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Abstract
In this paper, we present four new Windschitl type approximation formulas for the
gamma function. By some unique ideas and techniques, we prove that four functions
combined with the gamma function and Windschitl type approximation formulas
have good properties, such as monotonicity and convexity. These not only yield some
new inequalities for the gamma and factorial functions, but also provide a new proof
of known inequalities and strengthen known results.
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1 Introduction
For x > 0, the classical Euler’s gamma function � and psi (digamma) function ψ are defined
by

�(x) =
∫ ∞

0
tx–1e–t dt and ψ(x) =

�′(x)
�(x)

, (1.1)

respectively. The derivatives ψ ′, ψ ′′, ψ ′′′, . . . are known as polygamma functions. The
gamma function has various important applications in many branches of science. For this
reason, scholars strive to find various better approximations for the factorial or gamma
function by using different ideas and techniques, for instance, Ramanujan [1, p. 339], Burn-
side [2], Gosper [3], Alzer [4], Shi et al. [5], Batir [6, 7], Mortici [8–12], Nemes [13, Corol-
lary 4.1], [14], Qi et al. [15, 16], Feng and Wang [17], Chen [18–21], Yang et al. [22–25], Lu
et al. [26–28], Xu et al. [29]. Some properties of the remainders of certain approximations
for the gamma function can be found in [4, 16, 23, 30–35].

In this paper, we are interested in Windschitl’s approximation formula (see [36]) given
by

�(x + 1) ∼ W0(x) =
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2

, as x → ∞. (1.2)
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As shown in [21, Eq. (3.18)], the rate of Windschitl’s approximation W0(x) converging to
�(x + 1) is like x–5 as x → ∞, and like x–7 if one replaces W0(x) with

W1(x) =
√

2πx
(

x
e

)x(
x sinh

1
x

+
1

810x6

)x/2

(1.3)

by an easy check. These show that W0(x) and W1(x) are more accurate approximations for
the gamma function. In 2009, Alzer [37] proved that for all x > 0,

√
2πx

(
x
e

)x(
x sinh

1
x

)x/2(
1 +

α

x5

)
< �(x + 1)

<
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2(
1 +

β

x5

)
(1.4)

with the best possible constants α = 0 and β = 1/1620. Recently, Lu, Song and Ma [27]
extended Windschitl’s formula to an asymptotic expansion:

�(n + 1) ∼
√

2πn
(

n
e

)n[
n sinh

(
1
n

+
a7

n7 +
a9

n9 +
a11

n11 + · · ·
)]n/2

(1.5)

as n → ∞ with a7 = 1/810, a9 = –67/42525, a11 = 19/8505, . . . , and proved that there exists
an m such that, for every x > m, the double inequality

[
x sinh

(
1
x

+
1

810x7 –
67

42525x9

)]x/2

<
�(x + 1)√
2πx(x/e)x

<
[

x sinh

(
1
x

+
1

810x7

)]x/2

(1.6)

holds. An explicit formula for determining the coefficients of n–k (n ∈N) was given in [19,
Theorem 1] by Chen. Another asymptotic expansion

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2+
∑∞

j=0 rjx–j

, as x → ∞, (1.7)

was presented in the same paper [19, Theorem 2].
Let us consider the four new Windschitl type approximation formulas, as x → ∞, which

are

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2

exp

(
1

1620x5

)
:= W01(x), (1.8)

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2

exp

(
1

1620x5 –
11

18,900x7

)
:= W02(x), (1.9)

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2(
1 +

1
1620x5

)
:= W ∗

01(x), (1.10)

�(x + 1) ∼
√

2πx
(

x
e

)x(
x sinh

1
x

)x/2(
1 +

1
1620x5 –

11
18,900x7

)
= W ∗

02(x). (1.11)

The aim of this paper is, by investigating the monotonicity and convexity of the functions

x �→ ln�(x + 1) – ln F(x), where F = W01, W02, W ∗
01, W ∗

02,
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to establish some new sharp inequalities between the gamma function �(x+1) and Winds-
chitl’s approximation formula W0(x). As a by-product, a concise proof of Alzer inequalities
(1.4) is presented, and a strengthening for Lu et al.’s inequalities (1.6) is given.

The rest of this paper is organized as follows. In Sect. 2, three lemmas are given, which
are crucial to the proofs of our results. In Sect. 3, five monotonicity and convexity re-
sults for the functions constructed from the gamma function and Windschilt’s formula
are proved. Some new inequalities between the gamma or factorial functions with Wind-
schilt’s formula are established in Sect. 4. In Sect. 5, numeric comparisons of several better
approximation formulas are presented.

