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Abstract
The mixed continuous-discrete density model plays an important role in reliability,
finance, biostatistics, and economics. Using wavelets methods, Chesneau, Dewan,
and Doosti provide upper bounds of wavelet estimations on L2 risk for a
two-dimensional continuous-discrete density function over Besov spaces Bsr,q. This
paper deals with Lp (1≤ p <∞) risk estimations over Besov space, which generalizes
Chesneau–Dewan–Doosti’s theorems. In addition, we firstly provide a lower bound of
Lp risk. It turns out that the linear wavelet estimator attains the optimal convergence
rate for r ≥ p, and the nonlinear one offers optimal estimation up to a logarithmic
factor.
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1 Introduction
1.1 Introduction
The density estimation plays an important role in both statistics and econometrics. This
paper considers a two-dimensional density estimation model defined over mixed continu-
ous and discrete variables [2]. More precisely, let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be indepen-
dent and identically distributed (i.i.d.) observations of a bivariate random variable (X, Y ),
where X is a continuous random variable, and Y is a discrete one. The joint density func-
tion of (X, Y ) is given by

f (x, v) =
∂

∂x
F(x, v)

with F(x, v) = P(X ≤ x, Y = v) being the distribution function of (X, Y ). We are interested
in estimating f (x, v) from (X1, Y1), (X2, Y2), . . . , (Xn, Yn). This continuous-discrete density
model also arises in survival analysis, economics, and social sciences. For example, con-
sider a series system with m components, which fails as soon as one of the components
fails. Let X be the failure time of the system, and let Y be the component whose failure
resulted in the failure of the system. Then (X, Y ) is a bivariate continuous-discrete random
variable. For more examples, see [1] and [4].

The conventional kernel method gives a nice estimation for the continuous-discrete
density function [1, 10, 14]. However, it is hard to provide the optimal estimation for the
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densities in Besov spaces. In addition, the complexity of bandwidth selection increases the
difficulty of the kernel method.

Recently, wavelet methods have made the remarkable achievements in density estima-
tion [7, 8, 11, 12, 15] due to their time and frequency localization, multiscale decompo-
sition, and fast algorithm in numerical computations. In fact, wavelet estimation attains
optimality for densities in Besov spaces, which avoids the disadvantage of kernel methods.
Using the wavelet method, Chesneau et al. [2] constructed linear and nonlinear wavelet
estimators for a two-dimensional continuous-discrete density function and derived their
mean integrated squared errors performance over Besov balls.

This paper addresses Lp (1 ≤ p < ∞) risk estimations on Besov balls by using wavelet
bases, which generalizes Chesneau–Dewan–Doosti’s theorems. It should be pointed out
that a lower bound for Lp risk of all estimators is derived firstly. It turns out that the linear
wavelet estimator is optimal for r ≥ p and the nonlinear one attains optimal estimation up
to a logarithmic factor.

1.2 Notations and definitions
In this paper, we use the tensor product method to construct an orthonormal wavelet basis
for L2(R2), which will be used in later discussions. With a one-dimensional Daubechies
scaling function D2N and a wavelet function ψ2N (ψ2N can be constituted from the scaling
function D2N ), we construct two-dimensional tensor product wavelets ϕ, ψ1, ψ2, and ψ3

as follows:

ϕ(x, y) := D2N (x)D2N (y), ψ1(x, y) := D2N (x)ψ2N (y),

ψ2(x, y) := ψ2N (x)D2N (y), ψ3(x, y) := ψ2N (x)ψ2N (y).

Then ϕ and ψ i (i = 1, 2, 3) are compactly supported in time domain, because Daubechies’
wavelet D2N and ψ2N are [5, 8].

Denote

ϕj,k(x, y) := 2jϕ
(
2jx – k1, 2jy – k2

)
, ψ i

j,k(x, y) := 2jψ i(2jx – k1, 2jy – k2
)

for k = (k1, k2) ∈ Z
2 and i = 1, 2, 3. Then for each f ∈ L2(R2),

f =
∑

k∈Z2

αj0,kϕj0,k +
∞∑

j=j0

3∑

i=1

∑

k∈Z2

β i
j,kψ

i
j,k

holds in L2 sense, where αj,k := 〈f ,ϕj,k〉, β i
j,k := 〈f ,ψ i

j,k〉. As usual, let Pj be the orthogonal
projection operator defined by

Pjf :=
∑

k∈Z2

〈f ,ϕj,k〉ϕj,k .

Details on wavelet basis can be found in [5, 8]. A scaling function ϕ is called m-regular
if ϕ ∈ Cm(R2) and |Dαϕ(x)| ≤ C(1 + |x|2)–l for each l ∈ Z (|α| = 0, 1, . . . , m). By the defi-
nition of tensor product wavelets we find that the scaling function ϕ is m-regular, since
Daubechies’ function D2N is smooth enough for large N .
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One of advantages of wavelet bases is that they can characterize Besov spaces, which
contain Hölder spaces and L2-Sobolev spaces as particular examples. Throughout the pa-
per, we work within a Besov space on a compact subset of R2. The following lemma shows
equivalent definitions for those spaces, which are fundamental in our discussions.

Lemma 1.1 ([13]) Let ϕ be an m-regular orthonormal scaling function with the corre-
sponding wavelets ψ i (i = 1, 2, 3). If f ∈ Lr(R2), αj,k = 〈f ,ϕj,k〉 β i

j,k = 〈f ,ψ i
j,k〉, and 1 ≤ r, q ≤

∞, 0 < s < m. Then following assertions are equivalent:
(i) f ∈ Bs

r,q(R2);
(ii) {2js‖Pj+1f – Pjf ‖r}j≥0 ∈ lq;

(iii) ‖{2j(s+1– 2
p )‖βj,·‖r}j≥0‖q < ∞.

The Besov norm of f can be defined by

‖f ‖Bs
r,q := ‖αj0,·‖r +

∥
∥{2j(s+1– 2

p )‖βj,·‖r
}

j≥j0

∥
∥

q,

where ‖αj0,·‖r
r :=

∑
k∈Z2 |αj0,k|r and ‖βj,·‖r

r :=
∑3

i=1
∑

k∈Z2 |β i
j,k|r .

Here and further, A � B means that A ≤ CB for some constant C > 0 independent of A
and B, A � B means B � A, and A ∼ B stands for both A � B and A � B.

Remark 1.1 By (i) and (ii) of Lemma 1.1 we observe that

‖Pjf – f ‖r =

∥
∥∥
∥∥

∞∑

l=j

(Pl+1f – Plf )

∥
∥∥
∥∥

r

≤
∞∑

l=j

‖Pl+1f – Plf ‖r �
∞∑

l=j

2–ls � 2–js

for f ∈ Bs
r,q(R2). Hence

‖Pjf – f ‖r � 2–js. (1.1)

Remark 1.2 When r ≤ p, Lemma 1.1(i) and (iii) imply that, for s′ – 2
p = s – 2

r > 0,

Bs
r,q
(
R

2) ↪→ Bs′
p,q
(
R

2),

where A ↪→ B stands for a Banach space A continuously embedded in another Banach
space B. More precisely, ‖u‖B ≤ C‖u‖A (u ∈ A) for some constant C > 0.

