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Abstract
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1 Introduction
Let w, �p, �∞, c, and c0 denote the spaces of all, p-absolutely summable, bounded, conver-
gent, and null sequences x = (xk) with complex terms xk , respectively, where 1 ≤ p < ∞
and k ∈ N = {0, 1, 2, . . .}. A sequence space X is called a BK-space if it is a Banach space
with continuous coordinates pk : X → C defined by pk(x) = xk for x = (xk) ∈ X and k ∈ N.
The most important result of the theory of BK-spaces is that matrix mappings between
BK-spaces are continuous [13]. The sequence spaces �∞, c, and c0 with their sup-norm
are BK-spaces.

The concept of a difference sequence space was firstly introduced by Kizmaz [22] by
defining the set Z(�) = {x = (xk) : (�xk) ∈ Z} for Z ∈ {�∞, c, c0}, where �xk = xk – xk+1

for k ∈ N. The idea of a difference sequence was generalized by Et and Çolak [14–16]
by defining the spaces Z(�m) = {x = (xk) : (�mxk) ∈ Z} for Z ∈ {�∞, c, c0}, where m ∈ N,
�mxk = �m–1xk – �m–1xk+1 for k ∈ N. For a positive proper fraction α, Baliarsingh and
Dutta [4, 5] defined the fractional difference operator �α by

�αxk =
∞∑

i=0

(–1)i �(α + 1)
i!�(α – i + 1)

xk+i

for k ∈ N, where the Euler gamma function �(p) of a real number p with p /∈ {0, –1, –2,
–3, . . .} can be expressed as an improper integral �(p) =

∫ ∞
0 e–ttp–1 dt. It is observed that

(i) �(p + 1) = p! for p ∈N,
(ii) �(p + 1) = p�(p) for p ∈R \ {0, –1, –2, –3, . . .}.
Some definitions of fractional derivatives have been generalized by using a set of new

difference sequence spaces of fractional order [3]. Application of fractional derivatives
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becomes more apparent in diffusion processes, modeling mechanical systems, and many
other fields.

Let X, Y be two sequence spaces, and let A = (an,k) be an infinite matrix with complex
numbers an,k , n, k ∈ N. Let the sequence space XA defined by XA = {x = (xk) : Ax ∈ X}
denote the domain of matrix A in the space X, where Ax = {(Ax)n}, the A-transform of x,
is defined by (Ax)n =

∑∞
k=0 an,kxk , n ∈ N. Let (X : Y ) denote the class of all matrices such

that X ⊆ YA. The matrix domain approach has been employed by Başarir and Kara [6–
10], Kara and İlkhan [19–21], Polat and Başar [26], Song and Meng [23–25, 27], and many
others to introduce new sequence spaces.

The Euler sequence spaces er
0, er

c, and er∞ were defined by Altay and Başar [1] and Altay,
Başar, and Mursaleen [2]. Moreover, Kadak and Baliarsingh [18] introduced a generalized
Euler mean difference operator Er(∇ (α)) of fractional order, where the matrix ∇ (α) = (∇ (α)

n,k )
is defined by

∇ (α)
n,k =

⎧
⎨

⎩
(–1)n–k �(α+1)

(n–k)!�(α–n+k+1) if 0 ≤ k ≤ n,

0 if k > n.

Let r, s ∈R and r + s �= 0. Then the binomial matrix Br,s = (br,s
n,k) is defined by

br,s
n,k =

⎧
⎨

⎩

1
(s+r)n

( n
k
)
sn–krk if 0 ≤ k ≤ n,

0 if k > n,

for all k, n ∈ N. If s + r = 1, then we obtain the Euler matrix Er . Bişgin [11, 12] defined the
binomial sequence spaces

br,s
0 =

{
x = (xk) : lim

n→∞
1

(s + r)n

n∑

k=0

(
n
k

)
sn–krkxk = 0

}
,

br,s
c =

{
x = (xk) : lim

n→∞
1

(s + r)n

n∑

k=0

(
n
k

)
sn–krkxk exists

}
,

and

br,s
∞ =

{
x = (xk) : sup

n∈N

∣∣∣∣∣
1

(s + r)n

n∑

k=0

(
n
k

)
sn–krkxk

∣∣∣∣∣ < ∞
}

.

