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Abstract
Recently we have introduced a product-type operator and studied it on some spaces
of analytic functions on the unit disc. Here we start investigating the operator on the
space of analytic functions on the upper half-plane. We characterize the boundedness
and compactness of the operator between Hardy and α-Bloch spaces on the domain.
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1 Introduction
Let D be the unit disc in the complex plane C, �+ = {z ∈ C : �z > 0} the upper half-plane
in C, and ̂�+ = �+ ∪ {∞}. Let � be a domain in C. We denote by H(�) the space of all
analytic functions on � and by S(�) the class of all analytic self-maps of �.

For 0 < p < ∞, the Hardy space of �+, denoted by Hp(�+), consists of all f ∈ H(�+) such
that

‖f ‖p
Hp(�+) = sup

y>0

∫ ∞

–∞

∣

∣f (x + iy)
∣

∣

p dx < ∞.

For 1 ≤ p < ∞, Hp(�+) is a Banach space.
Let α > 0. The α-Bloch or Bloch-type space on �+, denoted by Bα(�+), consists of all

f ∈ H(�+) such that

‖f ‖Bα (�+) :=
∣

∣f (i)
∣

∣ + sup
z∈�+

(�z)α
∣

∣f ′(z)
∣

∣ < ∞. (1)

With the norm (1), the α-Bloch space is a Banach space. For Bloch-type spaces on various
domains and operators on them, see, for example, [1–13] and the references therein. For
a natural extension of Bloch-type spaces and for Zygmud-type spaces, see [14–16].

For ϕ ∈ S(�), the composition operator Cϕ is the linear operator defined by

Cϕ(f )(z) = (f ◦ ϕ)(z) for f ∈ H(�). (2)
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For ψ ∈ H(�), the multiplication operator Mψ is defined on H(�) by

Mψ f (z) = ψ(z)f (z) for f ∈ H(�). (3)

The product of these two operators

Wϕ,ψ = Mψ ◦ Cϕ (4)

is the so-called weighted composition operator.
By D we denote the differentiation operator, that is,

Df = f ′, f ∈ H(�). (5)

These concrete operators, along with some integral-type ones, are among those con-
siderably studied, during the last five decades, on spaces of analytic functions on various
domains in C or domains in the complex-vector space C

n. Majority of the papers on the
operators are devoted to investigating them on spaces of analytic functions on D. Much
less papers consider the operators on spaces of analytic functions on other domains, in-
cluding the upper half-plane. Even for some popular operators, such as the composition
ones, up to the end of the previous century, there are no many papers on popular spaces
such as Hp(�+) (see, e.g., [17–20] and the references therein). Hence, any new result on
the spaces and operators on �+ is of some interest. Regarding some operators on the men-
tioned spaces, let us mention that some basic results on the boundedness of composition
operators from Hp(�+) to the classical Bloch space B(�+) can be found in note [21]. For
related investigations of composition or weighted composition operators on some other
spaces, see [14, 15, 22–25]. Let us mention that the behavior of composition operators on
spaces of analytic functions in �+ is considerably different from the behavior of composi-
tion operators on spaces of analytic functions in D. For example, every analytic self-map
of D induces a bounded composition operator on the corresponding Hardy space, which
is not always the case on the space Hp(�+) [17, 18].

From 1968 to 2005, experts more or less studied theoretic properties of only opera-
tors (2)–(5) and integral-type ones on spaces of analytic functions in terms of their sym-
bols. The only product-type operator among (2)–(5) is the weighted composition operator.
Since 2005, some experts started studying some other product-type operators. The first
product-type operators different from weighted composition ones that attracted some at-
tention were the products of composition and differentiation operators (see, e.g., [7, 11, 13,
26–29] and the references therein). Some generalizations of the products of composition
and differentiation operators, containing iterated differentiation, have appeared soon af-
ter them (see [12, 30–33]). Around 2008, Li and Stević have initiated studying products of
integral and composition operators, including in some cases the differentiation operator,
on spaces of analytic functions on D (see, e.g., [34]), which have been considerably studied
recently (see, e.g., [3, 35–40]). For some other results and related product-type operators,
see, for example, [4–6, 35, 41–46].