Lemma 1.2 ([13]) Let ϕ ∈ L2(R2) be a scaling function or a wavelet with supk∈Z2 |ϕ(x–k)| <
∞. Then, for λ = {λk} ∈ lp(Z2) and 1 ≤ p ≤ ∞,

∥∥
∥∥
∑

k∈Z2

λkϕj,k

∥∥
∥∥

p
∼ 2j(1–2/p)‖λ‖p.

Here ‖λ‖p is the lp(Z2) norm of λ ∈ lp(Z2):

‖λ‖p :=

⎧
⎨

⎩
(
∑

k∈Z2 |λk|p)1/p if p < ∞,

supk∈Z2 |λk| if q = ∞.
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1.3 Main results
In this subsection, we state our main results and discuss relations to some other work. To
do that, we propose a new bivariate function f∗(x, y), which is an improved one of that in
[2]. Define

f∗(x, y) :=
m∑

v=1

u(y, v)P(Y = v)f (x|Y = v)

with

u(y, v) =

⎧
⎪⎨

⎪⎩

1

1+e
1

y–v + 1
y–v+1

1(v–1,v)(y) + e
1

y–v + 1
y–v–1

1+e
1

y–v + 1
y–v–1

1(v,v+1)(y), y = v,

1, y = v,

where 1D is the indicator function of a set D.
The construction of f∗ follows the idea proposed by Chesneau [2] but is different from

[2]. The weight u(y, v) equals to characteristic function 1{v– 1
2 ≤y<v+ 1

2 } in [2]. By a careful
verification our weight u(y, v) is differentiable with respect to y for each v ∈ {1, 2, . . . , m}.
The modification of u(y, v) from the characteristic function to the smooth one makes f∗
continuous in y. It is easy to see that, for any y = v ∈ {1, 2, . . . , m},

f∗(x, y) = f (x, v).

Hence, the problem is converted to construct an estimator of f∗. As in [2], we assume that
f∗ belongs to the space Bs

r,q(H , Q) or, equivalently, f∗ belongs to the Besov ball

Bs
r,q(H) :=

{
f , f ∈ Bs

r,q
(
R

2) and ‖f ‖Bs
r,q ≤ H

}

and that the support of f∗(x, ·) is contained in [–Q, Q] for fixed v (Q > 0, v = 1, 2, . . . , m).
To introduce the wavelet estimator, we need the wavelet coefficient estimators of αj,k

and β i
j,k :

α̂j,k =
1
n

n∑

l=1

∫

R

ϕj,k(Xl, y)u(y, Yl) dy, β̂ i
j,k =

1
n

n∑

l=1

∫

R

ψ i
j,k(Xl, y)u(y, Yl) dy. (1.2)

Define ∧j0 := {k ∈ Z
2, supp f∗ ∩ suppϕj0,k = ∅}. When f∗ and ϕ have compact supports, the

cardinality of ∧j satisfies 	∧j � 22j. Then the linear wavelet estimator of f∗ is given as fol-
lows:

f̂ lin
n (x, y) :=

∑

k∈∧j0

α̂j0,kϕj0,k(x, y), (1.3)

where j0 is chosen such that 2j0 ∼ n
1

2s′+1 , s′ := s – ( 2
r – 2

p )+, and x+ := max{x, 0}.
To obtain a nonlinear estimator, we take j0 and j1 such that 2j1 ∼ n

ln n and 2j0 ∼ n
1

2m+1 with

m > s. Define ∧j := {k ∈ Z
2, supp f∗ ∩ suppψ i

j,k = ∅} and λj := T
2 2– j

2

√
ln n
n (T is the constant
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described as Lemma 2.3). Then the nonlinear estimator is given by

f̂ non
n (x, y) :=

∑

k∈∧j0

α̂j0,kϕj0,k(x, y) +
j1∑

j=j0

3∑

i=1

∑

k∈∧j

β̂ i
j,k1{|β̂i

j,k |>λj}ψ
i
j,k(x, y). (1.4)

From the definition of f̂ non
n we find that the nonlinear estimator has the advantage to be

adaptive, since it does not depend on the indices s, r, q and H in its construction.
The following theorem gives a lower bound estimation for Lp risk.

Theorem 1.1 Let f̂ be an estimator of f∗ ∈ Bs
r,q(H) with s > 2

r and r, q ≥ 1. Then there exists
C > 0 such that, for 1 ≤ p < ∞,

sup
f∗∈Bs

r,q(H)
E‖f̂n – f∗‖p

p ≥ C max

{
n– sp

2s+1 ,
(

ln n
n

)–
(s– 2

r + 2
p )p

2(s– 2
r )+1

}
.

The upper bounds of the linear and nonlinear wavelet estimators are provided by The-
orems 1.2 and 1.3, respectively.

Theorem 1.2 Let f̂ lin
n be the estimator of f∗ ∈ Bs

r,q(H , Q) defined by (1.3) with 1 ≤ r, q < ∞,
s > 0. If the density of X is bounded, then for r ≥ p ≥ 1 or r ≤ p < ∞ and s > 2

r ,

sup
f∗∈Bs

r,q(H,Q)
E
∥∥f̂ lin

n – f∗
∥∥p

p � n– ps′
2s′+1

with s′ = s – ( 2
r – 2

p )+ and x+ := max(x, 0).

Remark 1.3 If r ≥ 2, p = 2 and s > 0, s′ = s, then Theorem 1.2 reduces to Theorem 4.1 in
[2]. In addition, Theorem 1.2 does not make any restriction on Q, and so the assumptions
are weaker than in [2]. Theorem 1.2 extends the corresponding theorem of [2] from p = 2
to p ∈ [1,∞).

When r ≥ p, s′ = s and the linear wavelet estimator f̂ lin
n attains optimality thanks to The-

orems 1.1 and 1.2. However, the linear estimator does not offer optimal estimation for
r < p, because of s′ < s and s′

2s′+1 < s
2s+1 in this case.

To give a suboptimal estimation for r < p, we need the nonlinear wavelet estimators
defined by (1.4).

Theorem 1.3 Let f̂ non
n be the estimator of f∗ ∈ Bs

r,q(H , Q) defined by (1.4) with 1 ≤ r, q < ∞,
s > 0. If the density of X is bounded, then for r ≥ p ≥ 1 or r ≤ p < ∞ and s > 2

r ,

sup
f∗∈Bs

r,q(H,Q)
E
∥
∥f̂ non

n – f∗
∥
∥p

p � (ln n)p
(

ln n
n

)αp

with α := min{ s
2s+1 ,

s– 2
r + 2

p
2(s– 2

r )+1
}.



Hu et al. Journal of Inequalities and Applications  (2018) 2018:279 Page 6 of 20

Remark 1.4 Theorems 1.1 and 1.3 tell us that the nonlinear estimator is suboptimal up to
a logarithmic factor. Moreover, if p = 2 and {r ≥ 2, s > 0} or {1 ≤ r < 2, s > 2

r }, then α = s
2s+1 ,

and Theorem 1.3 is the same as Theorem 4.2 in [2] up to a logarithmic factor. Hence
Theorem 1.3 can be considered as an extension of Theorem 4.2 in [2] from p = 2 to p ∈
[1,∞).