2 Lemmas
To prove our results, we need three lemmas as follows.

Lemma 1 The inequalities

x
x2 + 71

84

x4 + 13
14 x2 + 27

560
< ψ ′

(
x +

1
2

)
, (2.1)

x
x4 + 227

66 x2 + 4237
2640

x6 + 155
44 x4 + 329

176 x2 + 375
4928

< ψ ′
(

x +
1
2

)
<

1
x

x4 + 67
36 x2 + 256

945

x4 + 35
18 x2 + 407

1008
(2.2)

hold for x > 0.

Proof The inequality (2.1) was proved in [38, Remark 2.2].
Let

g1(x) = ψ ′
(

x +
1
2

)
–

1
x

x4 + 67
36 x2 + 256

945

x4 + 35
18 x2 + 407

1008
,

g2(x) = ψ ′
(

x +
1
2

)
– x

x4 + 227
66 x2 + 4237

2640

x6 + 155
44 x4 + 329

176 x2 + 375
4928

.

Then we have

g1(x + 1) – g1(x) = ψ ′
(

x +
3
2

)
–

1
x + 1

(x + 1)4 + 67
36 (x + 1)2 + 256

945

(x + 1)4 + 35
18 (x + 1)2 + 407

1008

– ψ ′
(

x +
1
2

)
+

1
x

x4 + 67
36 x2 + 256

945

x4 + 35
18 x2 + 407

1008

= 921,600 × [
x(2x + 1)2(x + 1)

(
1008x4 + 1960x2 + 407

)]–1

× (
1008x4 + 4032x3 + 8008x2 + 7952x + 3375

)–1 > 0.

Hence, we conclude that

g1(x) < g1(x + 1) < · · · < lim
n→∞ g1(x + n) = 0,

which proves the first inequality of (2.2).



Yang and Tian Journal of Inequalities and Applications  (2018) 2018:272 Page 4 of 17

Analogously, we have

g2(x + 1) – g2(x)

= ψ ′
(

x +
3
2

)
–

(x + 1)((x + 1)4 + 227
66 (x + 1)2 + 4237

2640 )
(x + 1)6 + 155

44 (x + 1)4 + 329
176 (x + 1)2 + 375

4928

– ψ ′
(

x +
1
2

)
+

x(x4 + 227
66 x2 + 4237

2640 )
x6 + 155

44 x4 + 329
176 x2 + 375

4928

= –58,982,400 × [
(2x + 1)2(4928x6 + 17,360x4 + 9212x2 + 375

)]–1

× (
4928x6 + 29,568x5 + 91,280x4 + 168,000x3

+ 187,292x2 + 117,432x + 31,875
)–1

< 0.

It then follows that

g2(x) > g2(x + 1) > · · · > lim
n→∞ g2(x + n) = 0,

which proves the second formula of (2.2). This completes the proof. �

Lemma 2 The inequalities

t2

sinh2 t
> 1 –

1
3

t2 +
1

15
t4 –

2
189

t6, (2.3)

t2

sinh2 t
> 1 –

1
3

t2 +
1

15
t4 –

2
189

t6 +
1

675
t8 –

2
10,395

t10 (2.4)

hold for all t > 0.

Proof The inequalities in question are equivalent to

h1(t) =
(

2
189

t6 –
1

15
t4 +

1
3

t2 – 1
)

cosh 2t – 1
2t2 + 1 > 0

and

h2(t) =
(

2
10,395

t10 –
1

675
t8 +

2
189

t6 –
1

15
t4 +

1
3

t2 – 1
)

cosh 2t – 1
2t2 + 1 > 0

for t > 0, respectively.
Expanding into a power series yields

h1(t) =
(

2
189

t6 –
1

15
t4 +

1
3

t2 – 1
) ∞∑

n=0

22n+1

(2n + 2)!
t2n + 1

=
2

189

∞∑
n=3

(2t)2n

32(2n – 4)!
–

1
15

∞∑
n=2

(2t)2n

8(2n – 2)!
+

1
3

∞∑
n=1

(2t)2n

2(2n)!
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– 2
∞∑

n=0

(2t)2n

(2n + 2)!
+ 1 :=

1
1890

∞∑
n=3

(n – 3) × p5(n)
(2n + 2)!

(2t)2n,

where

p5(n) = 40n5 + 60n4 – 122n3 – 543n2 – 296n + 1050.