To treat product-type operators consisting of exactly one composition, multiplication
and differentiation operator in a unified manner, we have recently introduced a generalized
operator and studied it on the weighted Bergman spaces (see [45] and [46]). See also papers
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[5, 42] on the operator on some other spaces of functions defined by

Tψ1,ψ2,ϕ f (z) = ψ1(z)f
(

ϕ(z)
)

+ ψ2(z)f ′(ϕ(z)
)

, f ∈ H(D), (6)

where ψ1,ψ2 ∈ H(D) and ϕ ∈ S(D).
It is clear that operator (6) includes the composition, multiplication, differentiation,

weighted composition, weighted differentiation composition, and many other concrete
operators, including those in [6, 41, 43], which are obtained by some concrete choices of
the symbols ψ1, ψ2, and ϕ. This is one of the reasons why the operator is of some impor-
tance for investigation.

So far the operator has not been considered between spaces of analytic functions on the
upper half-plane. Here we start investigating the operator on such spaces by characteriz-
ing the boundedness and compactness of the operator between the Hardy and α-Bloch
spaces on the domain, that is, of Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+). We provide a complete
characterization of the compactness. The paper can be regarded as a continuation of our
investigations in [14, 15, 22–25].

Throughout this paper, constants are denoted by C; they are positive and not necessarily
the same at each occurrence. The notation A � B means that B � A � B, where A � B
means that there is a positive constant C such that A ≤ CB.

2 Auxiliary results
First, we quote a point evaluation lemma, which is a folklore result (see, e.g., [15,
Lemma 3]).

Lemma 1 Let p ∈ (0,∞) and n ∈ N0. Then

∣

∣f (n)(z)
∣

∣ ≤ C
‖f ‖Hp(�+)

yn+ 1
p

for some positive constant C = C(p, n) independent of f .

The following lemma can be found in [14, Lemma 2.1].

Lemma 2 Let p ∈ [1,∞), k ∈N0, ζ ∈ �+, and

fζ ,k(z) =
(�ζ )k– 1

p

(z – ζ )k
.

Then

sup
ζ∈�+

‖fζ ,k‖Hp(�+) ≤ π
1
p .

To deal with the compactness of the operator Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+), in the lemma
that follows, we give its characterization, which is typical for concrete operators between
spaces of analytic functions. The thesis of Schwartz [47] is one of the first sources that
presents such a characterization for the case of a concrete operator, more precisely, for a
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composition operator. It is interesting that the proof of our present lemma is more com-
plicated than those of the corresponding lemmas that we have had so for (for example, the
lemma in [24]). Hence we will present a detailed proof of the lemma.

We say that a sequence (fn)n∈N in Hp(�+) converges weakly to zero if it is norm bounded
in Hp(�+) and converges to zero on compacts of �+.

Lemma 3 Let p ≥ 1, α ∈ (0, +∞), ψ1,ψ2 ∈ H(�+), and ϕ ∈ S(�+). Then Tψ1,ψ2,ϕ :
Hp(�+) → Bα(�+) is compact if and only if for any sequence (fn)n∈N weakly convergent
to zero, we have

lim
n→∞‖Tψ1,ψ2,ϕ fn‖Bα (�+) = 0. (7)

Proof Let the operator be compact. Suppose that (fn)n∈N weakly converges to zero. Then
there are a subsequence (fnk )k∈N and g ∈ Bα(�+) such that

lim
k→∞

‖Tψ1,ψ2,ϕ fnk – g‖Bα (�+) = 0. (8)

Let K ⊂ �+ be compact. Then

dK := d
(

K , ∂�+)

= inf
z∈K ,x∈R

|z – x| > 0.

From this and from (1) we have

∣

∣Tψ1,ψ2,ϕ fnk (i) – g(i)
∣

∣ ≤ ‖Tψ1,ψ2,ϕ fnk – g‖Bα (�+) (9)

and

sup
z∈K

∣

∣

(

Tψ1,ψ2,ϕ fnk (z) – g(z)
)′∣
∣ ≤ 1

dK
‖Tψ1,ψ2,ϕ fnk – g‖Bα (�+). (10)

Let A ⊂ �+ and Aε = {z ∈ �+ : d(z, K) ≤ ε}, where ε > 0. Note that if A is compact, then
for each ε < dK , the set Aε is also a compact set as bounded and closed.