In particular, we can extend the theorems to the multidimensional case as in [3] by using
the technique developed by [9]. It is a challenging problem to study the estimation of a
multivariate continuous-discrete conditional density. We refer to [3] for further details.

2 Some lemmas
We shall show several lemmas in this section, which are needed for proofs of our main
theorems.

Lemma 2.1 Let α̂j,k and β̂j,k be defined by (1.2). Then

E(α̂j,k) = αj,k and E
(
β̂ i

j,k
)

= β i
j,k

for j ≥ j0, k ∈ Z
2, and i = 1, 2, 3.

Proof Denote cj,k(v) =
∫

φj,k2 (y)u(y, v) dy. Then

α̂j,k =
1
n

n∑

i=1

∫
ϕj,k(Xi, y)u(y, Yi) dy =

1
n

n∑

i=1

φj,k1 (Xi)cj,k(Yi).

Since (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are independent and identically distributed, we have

E(α̂j,k) = E
(
φj,k1 (X1)cj,k(Y1)

)
= E

(
E
(
φj,k1 (X1)cj,k(Y1)|Y1

))

= E
(
cj,k(Y1)E

(
φj,k1 (X1)|Y1

))
= E

(
cj,k(Y1)

∫
φj,k1 (x)f (x|Y1) dx

)

=
m∑

v=1

P(Y1 = v)cj,k(v)
∫

φj,k1 (x)f (x|Y1 = v) dx

=
∫ ∫ ( m∑

v=1

P(Y1 = v)u(y, v)f (x|Y1 = v)

)

φj,k1 (x)φj,k2 (y) dx dy

=
∫ ∫

f∗(x, y)ϕj,k(x, y) dx dy = αj,k .

Similarly to the previous arguments, E(β̂ i
j,k) = β i

j,k . The proof of Lemma 2.1 is done. �

To show Lemma 2.2, we introduce Rosenthal’s inequality.

Rosenthal’s inequality ([8]) Let X1, X2, . . . , Xn be independent random variables such
that EXl = 0 and E|Xl|p < ∞ (l = 1, 2, . . . , n). Then, with Cp > 0,

E

∣
∣∣∣
∣

n∑

l=1

Xl

∣
∣∣∣
∣

p

≤
⎧
⎨

⎩
Cp[

∑n
l=1 E|Xl|p + (

∑n
l=1 E|Xl|2)p/2], p ≥ 2,

Cp(
∑n

l=1 E|Xl|2)p/2, 0 < p ≤ 2.
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Lemma 2.2 Let α̂j,k and β̂j,k be defined by (1.2). If the density of X is bounded, then there
exists a constant C > 0 such that

E|α̂j,k – αj,k|p ≤ 2– p
2 jn– p

2 and E|β̂j,k – βj,k|p ≤ 2– p
2 jn– p

2

for 1 ≤ p < ∞ and 2j ≤ n.

Proof We only prove the first inequality, since the second one is similar. By the definition
of α̂j,k ,

α̂j,k =
1
n

n∑

l=1

∫

R

ϕj,k(Xl, y)u(y, Yl) dy =
1
n

n∑

l=1

φj,k1 (Xl)cj,k2 (Yl),

where cj,k2 (Yl) :=
∫
R

φj,k2 (y)u(y, Yl) dy, and φ is a one-dimensional Daubechies scaling func-
tion D2N . Since |u(y, v)| ≤ 2, we obtain that

∣∣cj,k2 (Yl)
∣∣≤

∫

R

∣∣φj,k2 (y)
∣∣∣∣u(y, Yl)

∣∣dy ≤ 2– j
2 ‖φ‖1 (2.1)

and

E
∣
∣φj,k1 (Xl)cj,k2 (Yl)

∣
∣p � 2– p

2 jE
∣
∣φj,k1 (Xl)

∣
∣p � 2– p

2 j
∫

R

∣
∣φj,k1 (x)

∣
∣pfX(x) dx � 2–j (2.2)

due to the boundedness of fX . Define ξl := φj,k1 (Xl)cj,k2 (Yl) – αj,k . Then

E|ξl|p = E
∣∣φj,k1 (Xl)cj,k2 (Yl) – αj,k

∣∣p � E
∣∣φj,k1 (Xl)cj,k2 (Yl)

∣∣p + E|αj,k|p. (2.3)

It follows from Lemma 2.1 and Jensen’s inequality that

E|αj,k|p =
∣∣E
[
φj,k1 (Xl)cj,k2 (Yl)

]∣∣p ≤ E
∣∣φj,k1 (Xl)cj,k2 (Yl)

∣∣p.

Hence (2.3) reduces to

E|ξl|p � E
∣
∣φj,k1 (Xl)cj,k2 (Yl)

∣
∣p � 2–j (2.4)

thanks to (2.2). By the definition of α̂j,k and ξl , α̂j,k – αj,k = 1
n
∑n

l=1 ξl , where ξ1, ξ2, . . . , ξn are
independent because (X1, Y1), (X2, Y2), . . . , (Xn, Yn) also are. On the other hand, Lemma 2.1
implies E(ξl) = 0. Then Rosenthal inequality leads to

E|α̂j,k – αj,k|p = E

∣∣
∣∣
∣
1
n

n∑

l=1

ξl

∣∣
∣∣
∣

p

�

⎧
⎨

⎩
n–p[

∑n
l=1 E|ξl|p + (

∑n
l=1 E|ξl|2)

p
2 ], p ≥ 2,

n–p(
∑n

l=1 E|ξl|2)
p
2 , 1 ≤ p ≤ 2.

(2.5)

By (2.4) we know that

n–p

( n∑

l=1

E|ξl|2
) p

2

� n–p(n2–j) p
2 � n– p

2 2– p
2 j
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for 1 ≤ p < 2 and

n–p

[ n∑

l=1

E|ξl|p +

( n∑

l=1

E|ξl|2
) p

2
]

� n–p(n2–j + n
p
2 2– p

2 j)� n– p
2 2– p

2 j

for p ≥ 2 thanks to the assumption 2j ≤ n. Combining these with (2.5), we receive the
desired conclusion

E|α̂j,k – αj,k|p � 2– p
2 jn– p

2 .

This completes the proof. �

To prove Lemma 2.3, we need the well-known Bernstein inequality.

Bernstein’s inequality ([8]) Let X1, X2, . . . , Xn be i.i.d. random variables with E(Xi) = 0
and ‖Xi‖∞ ≤ M. Then, for each γ > 0,

P

{∣∣∣
∣∣

1
n

n∑

i=1

Xi

∣∣∣
∣∣

> γ

}

≤ 2 exp

(
–

nγ 2

2[E(X2
i ) + ‖X‖∞γ /3]

)
.

The next lemma is an extension of Proposition 4.2 in [2].