We assert that p5(n) > 0 for n ≥ 3, since p5(n) can be written as

p5(n) = 40(n – 3)5 + 660(n – 3)4 + 4198(n – 3)3 + 12,399(n – 3)2 + 15,832(n – 3) + 6561,

which is evidently positive for n ≥ 3. Hence h1(t) > 0 for all t > 0. While

h2(t) = h1(t) +
(

2
10,395

t10 –
1

675
t8

) ∞∑
n=0

22n+1

(2n + 2)!
t2n

=
1

1890

∞∑
n=3

(n – 3) × p5(n)
(2n + 2)!

(2t)2n +
2

10,395

∞∑
n=5

(2t)2n

29(2n – 8)!

–
1

675

∞∑
n=4

(2t)2n

27(2n – 6)!
:=

1
415,800

∞∑
n=5

(n – 5) × p9(n)
(2n + 2)!

(2t)2n,

where

p9(n) = 160n9 – 1200n8 + 2368n7 – 1768n6 + 2354n5 + 14,845n4

– 6403n3 – 70,782n2 – 57,384n + 138,600.

It is easy to check that

p9(n) = 160m9 + 6000m8 + 98,368m7 + 921,112m6 + 5392,514m5 + 20,270,695m4

+ 48,258,997m3 + 68,827,423m2 + 51,883,321m + 15,041,130 > 0,

for m = n – 5 ≥ 0, which proves h2(t) > 0 for t > 0. The proof is complete. �

The following lemma offers a simple criterion to determine the sign of a class of special
polynomials on given interval contained in (0,∞) without using Descartes’ Rule of Signs,
which plays an important role in studying certain special functions, see, for example, [39,
40]. A series version can be found in [41, 42].

Lemma 3 ([39, Lemma 7]) Let n ∈ N and m ∈ N ∪ {0} with n > m and let Pn(t) be an nth
degree polynomial defined by

Pn(t) =
n∑

i=m+1

aiti –
m∑

i=0

aiti, (2.5)

where an, am > 0, ai ≥ 0 for 0 ≤ i ≤ n – 1 with i �= m. Then there is a unique number
tm+1 ∈ (0,∞) satisfying Pn(tm+1) = 0 such that Pn(t) < 0 for t ∈ (0, tm+1) and Pn(t) > 0 for
t ∈ (tm+1,∞).
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Consequently, for a given t0 > 0, if Pn(t0) > 0 then Pn(t) > 0 for t ∈ (t0,∞) and if Pn(t0) < 0
then Pn(t) < 0 for t ∈ (0, t0).

3 Monotonicity and convexity
Theorem 1 T he function

f0(x) = ln�(x + 1) – ln
√

2π –
(

x +
1
2

)
ln x + x –

x
2

ln

(
x sinh

1
x

)

is strictly decreasing and convex on (0,∞).

Proof Differentiation yields

f ′
0(x) = ψ(x + 1) –

1
2

ln

(
x sinh

1
x

)
+

1
2x

coth
1
x

– ln x –
1

2x
–

1
2

,

f ′′
0 (x) = ψ ′(x + 1) +

1
2x3

1
sinh2(1/x)

–
3

2x
+

1
2x2 .

Replacing x by (x + 1/2) in inequality (2.1) leads to

ψ ′(x + 1) >
5
6

(2x + 1)(21x2 + 21x + 23)
35x4 + 70x3 + 85x2 + 50x + 12

,

and using which to f ′′
0 (x) gives

f ′′
0 (x) >

5
6

(2x + 1)(21x2 + 21x + 23)
35x4 + 70x3 + 85x2 + 50x + 12

+
1

2x3
1

sinh2(1/x)
–

3
2x

+
1

2x2 = f01

(
1
x

)
.

Simplifying yields

f01(t) =
1
2

t3

sinh2 t
+

1
6

t(36t5 + 42t4 – 80t3 – 220t2 – 210t – 105)
12t4 + 50t3 + 85t2 + 70t + 35

=
t

12
f02(t)

(12t4 + 50t3 + 85t2 + 70t + 35) sinh2 t
,

where

f02(t) =
(
36t5 + 42t4 – 80t3 – 220t2 – 210t – 105

)
cosh 2t

+
(
72t6 + 264t5 + 468t4 + 500t3 + 430t2 + 210t + 105

)
.