On the other hand, we have

f (z) = f (i) +
∫ z

i
f ′(ζ ) dζ (11)

for all f ∈ H(�+) and z ∈ �+.
Let A ⊂ �+ and

A(i) =
{

w ∈ �+ : ∃z ∈ A, w ∈ [i, z]
}

.

Note that if A is compact, then A(i) is also compact.
Hence from (11) we easily get

∣

∣f (z)
∣

∣ ≤ ∣

∣f (i)
∣

∣ + diam
(

K(i)
)

sup
w∈K (i)

∣

∣f ′(w)
∣

∣ (12)

for each z ∈ K .
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From (9), (10), and (12) it follows that

sup
z∈K

∣

∣Tψ1,ψ2,ϕ fnk (z) – g(z)
∣

∣ ≤ ∣

∣(Tψ1,ψ2,ϕ fnk (i) – g(i)
∣

∣

+ diam
(

K(i)
)

sup
z∈K (i)

∣

∣

(

Tψ1,ψ2,ϕ fnk (z) – h(z)
)′∣
∣

≤
(

1 +
diam(K(i))

dK (i)

)

‖Tψ1,ψ2,ϕ fnk – g‖Bα (�+). (13)

From (8) and (13) it follows that

Tψ1,ψ2,ϕ fnk (z) – g(z) ⇒ 0, k → ∞, (14)

on each compact K ∈ �+.
Further, note that

̂Mj := sup
z∈K

∣

∣ψj(z)
∣

∣ < ∞, j = 1, 2,

for each compact K . The compactness of the set ϕ(K) also implies that

max
{

fnk

(

ϕ(z)
)

, f ′
nk

(

ϕ(z)
)}

⇒ 0, k → ∞,

on each compact K ∈ �+.
From this, since

∣

∣Tψ1,ψ2,ϕ fnk

(

ϕ(z)
)∣

∣ ≤ ̂M1 sup
w∈ϕ(K )

∣

∣fnk (w)
∣

∣ + ̂M2 sup
w∈ϕ(K )

∣

∣f ′
nk

(w)
∣

∣,

it follows that

Tψ1,ψ2,ϕ fnk (z) ⇒ 0, k → ∞, (15)

on each compact K ∈ �+.
From (14) and (15) we obtain g(z) = 0 for every z ∈ �+, since each z ∈ �+ lies in a com-

pact subset of �+.
Using the fact in (8), it follows that

lim
k→∞

‖Tψ1,ψ2,ϕ fnk ‖Bα (�+) = 0. (16)

Such a procedure can be applied to any subsequence of (fn)n∈N, from which it follows
that (7) holds.

Now assume that, for any sequence (fn)n∈N weakly convergent to zero, we have
limn→∞ ‖Tψ1,ψ2,ϕ fn‖Bα (�+) = 0. Let (̂fn)n∈N be a sequence of functions such that M :=
supn∈N ‖̂fn‖Hp(�+) < +∞. By Lemma 1 the sequence is uniformly bounded on compacts
of �+, and consequently normal. Hence there are a subsequence (̂fnk )k∈N and̂f ∈ H(�+)
such that

̂fnk (z) –̂f (z) ⇒ 0, k → ∞, (17)
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on each compact K ∈ �+. The Fatou lemma along with (17) implies ‖̂f ‖Hp(�+) ≤ M. Hence,
the sequence (̂fnk –̂f )k∈N weakly converges to zero, and consequently

lim
k→∞

‖Tψ1,ψ2,ϕ̂fnk – Tψ1,ψ2,ϕ̂f ‖Bα (�+) = 0,

from which the compactness of the operator Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+) follows. �

3 Boundedness and compactness of Tψ1,ψ2,ϕ : Hp(�+) →Bα(�+)
In this section, we characterize the boundedness and compactness of the operator
Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+). We also give upper and lower bounds for the norm of Tψ1,ψ2,ϕ

acting between these spaces.

Theorem 4 Let 1 ≤ p < ∞, α > 0, ψ1,ψ2 ∈ H(�+) and ϕ ∈ S(�+). Then Tψ1,ψ2,ϕ :
Hp(�+) → Bα(�+) is bounded if and only if the following conditions are satisfied:

(i) M1 = sup
z∈�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′
1(z)

∣

∣ < ∞;

(ii) M2 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ1(z)ϕ′(z) + ψ ′
2(z)

∣

∣ < ∞;

(iii) M3 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ2(z)ϕ′(z)
∣

∣ < ∞.