The purpose of this paper is to generalize the sequence spaces er
0(∇ (α)), er

c(∇ (α)), and
er∞(∇ (α)) and introduce the binomial difference sequence spaces br,s

0 (∇ (α)), br,s
c (∇ (α)), and

br,s∞(∇ (α)) of fractional order whose ∇ (α)-transforms are in the spaces br,s
0 , br,s

c , and br,s∞.
These new sequence spaces are generalizations of the spaces defined in [11, 12, 18, 23, 25,
26].

2 Difference sequence spaces of fractional order
In this chapter, we introduce the binomial difference sequence spaces br,s

0 (∇ (α)), br,s
c (∇ (α)),

and br,s∞(∇ (α)) of fractional order and investigate some functional properties and inclusion
relations.
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Define the spaces br,s
0 (∇ (α)), br,s

c (∇ (α)), and br,s∞(∇ (α)) by

Z
(∇ (α)) =

{
x = (xk) : ∇ (α)(xk) ∈ Z

}

for Z ∈ {br,s
0 , br,s

c , br,s∞}. By taking the ∇ (α)-transform of x in the spaces br,s
0 , br,s

c , and br,s∞ the
spaces br,s

0 (∇ (α)), br,s
c (∇ (α)), and br,s∞(∇ (α)) can be redefined by

br,s
0

(∇ (α)) =
(
br,s

0
)
∇(α) , br,s

c
(∇ (α)) =

(
br,s

c
)
∇(α) , br,s

∞
(∇ (α)) =

(
br,s

∞
)
∇(α) . (2.1)

The sequence spaces br,s
0 (∇ (α)), br,s

c (∇ (α)), and br,s∞(∇ (α)) include some particular cases in
certain cases of s, r, and α.

(i) For α = 0, these sequence spaces generalize the spaces br,s
0 , br,s

c , and br,s∞ defined by
Bişgin [11, 12].

(ii) For s + r = 1, these sequence spaces generalize the spaces er
0(∇ (α)), er

c(∇ (α)), and
er∞(∇ (α)) defined by Kadak and Baliarsingh [18].

(iii) For α = m ∈N, these sequence spaces generalize the spaces br,s
0 (∇ (m)), br,s

c (∇ (m)),
and br,s∞(∇ (m)) defined by Meng and Song [23].

(iv) For s + r = 1 and α = m ∈N, these sequence spaces generalize the spaces er
0(∇ (m)),

er
c(∇ (m)), and er∞(∇ (m)) defined by Polat and Başar [26].

Define the sequence y = (yn) by the Br,s(∇ (α))-transform of a sequence x = (xk), that is,

yn =
[
Br,s(∇ (α))(xk)

]
n

=
1

(s + r)n

n∑

k=0

n∑

i=k

(–1)i–k

(
n
i

)
�(α + 1)

(i – k)!�(α – i + k + 1)
sn–irixk (2.2)

for each n ∈ N.

Theorem 2.1 Let Z ∈ {br,s
0 , br,s

c , br,s∞}. Then Z(∇ (α)) are BK-spaces with the norm ‖x‖Z(∇(α)) =
‖∇ (α)(xk)‖Z .

Proof Theorem 2.1 of Bişgin [11, 12] and Theorem 4.3.12 of Wilansky [29] imply that the
spaces Z(∇ (α)) are BK-spaces. �

Theorem 2.2 The inclusion br,s
0 (∇ (α)) ⊆ br,s

c (∇ (α)) ⊆ br,s∞(∇ (α)) is strict.

Proof Proof follows from Lemma 2.3 of Et and Nuray [17]. �

Theorem 2.3 The inclusions er
0(∇ (α)) ⊆ br,s

0 (∇ (α)), er
c(∇ (α)) ⊆ br,s

c (∇ (α)), and er∞(∇ (α)) ⊆
br,s∞(∇ (α)) are strict.