Expanding into a power series gives

f02(t) =

(
36

∞∑
n=2

22n–4

(2n – 4)!
t2n+1 – 80

∞∑
n=1

22n–2

(2n – 2)!
t2n+1 – 210

∞∑
n=0

22n

(2n)!
t2n+1

)

+

(
42

∞∑
n=2

22n–4

(2n – 4)!
t2n – 220

∞∑
n=1

22n–2

(2n – 2)!
t2n – 105

∞∑
n=0

22n

(2n)!
t2n

)

+
(
72t6 + 264t5 + 468t4 + 500t3 + 430t2 + 210t + 105

)
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=
∞∑

n=4

(n – 3)(36n3 + 19n + 70)22n

(2n)!
t2n+1

+
∞∑

n=4

(84n4 – 252n3 – 209n2 + 157n – 210)22n–2

(2n)!
t2n > 0,

where the inequality holds due to

84n4 – 252n3 – 209n2 + 157n – 210

= 84(n – 4)4 + 1092(n – 4)3 + 4831(n – 4)2 + 7893(n – 4) + 2450 > 0

for n ≥ 4.
It then follows that f01(t) > 0 for t > 0, so f ′′

0 (x) > 0 for x > 0. This yields f ′
0(x) <

limx→∞ f ′
0(x) = 0, which proves the desired result. �

Theorem 2 The function

f ∗
1 (x) = ln�(x + 1) – ln

√
2π –

(
x +

1
2

)
ln x + x –

x
2

ln

(
x sinh

1
x

)
– ln

(
1 +

1
1620x5

)

is strictly increasing and concave on (0,∞).

Proof Differentiation yields

f ∗′
1 (x) = ψ(x + 1) –

1
2

ln

(
x sinh

1
x

)
+

1
2x

coth
1
x

– ln x –
1

2x
–

1
2

+
5

x(1620x5 + 1)
,

f ∗′′
1 (x) = ψ ′(x + 1) +

1
2x3

1
sinh2(1/x)

–
3

2x
+

1
2x2 – 5

9720x5 + 1
x2(1620x5 + 1)2 .

Since limx→∞ f ∗′
1 (x) = 0, it suffices to prove f ∗′′

1 (x) < 0 for x > 0. Replacing x by (x + 1/2) in
the right-hand side inequality of (2.2) leads to

ψ ′(x + 1) <
1

30
3780x4 + 7560x3 + 12,705x2 + 8925x + 3019
(2x + 1)(63x4 + 126x3 + 217x2 + 154x + 60)

, (3.1)

which indicates that

f ∗′′
1 (x) <

1
30

3780x4 + 7560x3 + 12,705x2 + 8925x + 3019
(2x + 1)(63x4 + 126x3 + 217x2 + 154x + 60)

+
1

2x3
1

sinh2(1/x)
–

3
2x

+
1

2x2 – 5
9720x5 + 1

x2(1620x5 + 1)2 := f ∗
11

(
1
x

)
,

where

f ∗
11(t) =

t3

cosh 2t – 1
–

3
2

t +
1
2

t2 – 5t7 t5 + 9720
(t5 + 1620)2

+
1

30
t(3019t4 + 8925t3 + 12,705t2 + 7560t + 3780)

(t + 2)(60t4 + 154t3 + 217t2 + 126t + 63)
.
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Using the inequality

cosh 2t – 1 >
4∑

n=1

22n

(2n)!
t2n = 2t2 +

2
3

t4 +
4

45
t6 +

2
315

t8

yields

f ∗
11(t)

<
t3

2t2 + 2
3 t4 + 4

45 t6 + 2
315 t8

–
3
2

t +
1
2

t2 – 5t7 t5 + 9720
(t5 + 1620)2

+
1

30
t(3019t4 + 8925t3 + 12,705t2 + 7560t + 3780)

(t + 2)(60t4 + 154t3 + 217t2 + 126t + 63)

= –
1

30

× t9 × f ∗
12(t)

(t5 + 1620)2(t + 2)(t6 + 14t4 + 105t2 + 315)(60t4 + 154t3 + 217t2 + 126t + 63)

< 0

for t > 0, where the inequality holds due to

f ∗
12(t) = 8100t14 + 39,690t13 + 193,586t12 + 645,960t11 + 2,028,124t10

+ 90,019,275t9 + 406,666,800t8 + 1976,029,740t7 + 6395,589,900t6

+ 20,173,546,260t5 + 51,035,406,750t4 + 110,592,337,500t3

+ 184,843,490,400t2 + 254,068,164,000t + 101,627,265,600 > 0

for t > 0. This implies that f ′′
2 (x) < 0 for all x > 0, and the proof is complete. �

Theorem 3 The function

f1(x) = ln�(x + 1) – ln
√

2π –
(

x +
1
2

)
ln x + x –

x
2

ln

(
x sinh

1
x

)
–

1
1620x5

is strictly increasing and concave on (0,∞).