Moreover,

M1 + M2 + M3 � ‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+)

� |ψ1(i)|
(�ϕ(i))1/p +

|ψ2(i)|
(�ϕ(i))1+1/p + M1 + M2 + M3. (18)

Proof First, suppose that conditions (i)–(iii) hold. Then by Lemma 1 we have

(�z)α
∣

∣(Tψ1,ψ2,ϕ f )′(z)
∣

∣

= (�z)α
∣

∣ψ ′
1(z)f

(

ϕ(z)
)

+
(

ψ1(z)ϕ′(z) + ψ ′
2(z)

)

f ′(ϕ(z)
)

+ ψ2(z)ϕ′(z)f ′′(ϕ(z)
)∣

∣

≤ C‖f ‖Hp(�+)

(

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′
1(z)

∣

∣ +
(�z)α

(�ϕ(z))1+1/p

∣

∣ψ1(z)ϕ′(z) + ψ ′
2(z)

∣

∣

+
(�z)α

(�ϕ(z))2+1/p

∣

∣ψ2(z)ϕ′(z)
∣

∣

)

≤ C(M1 + M2 + M3)‖f ‖Hp(�+). (19)

We also have

∣

∣Tψ1,ψ2,ϕ f (i)
∣

∣ =
∣

∣ψ1(i)f
(

ϕ(i)
)

+ ψ2(i)f ′(ϕ(i)
)∣

∣

≤ C‖f ‖Hp(�+)

( |ψ1(i)|
(�ϕ(i))1/p +

|ψ2(i)|
(�ϕ(i))1+1/p

)

. (20)
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Combining (19) and (20), we have

‖Tψ1,ψ2,ϕ f ‖Bα (�+) �
( |ψ1(i)|

(�ϕ(i))1/p +
|ψ2(i)|

(�ϕ(i))1+1/p + M1 + M2 + M3

)

‖f ‖Hp(�+),

from which it follows that

‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+) �
|ψ1(i)|

(�ϕ(i))1/p +
|ψ2(i)|

(�ϕ(i))1+1/p + M1 + M2 + M3. (21)

Conversely, suppose that Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+) is bounded. Consider the family
of functions

fw(z) =
(�w)2–1/p

π1/p(z – w)2 – 4i
(�w)3–1/p

π1/p(z – w)3 – 4
(�w)4–1/p

π1/p(z – w)4 ,

where w ∈ �+.
Since the functions fw are linear combinations of the functions in Lemma 2 (for k =

2, 3, 4), from this by using the lemma it follows that

L1 := sup
w∈�+

‖fw‖Hp(�+) < ∞. (22)

We also have

f ′
w(z) =

–2(�w)2–1/p

π1/p(z – w)3 + 12i
(�w)3–1/p

π1/p(z – w)4 + 16
(�w)4–1/p

π1/p(z – w)5 ,

f ′′
w (z) =

6(�w)2–1/p

π1/p(z – w)4 – 48i
(�w)3–1/p

π1/p(z – w)5 – 80
(�w)4–1/p

π1/p(z – w)6 ,

from which with some simple calculation we obtain

fw(w) = 0, f ′
w(w) = 0 and f ′′

w (w) =
1

8π1/p(�w)2+1/p . (23)

Since Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+) is bounded, we have

‖Tψ1,ψ2,ϕ fw‖Bα (�+) ≤ ‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+)‖fw‖Hp(�+)

≤ L1‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+)

for every w ∈ �+.
Thus for each ζ ∈ �+, we have

L1‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+) ≥ (�ζ )α
∣

∣(Tψ1,ψ2,ϕ fϕ(ζ ))′(ζ )
∣

∣

= (�ζ )α
∣

∣ψ ′
1(ζ )fϕ(ζ )

(

ϕ(ζ )
)

+
(

ψ1(ζ )ϕ′(ζ ) + ψ ′
2(ζ )

)

f ′
ϕ(ζ )

(

ϕ(ζ )
)

+ ψ2(ζ )ϕ′(ζ )f ′′
ϕ(ζ )

(

ϕ(ζ )
)∣

∣

=
(�ζ )α|ψ2(ζ )ϕ′(ζ )|
8π1/p(�ϕ(ζ ))2+1/p .
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Since ζ ∈ �+ is arbitrary, we have that

M3 = sup
ζ∈�+

(�ζ )α|ψ2(ζ )ϕ′(ζ )|
(�ϕ(ζ ))2+1/p ≤ 8π1/pL1‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+). (24)

Now, consider the family of functions

gw(z) = 12
(�w)2–1/p

π1/p(z – w)2 – 32i
(�w)3–1/p

π1/p(z – w)3 – 24
(�w)4–1/p

π1/p(z – w)4 .