Lemma 2.3 Let 2j ≤ n
ln n , β̂ i

j,k (i = 1, 2, 3) be defined in (1.2). If the density of X is bounded,
then for each ε > 0, there exists T > 0 such that, for j ≥ 0 and k ∈ Z

2,

P
{∣
∣β̂ i

j,k – β i
j,k
∣
∣ >

T
2

2– 1
2 j

√
ln n
n

}
� 2–εj. (2.6)

Proof We only show (2.6) for i = 1. By the definition of β̂1
j,k , β̂1

j,k = 1
n
∑n

l=1
∫
R

ψ1
j,k(Xl, y)u(y,

Yl) dy, and

β̂1
j,k – β1

j,k =
1
n

n∑

l=1

[
φj,k1 (Xl)dj,k2 (Yl) – β1

j,k
]
,

where dj,k2 (Yl) :=
∫
R

ψj,k2 (y)u(y, Yl) dy (φ, ψ stand for the one-dimensional Daubechies
scaling function and wavelet function, respectively). Define ηl := φj,k1 (Xl)dj,k2 (Yl) – β1

j,k .
Then β̂1

j,k – β1
j,k = 1

n
∑n

l=1 ηl and E(ηl) = 0 because of β l
j,k = E(β̂ l

j,k) = E[φj,k1 (Xi)dj,k2 (Yi)].

Using (2.1) with ψ instead of φ, we get |dj,k2 (Yl)| � 2– j
2 . Note that |φj,k1 (Xl)| :=

2
j
2 |φ(2jXl – k1)| ≤ 2

j
2 ‖φ‖∞. Then |φj,k1 (Xl)dj,k2 (Yl)| � 1 and |β1

j,k| = |E[φj,k1 (Xl)dj,k2 (Yl)]| �
1. Hence

|ηl| ≤
∣∣φj,k1 (Xl)dj,k2 (Yl) – β1

j,k
∣∣� 1. (2.7)

By replacing cj,k2 and αj,k with dj,k2 and β1
j,k , respectively, arguments similar to (2.1)–(2.4)

show that

E|ηl|p � 2–j. (2.8)
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Because η1,η2, . . . ,ηn are i.i.d. and E(ηl) = 0 (l = 1, 2, . . . , n), Bernstein’s inequality tells us
that

P

{
∣
∣β̂ l

j,k – β l
j,k
∣
∣ =

∣∣
∣∣
∣
1
n

n∑

l=1

ηl

∣∣
∣∣
∣

>
T
2

2– 1
2 j

√
ln n
n

}

≤ 2 exp

(
–

nλ2
j

2[E(η2
l ) + λj

3 ‖η‖∞]

)
(2.9)

with λj = T
2 2– 1

2 j
√

ln n
n . This with (2.7)–(2.8) implies

nλ2
j

2[E(η2
l ) + λj

3 ‖η‖∞]
≥ T2 ln n

8(C1 + C2
6 T2

j
2

√
ln n
n )

≥ T2 ln n
8(C1 + C2

6 T)

because 2
j
2

√
ln n
n ≤ 1 by the assumption 2j ≤ n

ln n . Note that ln n > j ln 2 due to n ≥ 2j ln n >
2j. Hence

nλ2
j

2[E(η2
l ) + λj

3 ‖η‖∞]
≥ T2 ln 2

8(C1 + C2
6 T)

j > εj

by choosing T > 0 such that T2 ln 2
8(C1+ C2

6 T)
> ε. Then (2.9) reduces to

P
{∣
∣β̂1

j,k – β1
j,k
∣
∣ >

T
2

2– 1
2 j

√
ln n
n

}
≤ 2–εj,

which concludes (2.6) with i = 1. Similarly, the conclusions with i = 2, 3 hold. This com-
pletes the proof. �

At the end of this section, we introduce two classical lemmas, which are needed for the
proof of lower bound.

Lemma 2.4 (Varshamov–Gilbert lemma, [11]) Let � := {ε = (ε1, ε2, . . . , εm), εi ∈ {0, 1}}.
Then there exists a subset (ε0, ε1, . . . , εT ) of � with ε0 = (0, 0, . . . , 0) such that T ≥ 2 m

8 and

m∑

k=1

∣
∣εi

k – ε
j
k
∣
∣≥ m

8
(0 ≤ i = j ≤ T).

To state Fano’s lemma, we introduce a concept: When P is absolutely continuous with re-
spect to Q (denoted by P � Q), the Kullback divergence of P and Q between two measures
P and Q is defined by

K(P, Q) :=
∫

p(x) ln
p(x)
q(x)

dx,

where p(x) and q(x) are the density functions of P and Q, respectively.

Lemma 2.5 (Fano’s lemma, [6]) Let (�,F , Pk) be a probability spaces, and let Ak ∈ F ,
k = 0, 1, . . . , m. If Ak ∩ Ak′ = ∅ for k = k′, then with AC standing for the complement of A and
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Km := inf0≤k≤m
1
m
∑

k =k′ K(Pk , Pk′ ),

sup
0≤k≤m

Pk
(
AC

k
)≥ min

{
1
2

,
√

m exp
(
–3e–1 – Km

)}
,

where K(Pk , Pk′ ) is the Kullback distance of Pk and Pk′ (k = 0, 1, . . . , m).

3 Proofs of lower bounds
We rewrite Theorem 1.1 as follows before giving its proof.

Theorem 3.1 Let f̂n be an estimator of f∗ ∈ Bs
r,q(H) with s > 2

r and 1 ≤ r, q ≤ ∞. Then, for
1 ≤ p < ∞,

sup
f∗∈Bs

r,q(H)
E‖f̂n – f∗‖p

p � max

{
n– sp

2s+1 ,
(

ln n
n

) (s– 2
r + 2

p )p

2(s– 2
r )+1

}
.

Proof As in Sect. 1, we take the two-dimensional tensor product wavelet

ψ1(x, y) := D2N (x)ψ2N (y),

where D2N (·) and ψ2N (·) are the one-dimensional Daubechies scaling function and wavelet
function, respectively. Then ψ1 is m-regular (m > s) for large N , and

suppψ1 ⊆ [0, 2N – 1] × [–N + 1, N]

due to supp D2N ⊆ [0, 2N – 1] and suppψ2N ⊆ [–N + 1, N]. Then there exists a compactly
supported density function g0 such that

∫
R2 g0(x) dx = 1, g0(x)|[0,2N–1]×[–N+1,N] = c0, and

g0 ∈ Bs
r,q(H). Define �j := �1

j × �2
j with

�1
j :=

{
0, 2N , 4N , . . . , 2

(
2j – 1

)
N
}

, �2
j :=

{
0,±2N ,±4N , . . . ,±2

(
2j–1 – 1

)
N
}

.

Then 	�j = 2j(2j – 1) ∼ 22j (	�j denotes the cardinality of �j). Denote aj := 2–(2s+1)j and

∧ :=
{

gε(x, y) = g0(x, y) + aj
∑

k∈�j

εkψ
1
j,k(x, y), εk ∈ {0, 1}

}
.

Obviously, the supports of ψ1
j,k and ψ1

j,k′ are disjoint for k = k′ ∈ �j and suppψ1
j,k ⊆ supp g0.

When (x, y) ∈ [0, 2N – 1] × [–N + 1, N],

gε ≥ c0 – aj
∥
∥ψ1

j,k
∥
∥∞ ≥ c0 – 2–2sj∥∥ψ1∥∥∞ > 0

for large j. On the other hand,

∫

R2
gε(x, y) dx =

∫

R2
g0(x, y) dx = 1.