Proof We clearly see that

f1(x) = f ∗
1 (x) + D

(
1

1620x5

)
,

where D(y) = ln(1 + y) – y. By Theorem 2, f ∗
1 is strictly increasing and concave on (0,∞),

so if we prove x �→ D(y) is strictly increasing and concave on (0,∞), then so will be f1, and
the proof will be complete. Now we easily check that for x > 0,

dD(y)
dx

=
1

324x6(1620x5 + 1)
> 0,
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d2D(y)
dx2 = –

1
54

2970x5 + 1
x7(1620x5 + 1)2 < 0,

which completes the proof. �

Theorem 4 The function

f2(x) = ln�(x + 1) – ln
√

2π –
(

x +
1
2

)
ln x + x

–
x
2

ln

(
x sinh

1
x

)
–

1
1620x5 +

11
18,900x7

is strictly decreasing and convex on (0,∞).

Proof Differentiation yields

f ′
2(x) = ψ(x + 1) –

1
2

ln

(
x sinh

1
x

)
+

1
2x

coth
1
x

– ln x –
1

2x
–

1
2

+
1

324x6 –
11

2700x8 ,

f ′′
2 (x) = ψ ′(x + 1) +

1
2x3

1
sinh2(1/x)

–
3

2x
+

1
2x2 –

1
54x7 +

22
675x9 .

Since limx→∞ f ′
2(x) = 0, it suffices to prove f ′′

2 (x) > 0 for x > 0. Replacing x by (x + 1/2) in
the left-hand side inequality of (2.2) leads to

ψ ′(x + 1) >
7

30
(2x + 1)(165x4 + 330x3 + 815x2 + 650x + 417)

77x6 + 231x5 + 560x4 + 735x3 + 623x2 + 294x + 60
,

and applying which to f ′′
2 (x) gives

f ′′
2 (x) >

7
30

(2x + 1)(165x4 + 330x3 + 815x2 + 650x + 417)
77x6 + 231x5 + 560x4 + 735x3 + 623x2 + 294x + 60

+
1

2x3
1

sinh2(1/x)
–

3
2x

+
1

2x2 –
1

54x7 +
22

675x9 = f21

(
1
x

)
.

Making a change of variable t = 1/x yields

f21(t) =
7

30
t(t + 2)(417t4 + 650t3 + 815t2 + 330t + 165)

60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77

–
3
2

t +
1
2

t2 –
1

54
t7 +

22
675

t9 +
t
2

t2

sinh2 t
.

We distinguish two cases to prove f21(t) > 0 for all t > 0.
Case 1: t ≥ 1. Application of inequality (2.3) gives

f21(t) >
7

30
t(t + 2)(417t4 + 650t3 + 815t2 + 330t + 165)

60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77
–

3
2

t +
1
2

t2

–
1

54
t7 +

22
675

t9 +
t
2

(
1 –

1
3

t2 +
1

15
t4 –

2
189

t6
)
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=
1

9450
t9 × p6(t)

60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77
,

where

p6(t) = 18,480t6 + 90,552t5 + 178,384t4 + 160,230t3 + 51,205t2 – 1617t – 539.

Clearly, p6(t) > 0 for t ≥ 1, so f21(t) > 0 for t ≥ 1.
Case 2: 0 < t < 1. Using inequality (2.4) yields

f21(t) >
7

30
t(t + 2)(417t4 + 650t3 + 815t2 + 330t + 165)

60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77
–

3
2

t +
1
2

t2

–
1

54
t7 +

22
675

t9 +
t
2

(
1 –

1
3

t2 +
1

15
t4 –

2
189

t6 +
1

675
t8 –

2
10,395

t10
)

=
t11 × q6(t)

60t6 + 294t5 + 623t4 + 735t3 + 560t2 + 231t + 77
,

where

q6(t) = –
4

693
t6 –

14
495

t5 +
2881
1485

t4 +
4816
495

t3 +
400,919
20,790

t2 +
1573

90
t +

1573
270

.