Since the functions gw are also linear combinations of the functions in Lemma 2, we have
L2 := supw∈�+ ‖gw‖Hp(�+) ≤ 1.

We also have

g ′
w(z) = –24

(�w)2–1/p

π1/p(z – w)3 + 96i
(�w)3–1/p

π1/p(z – w)4 + 96
(�w)4–1/p

π1/p(z – w)5 ,

g ′′
w(z) = 72

(�w)2–1/p

π1/p(z – w)4 – 384i
(�w)3–1/p

π1/p(z – w)5 – 480
(�w)4–1/p

π1/p(z – w)6 ,

from which it follows that

g ′
w(w) = 0, g ′′

w(w) = 0, and gw(w) = –
1

2π1/p(�w)1/p .

Since Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+) is bounded, for each ζ ∈ �+, we have

L2‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+) ≥ ‖Tψ1,ψ2,ϕgϕ(ζ )‖Bα (�+)

= (�ζ )α
∣

∣ψ ′
1(ζ )gϕ(ζ )

(

ϕ(ζ )
)

+
(

ψ1(ζ )ϕ′(ζ ) + ψ ′
2(ζ )

)

g ′
ϕ(ζ )

(

ϕ(ζ )
)

+ ψ2(ζ )ϕ′(ζ )g ′′
ϕ(ζ )

(

ϕ(ζ )
)∣

∣

=
(�ζ )α|ψ ′

1(ζ )|
2π1/p(�ϕ(ζ ))1/p .

Since ζ ∈ �+ is arbitrary, we have that

M1 = sup
ζ∈�+

(�ζ )α|ψ ′
1(ζ )|

(�ϕ(ζ ))1/p ≤ 2π1/pL2‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+). (25)

Now, consider the family of functions

hw(z) = 8
(�w)2–1/p

π1/p(z – w)2 – 28i
(�w)3–1/p

π1/p(z – w)3 – 24
(�w)4–1/p

π1/p(z – w)4 .

Once again proceeding as before, we can show that supw∈�+ ‖hw‖Hp(�+) � 1.
We have

h′
w(z) = –16

(�w)2–1/p

π1/p(z – w)3 + 84i
(�w)3–1/p

π1/p(z – w)4 + 96
(�w)4–1/p

π1/p(z – w)5 ;

h′′
w(z) = 48

(�w)2–1/p

π1/p(z – w)4 – 336i
(�w)3–1/p

π1/p(z – w)5 – 480
(�w)4–1/p

π1/p(z – w)6 .
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Thus

hw(w) = 0, h′′
w(w) = 0 and h′

w(w) =
i

4π1/p(�w)1+1/p .

Therefore by the boundedness of Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+), for each ζ ∈ �+, we have

L3‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+) ≥ (�ζ )α
∣

∣ψ ′
1(ζ )hϕ(ζ )

(

ϕ(ζ )
)

+
(

ψ1(ζ )ϕ′(ζ ) + ψ ′
2(ζ )

)

h′
ϕ(ζ )

(

ϕ(ζ )
)

+ ψ2(ζ )ϕ′(ζ )h′′
ϕ(ζ )

(

ϕ(ζ )
)∣

∣

=
(�ζ )α|ψ1(ζ )ϕ′(ζ ) + ψ ′

2(ζ )|
4π1/p(�ϕ(ζ ))1+1/p ,

and consequently

M2 = sup
ζ∈�+

(�ζ )α|ψ1(ζ )ϕ′(ζ ) + ψ ′
2(ζ )|

(�ϕ(ζ ))1+1/p ≤ 4π1/pL3‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+). (26)

Combining (24), (25), and (26), we have

M1 + M2 + M3 � ‖Tψ1,ψ2,ϕ‖Hp(�+)→Bα (�+),

finishing the proof of the theorem. �

Corollary 5 Let 1 ≤ p < ∞, α > 0 and ϕ ∈ S(�+). Then Cϕ : Hp(�+) → Bα(�+) is bounded
if and only if

M4 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ϕ′(z)
∣

∣ < ∞.

