tk

tk–1

(
hβ + k

)
ds

≤ C
(
hβ + k

)
. (5.3)

For the term II4, by virtue of the property of Bn–k+1,h in Lemma 5.2 and Theorem 4.1, there
holds

‖II4‖L2(�;H) =

∥
∥
∥
∥
∥

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPh
(
B
(
u(tk), u(tk)

)
– B

(
u(tk–1), u(tk)

))
ds

∥
∥
∥
∥
∥

≤ Ck. (5.4)

The term II5 is similarly bounded by the property of Bn–k+1,h in Lemma 5.2, namely

‖II5‖L2(�;H) =

∥
∥
∥
∥
∥

n∑

k=1

∫ tk

tk–1

Bn–k+1,hPh
(
B
(
u(tk–1), u(tk)

)
– B

(
Uk–1

h , Uk
h
))

ds

∥
∥
∥
∥
∥

L2(�;H)

≤ Ck
n∑

k=1

∥
∥ek–1∥∥2

1. (5.5)

Due to (5.1)–(5.5), we complete the proof. �

Similarly, we consider the error estimate of the third term III .

Lemma 5.4 Let III be defined as above. For 0 < μ < 1, 0 < α < 1, 0 ≤ β ≤ 2, there exists a
constant C such that

‖III‖L2(�;H) ≤ C
(
hβ + kμα

)
.

Proof The term III can be split into the following terms:

III =
n∑

k=1

∫ tk

tk–1

Bn–k+1,hPh dW –
∫ tn

0
E(tn – s) dW



Li and Yang Journal of Inequalities and Applications        (2018) 2018:284 Page 13 of 15

=
n∑

k=1

∫ tk

tk–1

(
Bn–k+1,hPh – E(tn – tk–1)

)
dW

+
n∑

k=1

∫ tk

tk–1

(
E(tn – tk–1) – E(tn – s)

)
dW

=: III1 + III2.

For the term III1, by virtue of Itô’s isometry and Lemma 5.1, it holds

‖III1‖2
L2(�;H) ≤ C

n∑

k=1

∫ tk

tk–1

∥
∥
(
Bn–k+1,hPh – E(tn – tk–1)

)∥
∥2 ds

≤ C
(
h2β + k2). (5.6)

By Itô’s isometry and Lemma 4.4, the estimate for III2 is obtained as follows:

‖III2‖2
L2(�;H) =

∥
∥
∥
∥
∥

n∑

k=1

∫ tk

tk–1

(
E(tn – tk–1) – E(tn – s)

)
dW

∥
∥
∥
∥
∥

2

=
n∑

k=1

∫ tk

tk–1

∥
∥
(
E(tn – tk–1) – E(tn – s)

)∥
∥2 ds

≤ Ck2μα . (5.7)

Hence, by (5.6) and (5.7), the proof is completed. �

Based on the above conclusions, the main theorem of the paper can now be obtained.

Theorem 5.1 Let 0 ≤ β ≤ 2, 0 ≤ μ ≤ 1, 0 ≤ α ≤ 1. Then

∥
∥Un

h – u(tn)
∥
∥

L2(�;H) ≤ C
(
hβ + kμα

)
.

Proof First of all, for the term I , by applying Lemma 5.1, it can be obtained that

‖I‖L2(�;H) ≤ C
(
hβ + kμα

)
. (5.8)

Combining with (5.8), Lemma 5.3, Lemma 5.4, we conclude that

∥
∥en∥∥

L2(�;H) ≤ Ckμα + C
(
hβ + k

)
+ Ck

n∑

k=1

∥
∥ek–1∥∥2

1,

by using the discrete Gronwall’s lemma, this yields

∥
∥Un

h – u(tn)
∥
∥

L2(�;H) ≤ C
(
hβ + kμα

)
,

which completes the proof. �
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