Proof We only give the proof of the inclusion er
0(∇ (α)) ⊆ br,s

0 (∇ (α)). The others can be
proved similarly.

It is clear that er
0(∇ (α)) ⊆ br,s

0 (∇ (α)). Further, to show that this inclusion is strict, let 0 <
r < 1 and s = 4 and define the sequence x = (xk) by

xk =
k∑

j=0

(–1)k–j �(–α + 1)
(k – j)!�(–α – k + j + 1)

(
–

3
r

)j
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for k ∈ N. We have [Er(∇ (α))(xk)]n = ((–2 – r)n) /∈ c0 and [Br,s(∇ (α))(xk)]n = (( 1
4+r )n) ∈ c0.

Therefore, the inclusion er
0(∇ (α)) ⊆ br,s

0 (∇ (α)) is strict. �

Theorem 2.4 The spaces br,s
0 (∇ (α)), br,s

c (∇ (α)), and br,s∞(∇ (α)) are linearly isomorphic to the
spaces c0, c, and �∞, respectively.

Proof We prove the theorem only for the space br,s
0 (∇ (α)). To prove br,s

0 (∇ (α)) ∼= c0, we will
show the existence of a linear bijection between the spaces br,s

0 (∇ (α)) and c0.
Let us denote the transformation T : br,s

0 (∇ (α)) → c0 by T(x) = Br,s(∇ (α))(xk). The linearity
of T is clear, and x = 0 whenever T(x) = 0. Hence T is injective.

Let y = (yn) ∈ c0 and define the sequence x = (xk) by

xk =
k∑

i=0

(s + r)i
k∑

j=i

(–1)k–j

(
j
i

)
�(–α + 1)

(k – j)!�(–α – k + j + 1)
r–j(–s)j–iyi (2.3)

for k ∈N. Then we have

lim
n→∞

[
Br,s(∇ (α))(xk)

]
n = lim

n→∞
1

(s + r)n

n∑

k=0

(
n
k

)
sn–krk(∇ (α))(xk) = lim

n→∞ yn = 0,

which implies that x ∈ br,s
0 (∇ (α)). Therefore, we obtain that T is surjective and norm pre-

serving. This completes the proof. �

We shall construct the Schauder bases for the sequence spaces br,s
0 (∇ (α)) and br,s

c (∇ (α)).
Because the isomorphism T between br,s

0 (∇ (α)) and c0 (or between br,s
c (∇ (α)) and c) is onto,

the inverse image of the basis of the space c0 (or c) is the basis of the space br,s
0 (∇ (α)) (or

br,s
c (∇ (α))). For k ∈N, define the sequence g(k)(r, s) = {g(k)

i (r, s)}i∈N by

g(k)
i (r, s) =

⎧
⎨

⎩
0 if 0 ≤ i < k,

(s + r)k ∑i
j=k(–1)i–j( j

k

)
�(–α+1)

(i–j)!�(–α–i+j+1) r–j(–s)j–k if i ≥ k.

Theorem 2.5 The sequence (g(k)(r, s))k∈N is the Schauder basis for the space br,s
0 (∇ (α)), and

every x in br,s
0 (∇ (α)) has a unique representation by

x =
∑

k

λk(r, s)g(k)(r, s), (2.4)

where λk(r, s) = [Br,s(∇ (α))(xi)]k for k ∈N.

Theorem 2.6 Define the sequence g = (gn) by

gn =
n∑

k=0

(s + r)k
n∑

j=k

(–1)n–j

(
j
k

)
�(–α + 1)

(n – j)!�(–α – n + j + 1)
r–j(–s)j–k

for n ∈ N and limk→∞ λk(r, s) = l. The set {g, g(0)(r, s), g(1)(r, s), g(2)(r, s), . . .} is the Schauder
basis for the space br,s

c (∇ (α)), and every x in br,s
c (∇ (α)) has a unique representation by

x = lg +
∑

k

[
λk(r, s) – l

]
g(k)(r, s). (2.5)



Meng and Mei Journal of Inequalities and Applications  (2018) 2018:274 Page 5 of 8

3 The α-, β-, γ -, and continuous duals
In this section, we determine the α-, β-, γ -, and continuous duals of the spaces br,s

0 (∇ (α)),
br,s

c (∇ (α)), and br,s∞(∇ (α)).
For two sequence spaces X and Y , the set M(X, Y ) is defined by

M(X, Y ) =
{

u = (uk) : ux = (ukxk) ∈ Y for all x = (xk) ∈ X
}

.