Moreover,

M4 � ‖Cϕ‖Hp(�+)→Bα (�+) �
1

(�ϕ(i))1/p + M4. (27)

Corollary 6 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then MψCϕ : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M5 = sup
z∈�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′(z)
∣

∣ < ∞,

(ii) M6 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ(z)ϕ′(z)
∣

∣ < ∞.

Moreover,

M5 + M6 � ‖MψCϕ‖Hp(�+)→Bα (�+) �
|ψ(i)|

(�ϕ(i))1/p + M5 + M6. (28)

Corollary 7 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then CϕMψ : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M7 = sup
z∈�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′(z)
∣

∣ < ∞,

(ii) M8 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ
(

ϕ(z)
)

ϕ′(z)
∣

∣ < ∞.
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Moreover,

M7 + M8 � ‖CϕMψ‖Hp(�+)→Bα (�+) �
|ψ(ϕ(i))|
(�ϕ(i))1/p + M7 + M8. (29)

Corollary 8 Let 1 ≤ p < ∞, α > 0 and ϕ ∈ S(�+). Then CϕD : Hp(�+) → Bα(�+) is
bounded if and only if

M9 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ϕ′(z)
∣

∣ < ∞.

Moreover,

M9 � ‖CϕD‖Hp(�+)→Bα (�+) �
1

(�ϕ(i))1+1/p + M9. (30)

Corollary 9 Let 1 ≤ p < ∞, α > 0 and ϕ ∈ S(�+). Then DCϕ : Hp(�+) → Bα(�+) is
bounded if and only if

(i) M10 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ϕ′′(z)
∣

∣ < ∞,

(ii) M11 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ϕ′(z)
∣

∣

2 < ∞.

Moreover,

M10 + M11 � ‖DCϕ‖Hp(�+)→Bα (�+) �
|ϕ′(i)|

(�ϕ(i))1+1/p + M10 + M11. (31)

Corollary 10 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then MψCϕD : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M12 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ ′(z)
∣

∣ < ∞,

(ii) M13 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ(z)ϕ′(z)
∣

∣ < ∞.

Moreover,

M12 + M13 � ‖MψCϕD‖Hp(�+)→Bα (�+) �
|ψ(i)|

(�ϕ(i))1+1/p + M12 + M13. (32)

Corollary 11 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then CϕMψD : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M14 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′(z)
∣

∣ < ∞,

(ii) M15 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ
(

ϕ(z)
)

ϕ′(z)
∣

∣ < ∞.
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Moreover,

M14 + M15 � ‖CϕMψD‖Hp(�+)→Bα (�+) �
|ψ(ϕ(i))|

(�ϕ(i))1+1/p + M14 + M15. (33)

Corollary 12 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then MψDCϕ : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M16 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣

(

ψϕ′)′(z)
∣

∣ < ∞,

(ii) M17 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ(z)
(

ϕ′(z)
)2∣

∣ < ∞.

Moreover,

M16 + M17 � ‖MψDCϕ‖Hp(�+)→Bα (�+) �
|ψ(i)ϕ′(i)|

(�ϕ(i))1+1/p + M16 + M17. (34)

Corollary 13 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then DMψCϕ : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M18 = sup
z∈�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′′(z)
∣

∣ < ∞,

(ii) M19 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣2ψ ′(z)ϕ′(z) + ψ(z)ϕ′′(z)
∣

∣ < ∞,

(iii) M20 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ(z)
(

ϕ′(z)
)2∣

∣ < ∞.

Moreover,

M18 + M19 + M20 � ‖DMψCϕ‖Hp(�+)→Bα (�+)

� |ψ ′(i)|
(�ϕ(i))1/p +

|ψ(i)ϕ′(i)|
(�ϕ(i))1+1/p + M18 + M19 + M20.

Corollary 14 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then CϕDMψ : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M21 = sup
z∈�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′′(ϕ(z)
)

ϕ′(z)
∣

∣ < ∞,

(ii) M22 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′(z)
∣

∣ < ∞,

(iii) M23 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ
(

ϕ(z)
)

ϕ′(z)
∣

∣ < ∞.