Hence gε is a bivariate density function for ε = (εk)k∈�j .
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Moreover, gε ∈ Bs
r,q(H). In fact, for εk ∈ {0, 1},

∑
k∈�j

|εk|r ≤ 22j and

2j(s+1– 2
r )aj

(∑

k∈�j

|εk|r
) 1

r
≤ 1.

By Lemma 1.1, ‖aj
∑

k∈�j
εkψ

1
j,k‖Bs

r,q ≤ H . This with g0 ∈ Bs
r,q(H) implies gε ∈ Bs

r,q(H).
According to Lemma 2.4 (Varshamov–Gilbert theorem), for � = {ε = (εk)k∈�j , εk ∈

{0, 1}}, there exists a subset {ε(0), ε(1), . . . , ε(M)} of � such that M ≥ 2 22j
8 , ε(0) = (0, 0, . . . , 0),

and for m, n = 0, 1, . . . , M, m = n,

∑

k∈�j

∣∣ε(m)
k – ε

(n)
k
∣∣≥ 22j

8
. (3.1)

Denote ∧′ := {gε(0) , gε(1) , . . . , gε(M)}. Then ∧′ ⊆ ∧, and for gε(m) , gε(n) ∈ ∧′,

‖gε(m) – gε(n)‖p
p = ap

j

∑

k∈�j

∣∣εm
k – εn

k
∣∣p∥∥ψ1

j,k
∥∥p

p = 2–2(sp+1)j∥∥ψ1∥∥p
p

∑

k∈�j

∣∣εm
k – εn

k
∣∣p,

since the supports of ψ1
j,k (k ∈ �j) are mutually disjoint. This with (3.1) leads to

‖gε(m) – gε(n)‖p
p ≥ C12–2psj := δ

p
j .

Define

Aε(i) :=
{
‖f̂n – gε(i)‖p <

δj

2

}
,

i = 0, 1, 2, . . . , M. Then Aε(m) ∩ Aε(n) = ∅ for m = n. Denote by Pn
f the probability measure

with the density f n(x, y) :=
∏n

i=1 f (xi, yi). By the construction of gε(i) , Pn
g
ε(i)

� Pn
g0 . Then it

follows from Lemma 2.5 (Fano’s lemma) that

sup
0≤i≤M

Pn
g
ε(i)

(
‖f̂n – gε(i)‖p ≥ δj

2

)
≥ sup

0≤i≤M
Pn

g
ε(i)

(
Ac

ε(i)

)≥ min

{
1
2

,
√

Me– 3
e e–KM

}
.

Furthermore,

E‖f̂n – gε(i)‖p
p ≥ δ

p
j

2p Pn
g
ε(i)

(
‖f̂n – gε(i)‖p ≥ δj

2

)
≥ 2–2psjPn

g
ε(i)

(
Ac

ε(i)

)
.

Taking 2j ∼ n
1

2(2s+1) , we obtain that

sup
0≤i≤M

E‖f̂n – gε(i)‖p
p ≥ 2–2psj sup

0≤i≤M
Pn

g
ε(i)

(
Ac

ε(i)

)≥ n– ps
2s+1 min

{
1
2

,
√

Me– 3
e e–KM

}
(3.2)
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with KM := inf0≤v≤M
1
M
∑

i=v K(Pn
g
ε(i)

, Pn
g
ε(v)

). By the definition of Kullback divergence,

K
(
Pn

g
ε(i)

, Pn
g0

)
=
∫

R2n

[
ln

∏n
i=1 gε(i) (xi, yi)∏n
i=1 g0(xi, yi)

] n∏

i=1

gε(i) (xi, yi) dx1 dy1 dx2 dy2 · · · dxn dyn

= n
∫

R2
gε(i) (x1, y1) ln

gε(i) (x1, y1)
g0(x1, y1)

dx1 dy1

≤ n
∫

R2
gε(i) (x1, y1)

[
gε(i) (x1, y1)
g0(x1, y1)

– 1
]

dx1 dy1, (3.3)

where we applied the inequality ln u ≤ u – 1 for u > 0 in the last inequality. Note that

∫

R2
gε(i) (x1, y1)

[
gε(i) (x1, y1)
g0(x1, y1)

– 1
]

dx1 dy1

=
∫

R2

[
g0(x1, y1)

]–1[gε(i) (x1, y1) – g0(x1, y1)
]2 dx1 dy1

and g0(x1, y1) = c0 for (x1, y1) ∈ [0, 2N – 1] × [–N + 1, N]. Combining this with the Parseval
identity, we reduce (3.3) to

K
(
Pn

g
ε(i)

, Pn
g0

)≤ nc–1
0 a2

j

∥∥∥
∥
∑

k∈�j

εi
kψ

1
j,k(x, y)

∥∥∥
∥

2

2
= nc–1

0 a2
j

∑

k∈�j

∣∣εi
k
∣∣2 ≤ nc–1

0 a2
j 22j. (3.4)

Hence

KM ≤ 1
M

M∑

i=1

K
(
Pn

g
ε(i)

, Pn
g0

)≤ c–1
0 na2

j 22j.

On the other hand, 2j ∼ n
1

2(2s+1) implies na2
j ≤ C. Then it follows from M ≥ 2 22j

8 ≥ e22j ln 2
8

that

√
Me–KM ≥ e22j ln 2

16 –c–1
0 C22j ≥ 1

by choosing C > 0 such that C < ln 2
16 c0. This with (3.2) leads to

sup
0≤i≤M

E‖f̂n – gε(i)‖p
p ≥ n– ps

2s+1 min

{
1
2

,
√

Me– 3
e e–KM

}
� n– ps

2s+1 . (3.5)

Now, it remains to show that

sup
f∗∈Bs

r,q(H)
E‖f̂n – f∗‖p

p ≥ C
(

ln n
n

) (s– 2
r + 2

p )p

2(s– 2
r )+1

. (3.6)

Similarly to the proof of (3.5), we construct the family of density functions {gk , k ∈ �j} as
follows:

gk(x, y) := g0(x, y) + ajψ
1
j,k(x, y), k ∈ �j,
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where aj := 2–j(s+1– 2
r ). Obviously,

∫
R2 gk(x, y) dx dy =

∫
R2 g0(x, y) dx dy = 1, and

gk(x, y)|[0,2N–1]×[–N+1,N] ≥ c0 – 2–j(s– 2
r )∥∥ψ1∥∥∞ > 0

for large j since s > 2
r . Then gk is a bivariate density function for fixed k ∈ �j. From the

proof of (3.5) we know that g0 ∈ Bs
r,q(H). This with

∥
∥ajψ

1
j,k
∥
∥

Bs
r,q

∼ aj2j(s+1– 2
r ) ≤ 1

implies gk ∈ Bs
r,q(H) for k ∈ �j.