Since the coefficients of polynomial q6(t) satisfy the conditions of Lemma 3 and q6(1) =
53,681/990 > 0, we find that q6(t) > 0 for t ∈ (0, 1), and then f21(t) > 0 for t ∈ (0, 1).

This ends the proof. �

Theorem 5 The function

f ∗
2 (x) = ln�(x + 1) – ln

√
2π –

(
x +

1
2

)
ln x + x

–
x
2

ln

(
x sinh

1
x

)
– ln

(
1 +

1
1620x5 –

11
18,900x7

)

is strictly decreasing and convex on [4/3,∞).

Proof We easily see that

f ∗
2 (x) = f2(x) – D

(
1

1620x5 –
11

18,900x7

)
,

where D(y) = ln(1 + y) – y. By Theorem 4, f2 is strictly decreasing and convex on (0,∞), so
if we prove x �→ D(y) is strictly increasing and concave on [4/3,∞), then so will be f ∗

2 , and
the proof will be complete. Now we easily check that for x ≥ 4/3,

dD(y)
dx

=
1

8100
(25x2 – 33)(35x2 – 33)

x8(35x2 + 56,700x7 – 33)
> 0,

d2D(y)
dx2 = –

p11(x)
x9(56,700x7 + 35x2 – 33)2 < 0,
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where the last inequality holds due to

p11(x) = 67,375x11 – 180,180x9 + 114,345x7 +
1225

54
x6 –

2233
27

x4 +
8591

90
x2 –

2662
75

= 385x7
[(

175
(

x2 –
16
9

)2

+
1388

9

(
x2 –

16
9

)
+

1465
81

)]

+
1

1350
x2(175x2 – 319

)2 +
242
675

[
56

(
x2 –

16
9

)
+

5
9

]
> 0,

which completes the proof. �

4 Inequalities
As is well known, analytic inequalities [43–45] play a very important role in different
branches of modern mathematics. Using the theorems presented in the previous section,
we can obtain some new inequalities for the gamma function and factorial function related
to Windschitl’s formula.

Corollary 1 Let W0(x) be defined by (1.2). Then the inequalities

max

(
1, exp

(
1

1620x5 –
11

18,900x7

))
<

�(x + 1)
W0(x)

< 1 +
1

1620x5 < exp

(
1

1620x5

)
(4.1)

hold for all x > 0. If x ≥ √
33/35, then we have

1 +
1

1620x5 –
11

18,900x7 < exp

(
1

1620x5 –
11

18,900x7

)

<
�(x + 1)
W0(x)

< 1 +
1

1620x5 < exp

(
1

1620x5

)
. (4.2)

Proof The first and second inequalities in (4.1) follow directly from the monotonicity of
f0, f2 and f ∗

1 on (0,∞) given in Theorems 1, 4 and 2, respectively, due to f0(∞) = f2(∞) =
f ∗
1 (∞) = 0. The third one holds due to a simple inequality 1 + y < ey for y > 0. The proof of

inequalities (4.2) is similar, which completes the proof. �

Using the monotonicity of f0, f ∗
1 and f2 on (0,∞) and noting that

f0(1) = ln
e√

2π sinh 1
, f ∗

1 (1) = ln

(
1620
1621

e√
2π sinh 1

)
, f2(1) = ln

e28,349/28,350
√

2π sinh 1
,

we immediately get the following corollary.

Corollary 2 For n ∈N, the inequalities

1 <
n!√

2πn( n
e )n(n sinh 1

n )n/2
≤ α0,

β∗
1

(
1 +

1
1620n5

)
≤ n!√

2πn( n
e )n(n sinh 1

n )n/2
< 1 +

1
1620n5 ,
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exp

(
1

1620n5 –
11

18,900n7

)
<

n!√
2πn( n

e )n(n sinh 1
n )n/2

≤ α2 exp

(
1

1620n5 –
11

18,900n7

)

hold with the best constants α0 = e/
√

2π sinh 1 ≈ 1.000,34, β∗
1 = 1620e/(1621

√
2π sinh 1) ≈

0.999,72 and α2 = e28,349/28,350/
√

2π sinh 1 ≈ 1.000,30.

The proof of inequalities (1.4) presented by Alzer [37] seems to be somewhat compli-
cated. With the aid of the first and second inequalities in (4.1), we can give a new and
simpler proof.