Moreover,

M21 + M22 + M23 � ‖CϕDMψ‖Hp(�+)→Bα (�+)

� |ψ ′(ϕ(i))|
(�ϕ(i))1/p +

|ψ(ϕ(i))|
(�ϕ(i))1+1/p + M21 + M22 + M23.
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Corollary 15 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then DCϕMψ : Hp(�+) →
Bα(�+) is bounded if and only if

(i) M24 = sup
z∈�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′′(z) + ψ ′′(ϕ(z)
)(

ϕ′(z)
)2∣

∣ < ∞,

(ii) M25 = sup
z∈�+

(�z)α

(�ϕ(z))1+1/p

∣

∣2ψ ′(ϕ(z)
)(

ϕ′(z)
)2 + ψ

(

ϕ(z)
)

ϕ′′(z)
∣

∣ < ∞,

(iii) M26 = sup
z∈�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ
(

ϕ(z)
)(

ϕ′(z)
)2∣

∣ < ∞.

Moreover,

M24 + M25 + M26 � ‖DCϕMψ‖Hp(�+)→Bα (�+)

� |ψ ′(ϕ(i))ϕ′(i)|
(�ϕ(i))1/p +

|ψ(ϕ(i))ϕ′(i)|
(�ϕ(i))1+1/p + M24 + M25 + M26.

Recall that for a function f defined in �+, limz→∂̂�+ f (z) = 0 if and only if for every ε > 0,
there is a compact set K ⊂ �+ such that |f (z)| < ε for z ∈ �+ \ K .

The following result characterizes the compactness of the operator Tψ1,ψ2,ϕ : Hp(�+) →
Bα(�+).

Theorem 16 Let 1 ≤ p < ∞, α > 0, ψ1,ψ2 ∈ H(�+), and ϕ ∈ S(�+). Then Tψ1,ψ2,ϕ :
Hp(�+) → Bα(�+) is compact if and only if it is bounded and the following conditions
are satisfied:

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′
1(z)

∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ1(z)ϕ′(z) + ψ ′
2(z)

∣

∣ = 0,

(iii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ2(z)ϕ′(z)
∣

∣ = 0.

Proof Assume that the operator is bounded and conditions (i)–(iii) hold. Then by Theo-
rem 4 the quantities Mj, j = 1, 3, are finite, whereas from conditions (i)–(iii) we have that,
for each ε > 0, there exists a compact set K in �+ such that

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′
1(z)

∣

∣ < ε, (35)

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ1(z)ϕ′(z) + ψ ′
2(z)

∣

∣ < ε, (36)

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ2(z)ϕ′(z)
∣

∣ < ε, (37)

provided that ϕ(z) ∈ �+ \ K .
Let (fn)n∈N be a sequence in Hp(�+) weakly convergent to zero. Then, by inequalities

(35)–(37) and Lemma 1, for every z ∈ �+ with ϕ(z) ∈ �+ \ K , we have
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(�z)α
∣

∣(Tψ1,ψ2,ϕ fn)′(z)
∣

∣

≤ (�z)α
∣

∣ψ ′
1(z)fn

(

ϕ(z)
)

+
(

ψ1(z)ϕ′(z) + ψ ′
2(z)

)

f ′
n
(

ϕ(z)
)

+ ψ2(z)ϕ′(z)f ′′
n
(

ϕ(z)
)∣

∣

≤ C
(

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′
1(z)

∣

∣ +
(�z)α

(�ϕ(z))1+1/p

∣

∣ψ1(z)ϕ′(z) + ψ ′
2(z)

∣

∣

+
(�z)α

(�ϕ(z))2+1/p

∣

∣ψ2(z)ϕ′(z)
∣

∣

)

‖fn‖Hp(�+)

< Cε.

Since K is compact, ϕ(K) is also compact. Hence

M27 := sup
w∈ϕ(z)

�w ∈ (0,∞).