To prove (3.6), we need to show that

sup
k∈�j

E‖f̂n – gk‖p
p ≥ C

(
ln n
n

) (s– 2
r + 2

p )p

2(s– 2
r )+1

. (3.7)

When k = k′ ∈ �j, suppψ1
j,k ∩ suppψ1

j,k′ = ∅ and

‖gk – gk′ ‖p
p = ap

j
∥
∥ψ1

j,k – ψ1
j,k′
∥
∥p

p = 2ap
j 2j(p–2)∥∥ψ1∥∥p

p = 2 · 2–j(s– 2
r + 2

p )p∥∥ψ1∥∥p
p.

Moreover,

‖gk – gk′ ‖p = 2
1
p
∥
∥ψ1∥∥

p2–j(s– 2
r + 2

p ) := δj.

Define Bk := {‖f̂n – gk‖p < δj
2 }. Then Bk ∩ Bk′ = ∅ (k = k′). According to Lemma 2.5 (Fano’s

lemma), we find that

sup
k∈�j

Pn
gk

(
‖f̂n – gk‖p ≥ δj

2

)
≥ min

{
1
2

,
√

Me–3e–1
e–KM

}
, (3.8)

where M = 	�j and KM := inf0≤v≤M
1
M
∑

k =v K(Pn
gk

, Pn
gv ) ≤ 1

M
∑

k =0 K(Pn
gk

, Pn
g0 ). Similar to

(3.3)–(3.4), we conclude that

K
(
Pn

gk
, Pn

gv

)≤ n
∫

R2

[
g0(x, y)

]–1[gk(x, y) – g0(x, y)
]2 dx dy ≤ c–1

0 C1na2
j .

Hence KM ≤ c–1
0 C1na2

j . By taking 2j ∼ ( n
ln n )

1
2(s– 2

r )+1 we obtain that ln 2j ≥ C′ ln n and e–KM ≥
e–c–1

0 C1na2
j ≥ e–c–1

0 C ln n, thanks to na2
j ≤ C2 ln n (C = C1C2). Moreover, choosing C1 and C′

such that C′ > c–1
0 C, we have

√
Me–3e–1

e–KM � eln 2j
e–3e–1

e–KM ≥ eC′ ln n–c–1
0 C ln n–3e–1 � 1

due to M ∼ 22j. This with (3.8) implies supk∈�j Pn
gk

(‖f̂n – gk‖p ≥ δj
2 ) � 1. Furthermore,

sup
k∈�j

E‖f̂n – gk‖p
p ≥ δ

p
j

2p Pgk

(
‖f̂n – gk‖p ≥ δj

2

)
e–3e–1 � δ

p
j .
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Then the desired conclusion (3.7) follows from δj := 2
1
p ‖ψ1‖p2–j(s– 2

r + 2
p ) and the choice of

2j ∼ ( n
ln n )

1
2(s– 2

r )+1 . This completes the proof. �

4 Proofs of upper bounds
In this section, we prove the upper bounds of wavelet estimators. The result of the linear
one is derived firstly. We restate and prove Theorem 1.2 as Theorem 4.1.

Theorem 4.1 Let f̂ lin
n be the linear estimator of f∗ ∈ Bs

r,q(H , Q) defined in (1.3) with 1 ≤
r, q < ∞, s > 0. If the density of X is bounded, then for {r ≥ p ≥ 1} or {r ≤ p < ∞ and s > 2

r },

sup
f∗∈Bs

r,q(H,Q)
E
∥∥f̂ lin

n – f∗
∥∥p

p � n– ps′
2s′+1

with s′ = s – ( 2
r – 2

p )+ and x+ := max{x, 0}.

Proof When r ≤ p, s′ := s – ( 2
r – 2

p )+ = s – 2
r + 2

p and Bs
r,q(R2) ↪→ Bs′

p,q(R2) thanks to Re-
mark 1.2. Then

sup
f∗∈Bs

r,q(H,Q)
E
∥∥f̂ lin

n – f∗
∥∥p

p � sup
f∗∈Bs′

r,q(H,Q)
E
∥∥f̂ lin

n – f∗
∥∥p

p.

When r > p and f∗ has a compact support, then f̂ lin
n does due to ϕ having the same property.

By the Hölder inequality,

sup
f∗∈Bs

r,q(H,Q)
E
∥∥f̂ lin

n – f∗
∥∥p

p � sup
f∗∈Bs

r,q(H,Q)

(
E
∥∥f̂ lin

n – f∗
∥∥r

r

) p
r .

Because s′ = s in that case, it is sufficient to prove that

sup
f∗∈Bs′

r,q(H,Q)
E
∥∥f̂ lin

n – f∗
∥∥p

p � n– ps′
2s′+1 (4.1)

for the conclusion of Theorem 4.1.
Recall that f̂ lin

n :=
∑

k∈∧j0
α̂j0,kφj0,k . Then by Lemma 2.1 we conclude that

E
∥
∥f̂ lin

n – E
(
f̂ lin
n
)∥∥p

p = E
∥∥
∥∥
∑

k∈∧j0

(α̂j0,k – αj0,k)ϕj0,k

∥∥
∥∥

p

p
� 2j0(p–2)

∑

k∈∧j0

E|α̂j0,k – αj0,k|p

due to Lemma 1.2. It follows from Lemma 2.2 and 	∧j0 � 22j0 that

E
∥
∥f̂ lin

n – E
(
f̂ lin
n
)∥∥p

p � 2j0(p–2)22j0 2– pj0
2 n– p

2 � 2
pj0
2 n– p

2 � n– ps′
2s′+1 (4.2)

thanks to the choice of 2j0 ∼ n
1

2s′+1 .
On the other hand, by Lemma 2.1, E(f̂ lin

n ) =
∑

k∈∧j0
αj0,kϕj0,k = Pj0 f∗. Combining this with

f∗ ∈ Bs′
p,q(R2) and Remark 1.1, we get that

∥∥E
(
f̂ lin
n
)

– f∗
∥∥p

p = ‖Pj0 f∗ – f∗‖p
p � 2–j0ps′ .
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Taking 2j0 ∼ n
1

2s′+1 , it is easy to show

∥
∥E

(
f̂ lin
n
)

– f∗
∥
∥p

p � n– ps′
2s′+1 . (4.3)

Hence, by (4.2)–(4.3),

sup
f∗∈Bs′

r,q(H,Q)
E
∥
∥f̂ lin

n – f∗
∥
∥p

p � sup
f∗∈Bs′

r,q(H,Q)
E
∥
∥f̂ lin

n – E
(
f̂ lin
n
)∥∥p

p + sup
f∗∈Bs′

r,q(H,Q)

∥
∥E

(
f̂ lin
n
)

– f∗
∥
∥p

p

� n– ps′
2s′+1 ,

which means that (4.1) holds. The proof is done. �

Next, we are in a position to prove the conclusion of the nonlinear one.

Theorem 4.2 Let f̂ non
n be the nonlinear estimator of f∗ ∈ Bs

r,q(H , Q) defined in (1.4) with
1 ≤ r, q < ∞, s > 0. If the density of X is bounded, then for {r ≥ p ≥ 1} or {r ≤ p < ∞ and
s > 2

r },

sup
f∗∈Bs

r,q(H,Q)
E
∥∥f̂ non

n – f∗
∥∥p

p � (ln n)p
(

ln n
n

)αp

with α := min{ s
2s+1 ,

s– 2
r + 2

p
2(s– 2

r )+1
}.