Proof of inequalities (1.4) The sufficiency for the inequalities (1.4) to hold for x > 0 follows
by the first and second inequalities in (4.1). The necessary condition for the left-hand side
inequality of (1.4) to hold for x > 0 follows from the following relation:

lim
x→0+

ln�(x + 1) – ln
√

2π – (x + 1
2 ) ln x + x – x

2 ln(x sinh 1
x ) – ln(1 + α

x5 )
ln(1/x)

=

⎧⎨
⎩

1
2 if α = 0,

– 9
2 if α �= 0.

While the necessary condition for the right-hand side of (1.4) to hold for x > 0 follows from
the limit relation

lim
x→∞

ln�(x + 1) – ln
√

2π – (x + 1
2 ) ln x + x – x

2 ln(x sinh 1
x ) – ln(1 + β

x5 )
x–5

=
1

1620
– β ≤ 0.

This completes the proof. �

The following corollary offers a strengthening for Lu et al.’s inequalities (1.6).

Corollary 3 The inequalities

[
x sinh

(
1
x

+
1

810x7 –
67

42,525x9

)]x/2

<
(

x sinh
1
x

)x/2

exp

(
1

1620x5 –
11

18,900x7

)

<
�(x + 1)√
2πx(x/e)x

<
(

x sinh
1
x

)x/2

exp

(
1

1620x5

)

<
[

x sinh

(
1
x

+
1

810x7

)]x/2

(4.3)

hold for x > c, where c = 0 for the second, third and fourth inequalities, while c = x0 ≈
0.43738 for the first one, here x0 is the unique solution of the equation

1
x

+
1

810x7 –
67

42,525x9 = 0

on (0,∞).
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Proof Clearly, the second and third inequalities of (4.3) follow by the first and second
inequalities in (4.1). It remains to prove the first and last inequalities of (4.3).

(i) The last one is equivalent to

x
2

ln

[
x sinh

(
1
x

+
1

810x7

)]
>

x
2

ln

(
x sinh

1
x

)
+

1
1620x5 ,

or equivalently,

h3(t) = ln sinh

(
t +

1
810

t7
)

– ln sinh t –
1

810
t6 > 0

for t = 1/x > 0. Denote by l(t) = ln sinh t and t2 = (t + t7/810). Then by Taylor formula we
have

h3(t) = l(t2) – l(t) –
1

810
t6 = (t2 – t)l′(t) +

l′′(t)
2!

(t2 – t)2 +
l′′′(ξ )

3!
(t2 – t)3 –

1
810

t6,

where t < ξ < t + t7/810. Since l′′′(t) = 2(cosh t)/ sinh3 t > 0, we get

h3(t) >
1

810
t7 cosh t

sinh t
–

t14

2 × 8102
1

sinh2 t
–

1
810

t6 :=
t6 × h31(t)

2 × 8102 sinh2 t
,

where

h31(t) = 810t sinh 2t – 810 cosh 2t + 810 – t8.

Due to

h31(t) = 540t4 + 144t6 +
101

7
t8 + 810

∞∑
n=5

(n – 1)22n

(2n)!
t2n > 0,

we conclude that h3(t) > 0 for t > 0.
(ii) To ensure that the first inequality holds, it is necessary to establish

x sinh

(
1
x

+
1

810x7 –
67

42,525x9

)
> 0

for x > 0, for which it suffices so show that

1
x

+
1

810x7 –
67

42,525x9 =
85,050x8 + 105x2 – 134

85,050x9 > 0.

By Lemma 3, the numerator in the above fraction, as an 8th degree polynomial, has a
unique zero x0 on (0,∞). Numeric computation gives x0 ≈ 0.437,38.

Now the first inequality is equivalent to

x
2

ln

[
x sinh

(
1
x

+
1

810x7 –
67

42,525x9

)]
<

x
2

ln

(
x sinh

1
x

)
+

1
1620x5 –

11
18,900x7 ,
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or equivalently,

h4(t) = ln

[
sinh

(
t +

1
810

t7 –
67

42,525
t9

)]
– ln(sinh t) –

1
810

t6 +
11

9450
t8 < 0

for t = 1/x ∈ (0, 1/x0), where 1/x0 ≈ 2.28632 is clearly the unique zero of the polynomial

t1 ≡ t1(t) = t +
1

810
t7 –

67
42,525

t9

on (0,∞). In view of l′′(t) = –1/ sinh2 t < 0, we have

h4(t) = l(t1) – l(t) –
1

810
t6 +

11
9450

t8 < (t1 – t)l′(t) –
1

810
t6 +

11
9450

t8

=
(

1
810

t7 –
67

42,525
t9

)
cosh t
sinh t

–
1

810
t6 +

11
9450

t8

= –
1

85,050
t6

sinh t
(
105 sinh t – 105t cosh t + 134t3 cosh t – 99t2 sinh t

)

= –
1

85,050
t6

sinh t

∞∑
n=3

4(268n – 99)(n – 1)(n – 2)
(2n – 1)!

t2n–1 < 0,

which completes the proof. �

Remark 1 Clearly, the proof of Corollary 3 can also be regarded as a new proof of Lu et
al.’s inequalities (1.6). Moreover, our proof gives the minimum value of m, i.e., min(m) =
x0 ≈ 0.437,38, such that the the double inequality (1.6) holds for all x > x0.