Let bs and cs denote the sequence spaces of all bounded and convergent series, respec-
tively. In particular,

Xα = M(X,�1), Xβ = M(X, cs), and Xγ = M(X, bs)

are called the α-, β-, and γ -duals of the sequence space X, respectively. The space of
all bounded linear functionals on X denoted by X∗ is called the continuous dual of the
space X.

Let us give the following properties needed in Lemma 3.1:

sup
K∈�

∑

n

∣∣∣∣
∑

k∈K

an,k

∣∣∣∣ < ∞, (3.1)

sup
n∈N

∑

k

|an,k| < ∞, (3.2)

lim
n→∞ an,k = ak for k ∈ N, (3.3)

lim
n→∞

∑

k

an,k = a, (3.4)

lim
n→∞

∑

k

|an,k| =
∑

k

∣∣∣ lim
n→∞ an,k

∣∣∣, (3.5)

where � is the collection of all finite subsets of N.

Lemma 3.1 ([28]) Let A = (an,k) be an infinite matrix. Then
(i) A ∈ (c0 : �1) = (c : �1) = (�∞ : �1) if and only if (3.1) holds.

(ii) A ∈ (c0 : c) if and only if (3.2) and (3.3) hold.
(iii) A ∈ (c : c) if and only if (3.2), (3.3), and (3.4) hold.
(iv) A ∈ (�∞ : c) if and only if (3.3) and (3.5) hold.
(v) A ∈ (c0 : �∞) = (c : �∞) = (�∞ : �∞) if and only if (3.2) holds.

Theorem 3.2 We have [br,s
0 (∇ (α))]α = [br,s

c (∇ (α))]α = [br,s∞(∇ (α))]α = Ur,s
1 , where

Ur,s
1 =

{
u = (uk) : sup

K∈�

∑

k

∣∣∣∣∣
∑

i∈K

(s + r)i
k∑

j=i

(–1)k–j

(
j
i

)

× �(–α + 1)
(k – j)!�(–α – k + j + 1)

r–j(–s)j–iuk

∣∣∣∣∣ < ∞
}

.
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Proof We immediately derive by (2.3) that

ukxk =
k∑

i=0

(s + r)i
k∑

j=i

(–1)k–j

(
j
i

)
�(–α + 1)

(k – j)!�(–α – k + j + 1)
r–j(–s)j–iukyi =

(
Gr,sy

)
k

for k ∈N, where Gr,s = (gr,s
k,i) is defined by

gr,s
k,i =

⎧
⎨

⎩
(s + r)i ∑k

j=i(–1)k–j( j
i

)
�(–α+1)

(k–j)!�(–α–k+j+1) r–j(–s)j–iuk if 0 ≤ i ≤ k,

0 if i > k.

Therefore ux = (ukxk) ∈ �1 whenever x ∈ br,s
0 (∇ (α)), br,s

c (∇ (α)) or br,s∞(∇ (α)) if and only if
Gr,sy ∈ �1 whenever y ∈ c0, c or �∞. This implies that u = (uk) ∈ [br,s

0 (∇ (α))]α , [br,s
c (∇ (α))]α ,

or [br,s∞(∇ (α))]α if and only if Gr,s ∈ (c0 : �1) = (c : �1) = (�∞ : �1). We derive by part (i) of
Lemma 3.1 that u = (uk) ∈ [br,s

0 (∇ (α))]α = [br,s
c (∇ (α))]α = [br,s∞(∇ (α))]α if and only if

sup
K∈�

∑

k

∣∣∣∣∣
∑

i∈K

(s + r)i
k∑

j=i

(–1)k–j

(
j
i

)
�(–α + 1)