Proof We only need to prove the case r ≤ p. In fact, when r > p, f̂ non
n has a compact support

because of ϕ, ψ , and f∗ have the same property. By the Hölder inequality,

sup
f∗∈Bs

r,q(H,Q)
E
∥
∥f̂ non

n – f∗
∥
∥p

p � sup
f∗∈Bs

r,q(H,Q)

(
E
∥
∥f̂ non

n – f∗
∥
∥r

r

) p
r .

Using Theorem 4.2 for the case r = p, we find that supf∗∈Bs
r,q(H,Q) E‖f̂ non

n – f∗‖r
r �

(ln n)r( ln n
n )αr , and therefore

sup
f∗∈Bs

r,q(H,Q)
E
∥∥f̂ non

n – f∗
∥∥p

p � (ln n)p
(

ln n
n

)αp

.

It remains to estimate the case r ≤ p. Recall that

f̂ non
n – f∗ =

(
f̂ lin
n – Pj0 f∗

)
+ (Pj1+1f∗ – f∗) +

j1∑

j=j0

3∑

i=1

∑

k∈∧j

(
β̂ i

j,k1{|β̂i
j,k |>λj} – β i

j,k
)
ψ i

j,k

with λj = T2– j
2

√
ln n
n . Denote fj0,j1 :=

∑j1
j=j0

∑3
i=1

∑
k∈∧j

(β̂ i
j,k1{|β̂i

j,k |>λj} – β i
j,k)ψ i

j,k . Then

E
∥
∥f̂ non

n – f∗
∥
∥p

p � E
∥
∥f̂ lin

n – Pj0 f∗
∥
∥p

p + ‖Pj1+1f∗ – f∗‖p
p + E‖fj0,j1‖p

p. (4.4)
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From the proof of Theorem 4.1 we obtain that

E
∥
∥f̂ lin

n – Pj0 f∗
∥
∥p

p � 2
j0p
2 n– p

2 �
(

ln n
n

)αp

and

‖Pj1+1f∗ – f∗‖p
p � 2–j1ps′ �

(
ln n
n

)αp

(4.5)

due to 2j0 ∼ n 1
2m+1 , 2j1 ∼ n

ln n and α = min{ s
2s+1 ,

s– 2
r + 2

p
2(s– 2

r )+1
}.

By fj0,j1 :=
∑j1

j=j0
∑3

i=1
∑

k∈∧j
(β̂ i

j,k1{|β̂i
j,k |>λj} – β i

j,k)ψ i
j,k and Lemma 1.2,

E‖fj0,j1‖p
p � (j1 – j0 + 1)p–1

j1∑

j=j0

3∑

i=1

2j(p–2)
∑

k∈∧j

E
∣
∣β̂ i

j,k1{|β̂i
j,k |>λj} – β i

j,k
∣
∣p.

On the other hand, it is easy to see that

∣
∣β̂ i

j,k1{|β̂i
j,k |>λj} – β i

j,k
∣
∣ =

∣
∣β̂ i

j,k – β i
j,k
∣
∣(1{|β̂i

j,k |≥λj ,|βi
j,k |<λj/2} + 1{|β̂i

j,k |≥λj ,|βi
j,k |≥λj/2})

+
∣∣β i

j,k
∣∣(1{|β̂i

j,k |<λj ,|βi
j,k |>2λj} + 1{|β̂i

j,k |<λj ,|βi
j,k |≤2λj})

and 1{|β̂i
j,k |≥λj ,|βi

j,k |<λj/2} ≤ 1{|β̂i
j,k –βi

j,k |>λj/2}. Then

E‖fj0,j1‖p
p � T1 + T2 + T3 + T4 (4.6)

with

T1 := (ln n)p–1
j1∑

j=j0

3∑

i=1

2j(p–2)
∑

k∈∧j

E
[∣∣β̂ i

j,k – β i
j,k
∣
∣p1{|β̂i

j,k –βi
j,k |>λj/2}

]
,

T2 := (ln n)p–1
j1∑

j=j0

3∑

i=1

2j(p–2)
∑

k∈∧j

E
[∣∣β̂ i

j,k – β i
j,k
∣
∣p1{|β̂i

j,k |≥λj ,|βi
j,k |≥λj/2}

]
,

T3 := (ln n)p–1
j1∑

j=j0

3∑

i=1

2j(p–2)
∑

k∈∧j

E
[∣∣β i

j,k
∣
∣p1{|β̂i

j,k |<λj ,|βi
j,k |≤2λj}

]
,

T4 := (ln n)p–1
j1∑

j=j0

3∑

i=1

2j(p–2)
∑

k∈∧j

E
[∣∣β i

j,k
∣
∣p1{|β̂i

j,k |<λj ,|βi
j,k |>2λj}

]
.

When |β̂ i
j,k| < λj and |β i

j,k| > 2λj, |β̂ i
j,k – β i

j,k| ≥ |β i
j,k| – |β̂ i

j,k| > |β̂ i
j,k|/2. Hence

∣
∣β i

j,k
∣
∣p1{|β̂i

j,k |<λj ,|βi
j,k |>2λj} �

∣
∣β̂ i

j,k – β i
j,k
∣
∣p1{|β̂i

j,k –βi
j,k |>λj/2}.

Then (4.6) reduces to

E‖fj0,j1‖p
p � T1 + T2 + T3. (4.7)



Hu et al. Journal of Inequalities and Applications  (2018) 2018:279 Page 17 of 20

By (4.4)–(4.5) and (4.7) it is sufficient to show

T� � (ln n)p
(

ln n
n

)αp

, � = 1, 2, 3, (4.8)

for the conclusion of Theorem 4.2.
To estimate T1, using the Hölder inequality, we find that

T1 � (ln n)p–1
j1∑

j=j0

3∑

i=1

2j(p–2)
∑

k∈∧j

(
E
∣∣β̂ i

j,k – β i
j,k
∣∣2p) 1

2
[
E(1{|β̂i

j,k –βi
j,k |≥λj/2})

] 1
2 .

Note that E(1{|β̂i
j,k –βi

j,k |≥λj/2}) = P(|β̂ i
j,k – β i

j,k| ≥ λj
2 ) ≤ 2–εj due to Lemma 2.3. Taking ε such

that ε > p, we conclude that

T1 � (ln n)p–1n– p
2

j1∑

j=j0

3∑

i=1

2
p–ε

2 j � (ln n)p–1n– p
2 2

p
2 j0 � (ln n)p–1n– ps

2s+1

thanks to Lemma 2.2, 	∧j � 22j and the choice of j0. Hence (4.8) with � = 1 holds since
α ≤ s

2s+1 .
To estimate T2 and T3, define

2j∗0 ∼
(

n
ln n

)1–2α

, 2j∗1 ∼
(

n
ln n

) α

s– 2
r + 2

p .

Recall that 2j0 ∼ n 1
2m+1 , 2j1 ∼ n

ln n and α := min{ s
2s+1 ,

s– 2
r + 2

p
2(s– 2

r )+1
}. Then

1 – 2α ≥ 1
2s + 1

>
1

2m + 1
and

α

s – 2
r + 2

p
≤ 1

2(s – 2
r ) + 1

≤ 1.