5 Numeric comparisons
By the asymptotic expansion listed in [46, Eq. (6.1.40)]

ln�(x + 1) ∼ ln
√

2π +
(

x +
1
2

)
ln x – x +

∞∑
n=1

B2n

2n(2n – 1)x2n–1 , (5.1)

we easily verify that our four approximation formulas W01(x), W ∗
01(x), W02(x) and W ∗

02(x),
defined by (1.8), (1.10), (1.9) and (1.11), respectively, have the following limit relations:

lim
x→∞

ln�(x + 1) – ln W01(x)
x–7 = lim

x→∞
ln�(x + 1) – ln W ∗

01(x)
x–7 = –

198
340,200

,

lim
x→∞

ln�(x + 1) – ln W02(x)
x–9 = lim

x→∞
ln�(x + 1) – ln W ∗

02(x)
x–9 =

143
170,100

.

Also, for another approximation formula W1(x) defined by (1.3), we have

lim
x→∞

ln�(x + 1) – ln W1(x)
x–7 = –

163
340,200

.

Denote the two approximation formulas generated by the double inequality (1.6) by

WL1(x) =
√

2πx
(

x
e

)x[
x sinh

(
1
x

+
1

810x7

)]x/2

, (5.2)
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Table 1 Comparison amongW02 (1.9),WL2 (5.3),W1 (1.3),W∗
01 (1.10) andWL1 (5.2)

n |W02(n)–n!
n! | |WL2(n)–n!

n! | |W1(x)–n!
n! | |W

∗
01(x)–n!
n! | |WL1(x)–n!

n! |
1 3.065× 10–4 5.655× 10–4 1.832× 10–4 2.754× 10–4 4.686× 10–4

2 1.098× 10–6 1.629× 10–6 2.668× 10–6 3.449× 10–6 5.030× 10–6

5 3.956× 10–10 5.367× 10–10 5.743× 10–9 7.054× 10–9 9.681× 10–9

10 8.221× 10–13 1.098× 10–12 4.710× 10–11 5.738× 10–11 7.794× 10–11

20 1.630× 10–15 2.172× 10–15 3.727× 10–13 4.531× 10–13 6.138× 10–13

50 4.300× 10–19 5.715× 10–19 6.129× 10–16 7.445× 10–16 1.008× 10–15

100 8.404× 10–22 1.117× 10–21 4.791× 10–18 5.819× 10–18 7.877× 10–18

WL2(x) =
√

2πx
(

x
e

)x[
x sinh

(
1
x

+
1

810x7 –
67

42,525x9

)]x/2

. (5.3)

We have

lim
x→∞

ln�(x + 1) – ln WL1(x)
x–7 = –

67
85,050

,

lim
x→∞

ln�(x + 1) – ln WL2(x)
x–9 =

19
17,010

.

These, in combination with Corollaries 2, 1 and 3, show that the approximation for-
mula W02(x) given by (1.9) is the best among those listed above, which can be seen from
comparison Table 1.

6 Conclusion
In this paper, we provide four Windschitl type approximation formulas for the gamma
function, and prove that those functions, involving the gamma function and Windschitl
type functions, have good properties, including monotonicity and convexity. From these
facts we obtain some new sharp Windschitl type bounds for the gamma and factorial
functions. These sharp inequalities, together with numerical comparisons, illustrate that
W02(x) defined by (1.9) is the best approximation formula among those mentioned in
Sect. 5.

Moreover, we give a simple proof of Alzer’s inequalities (1.4), and improve and
strengthen Lu et al.’s inequalities (1.6).

It is worth mentioning that our proofs of Theorems 1–5 are subtle and interesting, since
the approximations deal with the gamma and hyperbolic sine functions, and it is difficult
to establish their monotonicity and convexity by usual methods. Evidently, Lemmas 2 and
3 play important roles.
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