(k – j)!�(–α – k + j + 1)
r–j(–s)j–iuk

∣∣∣∣∣ < ∞,

which yields that [br,s
0 (∇ (α))]α = [br,s

c (∇ (α))]α = [br,s∞(∇ (α))]α = Ur,s
1 . �

To determine the β- and γ -duals of the spaces br,s
0 (∇ (α)), br,s

c (∇ (α)), and br,s∞(∇ (α)), we define
the following sets:

Ur,s
2 =

{
u = (uk) : sup

n∈N

∑

k

|un,k| < ∞
}

,

Ur,s
3 =

{
u = (uk) : lim

n→∞ un,k exists for each k ∈ N

}
,

Ur,s
4 =

{
u = (uk) : lim

n→∞
∑

k

|un,k| =
∑

k

∣∣∣ lim
n→∞ un,k

∣∣∣
}

,

and

Ur,s
5 =

{
u = (uk) : lim

n→∞
∑

k

un,k exists
}

,

where

un,k = (s + r)k
n∑

i=k

i∑

j=k

(–1)i–j

(
j
k

)
�(–α + 1)

(i – j)!�(–α – i + j + 1)
r–j(–s)j–kui.

Theorem 3.3
(i) [br,s

0 (∇ (α))]β = Ur,s
2 ∩ Ur,s

3 ,
(ii) [br,s

c (∇ (α))]β = Ur,s
2 ∩ Ur,s

3 ∩ Ur,s
5 ,

(iii) [br,s∞(∇ (α))]β = Ur,s
3 ∩ Ur,s

4 ,
(iv) [br,s

0 (∇ (α))]γ = [br,s
c (∇ (α))]γ = [br,s∞(∇ (α))]γ = Ur,s

2 .
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Proof We consider the equality

n∑

k=0

ukxk =
n∑

k=0

uk

[ k∑

i=0

(s + r)i
k∑

j=i

(–1)k–j

(
j
i

)
�(–α + 1)

(k – j)!�(–α – k + j + 1)
r–j(–s)j–iyi

]

=
n∑

k=0

[
(s + r)k

n∑

i=k

i∑

j=k

(–1)i–j

(
j
k

)
�(–α + 1)

(i – j)!�(–α – i + j + 1)
r–j(–s)j–kui

]
yk

=
(
Ur,sy

)
n,

where Ur,s = (ur,s
n,k) is defined by

ur,s
n,k =

⎧
⎨

⎩
(s + r)k ∑n

i=k
∑i

j=k(–1)i–j( j
k

)
�(–α+1)

(i–j)!�(–α–i+j+1) r–j(–s)j–kui if 0 ≤ k ≤ n,

0 if k > n.

Therefore ux = (ukxk) ∈ cs whenever x ∈ br,s
0 (∇ (α)) if and only if Ur,sy ∈ c whenever y ∈ c0.

This implies that u = (uk) ∈ [br,s
0 (∇ (α))]β if and only if Ur,s ∈ (c0 : c). We obtain by part (ii)

of Lemma 3.1 that [br,s
0 (∇ (α))]β = Ur,s

2 ∩ Ur,s
3 . The proof can be completed in a similar way

by parts (iii), (iv), (v) instead of Part (ii) of Lemma 3.1, so we omit the details. �

Theorem 3.4 The spaces [br,s
0 (∇ (α))]∗ and [br,s

c (∇ (α))]∗ are equivalent to �1.

Proof Proof follows from Theorem 3.6 of Bişgin [11] and the fact that if Z is a Banach
space, then [Z(∇ (α))]∗ is equivalent to X∗ [17]. �

4 Conclusion
In this paper, we have discussed some results obtained from the matrix domain of the
binomial matrix and the difference matrix of fractional order. Our main aim is to general-
ize the results on the matrix domain of the Euler matrix. It is immediate that our results
reduce to the sequence spaces defined in [11, 12, 18, 23, 25, 26].
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