Hence 2j0 ≤ 2j∗0 and 2j∗1 ≤ 2j1 . Moreover, a simple computation shows that 1 – 2α ≤ α

s– 2
r + 2

p
,

which implies 2j∗0 ≤ 2j∗1 .
Now, we estimate T2 by dividing T2 into

T2 = (ln n)p–1

( j∗0∑

j=j0

+
j1∑

j=j∗0+1

) 3∑

i=1

2j(p–2)
∑

k∈∧j

E
[∣∣β̂ i

j,k – β i
j,k
∣
∣p1{|β̂i

j,k |≥λj ,|βi
j,k |≥λj/2}

]

:= t1 + t2. (4.9)

Since 1{|β̂i
j,k |≥λj ,|βi

j,k |≥λj/2} ≤ 1, by Lemma 2.2 we know that

t1 � (ln n)p–1
j∗0∑

j=j0

3∑

i=1

2
pj
2 n– p

2 � (ln n)p–1n– p
2 2

j∗0
2 p � (ln n)p

(
ln n
n

)αp

(4.10)

thanks to 	∧j � 22j and the choice of j∗0. To estimate t2, we observe that

1{|β̂i
j,k |≥λj ,|βi

j,k |≥ λj
2 } ≤ 1{|βi

j,k |≥ λj
2 } �

( |β i
j,k|
λj

)r

.
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This with Lemma 2.2 leads to

t2 � (ln n)p–1
j1∑

j=j∗0+1

3∑

i=1

2j( p
2 –2)n– p

2
∑

k∈∧j

( |β i
j,k|
λj

)r

. (4.11)

Note that ‖βj,·‖r � 2–j(s+1– 2
r ) because of f∗ ∈ Bs

r,q and Lemma 1.1. Then (4.11) reduces to

t2 � (ln n)p– r
2 –1n

r–p
2

j1∑

j=j∗0+1

2–j(sr+ r
2 – p

2 ) (4.12)

thanks to λj = T
2 2– j

2

√
ln n
n . Denote θ := sr + r

2 – p
2 . When θ > 0, r > p

2s+1 and

t2 � (ln n)p– r
2 –1n

r–p
2 2–j∗0(sr+ r

2 – p
2 ) � (ln n)p

(
ln n
n

)αp

(4.13)

due to the choice of j∗0. In (4.13), we use the fact α = s
2s+1 in the case r > p

2s+1 .

To show (4.13) for θ ≤ 0, define r1 := (1 – 2α)p > 0. Then α =
s– 2

r + 2
p

2(s– 2
r )+1

≤ s
2s+1 and r ≤

p
2s+1 ≤ (1 – 2α)p = r1 because θ ≤ 0. The same arguments as (4.11) show that

t2 � (ln n)p–1
j1∑

j=j∗0+1

3∑

i=1

2j( p
2 –2)n– p

2
∑

k∈∧j

( |β i
j,k|
λj

)r1

.

It follows from f∗ ∈ Bs
r,q and Lemma 1.1 that

‖βj,·‖r1 ≤ ‖βj,·‖r ≤ 2–j(s+1– 2
r )

due to r ≤ r1. Therefore, similarly to (4.12), we get that

t2 � (ln n)p– r1
2 –1n

r1–p
2

j1∑

j=j∗0+1

2j[ p–2
2 –(s– 2

r – 1
2 )r1].

Note that p
2 – 2 – (s – 2

r + 1
2 )r1 = 0 because of r1 = (1 – 2α)p and α =

s– 2
r + 2

p
2(s– 2

r )+1
. Then

t2 � (ln n)p– r1
2 –1n

r1–p
2 � (ln n)p

(
ln n
n

)αp

, (4.14)

which implies that (4.13) holds for θ ≤ 0. The desired conclusion (4.8) with � = 2 follows
from (4.9)–(4.10) and (4.13)–(4.14).

Finally, by splitting T3 into

T3 = (ln n)p–1

( j∗0∑

j=j0

+
j1∑

j=j∗0+1

) 3∑

i=1

2j(p–2)
∑

k∈∧j

E
[∣∣β i

j,k
∣∣p1{|β̂i

j,k |<λj ,|βi
j,k |≤2λj}

]

:= e1 + e2 (4.15)
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we obtain that

e1 � (ln n)p–1
j∗0∑

j=j0

3∑

i=1

2jp|λj|p � (ln n)
3
2 p–1n– p

2 2
j∗0p
2 � (ln n)p

(
ln n
n

)αp

(4.16)

thanks to 	∧j � 22j and the choice of λj and j∗0.
To estimate e2, we use the fact 1{|β̂i

j,k |≤λj ,|βi
j,k |≤2λj} ≤ ( 2λj

|βi
j,k | )

p–r because of r ≤ p. Similarly to

(4.11)–(4.13),

e2 � (ln n)p
(

ln n
n

)αp

(4.17)

for θ > 0, where θ := sr + r
2 – p

2 . When θ ≤ 0, we rewrite e2 as follows:

e2 = (ln n)p–1

( j∗1∑

j=j∗0+1

+
j1∑

j=j∗1+1

) 3∑

i=1

2j(p–2)
∑

k∈∧j

E
[∣∣β i

j,k
∣∣p1{|β̂i

j,k |<λj ,|βi
j,k |≤2λj}

]

:= e∗
1 + e∗

2. (4.18)

Proceeding as in (4.11) and (4.12), we find that

e∗
1 � (ln n)p–1

(
ln n
n

) p–r
2

j∗1∑

j=j∗0+1

2–j(sr+ r–p
2 ) � (ln n)p–1

(
ln n
n

) p–r
2

2–j∗1(sr+ r–p
2 ).

This with the choice of 2j∗1 ∼ ( n
ln n )

α

s– 2
r + 2

p leads to

e∗
1 � (ln n)p

(
ln n
n

)αp

(4.19)

due to α =
s– 2

r + 2
p

2(s– 2
r )+1

for θ ≤ 0. When r ≤ p,

‖βj,·‖p ≤ ‖βj,·‖r � 2–j(s+1– 2
r )

thanks to f∗ ∈ Bs
r,q and Lemma 1.1. Therefore

e∗
2 � (ln n)p–1

j1∑

j=j∗1+1

3∑

i=1

2j(p–2)
∑

k∈∧j

∣∣β i
j,k
∣∣p � (ln n)p–1

j1∑

j=j∗1+1

2–j(sp– 2p
r +2).

Combining this with the choice of 2j∗1 ∼ ( n
ln n )

α

s– 2
r + 2

p , we observe that

e∗
2 � (ln n)p–12–j∗1(sp– 2p

r +2) � (ln n)p
(

ln n
n

)αp

.



Hu et al. Journal of Inequalities and Applications  (2018) 2018:279 Page 20 of 20

This with (4.19) implies that (4.17) holds for θ ≤ 0. Hence

T3 � (ln n)p–1
(

ln n
n

)αp

follows from (4.15)–(4.17).
Therefore, the desired conclusion can be concluded by (4.4)–(4.8) with � = 1, 2, 3, which

completes the proof. �
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