Choose n0 ∈N such that

max
z∈K

∣

∣fn(z)
∣

∣ <
ε

M1M1/p
27

, max
z∈K

∣

∣f ′
n(z)

∣

∣ <
ε

M2M1/p+1
27

,

max
z∈K

∣

∣f ′′
n (z)

∣

∣ <
ε

M3M1/p+2
27

,
(38)

and

max
{∣

∣fn(i)
∣

∣,
∣

∣f ′
n(i)

∣

∣

}

< ε (39)

for all n ≥ n0.
Then, by the preceding and (38), for every z ∈ �+ such that ϕ(z) ∈ K , we have

(�z)α
∣

∣ψ ′
1(z)fn

(

ϕ(z)
)

+
(

ψ1(z)ϕ′(z) + ψ ′
2(z)

)

f ′
n
(

ϕ(z)
)

+ ψ2(z)ϕ′(z)f ′′
n
(

ϕ(z)
)∣

∣

≤ (�z)α
∣

∣ψ ′
1(z)

∣

∣max
w∈K

∣

∣fn(w)
∣

∣ + (�z)α
∣

∣ψ1(z)ϕ′(z) + ψ ′
2(z)

∣

∣max
w∈K

∣

∣f ′
n(w)

∣

∣

+ (�z)α
∣

∣ψ2(z)ϕ′(z)
∣

∣max
w∈K

∣

∣f ′′
n (w)

∣

∣

≤ M1
(�ϕ(z)

)1/p
max
w∈K

∣

∣fn(w)
∣

∣ + M2
(�ϕ(z)

)1+1/p
max
w∈K

∣

∣f ′
n(w)

∣

∣

+ M3
(�ϕ(z)

)2+1/p
max
w∈K

∣

∣f ′′
n (w)

∣

∣

≤ M1 max
w∈K

(�w)1/p max
w∈K

∣

∣fn(w)
∣

∣ + M2 max
w∈K

(�w)1+1/p max
w∈K

∣

∣f ′
n(w)

∣

∣

+ M3(�w)2+1/p max
w∈K

∣

∣f ′′
n (w)

∣

∣

< 3ε. (40)

Further, using (39), we have

∣

∣Tψ1,ψ2,ϕ fn(i)
∣

∣ =
∣

∣ψ1(i)fn
(

ϕ(i)
)

+ ψ2(i)f ′
n
(

ϕ(i)
)∣

∣ ≤ (∣

∣ψ1(i)
∣

∣ +
∣

∣ψ2(i)
∣

∣

)

ε (41)

for n ≥ n0.
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From (40) and (41) it follows that

‖Tψ1,ψ2,ϕ fn‖Bα (�+) <
(

3 +
∣

∣ψ1(i)
∣

∣ +
∣

∣ψ2(i)
∣

∣

)

ε

for n ≥ n0.
Since ε > 0 is arbitrary, by Lemma 3 it follows that Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+) is com-

pact.
Conversely, suppose that Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+) is compact. Then, clearly, it is

bounded. Let (zn)n∈N be a sequence in �+ such that ϕ(zn) → ̂∂�+ as n → ∞. If such a
sequence does not exist, then conditions (i)–(iii) vacuously hold.

Let wn = ϕ(zn), n ∈ N, and let the family of functions (fn)n∈N be defined by

fn(z) =
(�wn)2–1/p

π1/p(z – wn)2 – 4i
(�wn)3–1/p

π1/p(z – wn)3 – 4
(�wn)4–1/p

π1/p(z – wn)4 .

Then by using (22) and some simple estimates it is easy to see that (fn)n∈N weakly converges
to zero as n → ∞ (including the case when wn → ∞ as n → ∞). Hence

lim
n→∞‖Tψ1,ψ2,ϕ fn‖Bα (�+) = 0. (42)

The boundedness of Tψ1,ψ2,ϕ : Hp(�+) → Bα(�+), together with (23), implies

‖Tψ1,ψ2,ϕ fn‖Bα (�+) ≥ (�zn)α
∣

∣ψ ′
1(zn)fn

(

ϕ(zn)
)

+
(

ψ1(zn)ϕ′(zn) + ψ ′
2(zn)

)

f ′
n
(

ϕ(zn)
)

+ ψ2(zn)ϕ′(zn)f ′′
n
(

ϕ(zn)
)∣

∣

=
(�zn)α

8π1/p(�ϕ(zn))2+1/p

∣

∣ψ2(zn)ϕ′(zn)
∣

∣. (43)

From (42) and (43) we obtain

lim
ϕ(zn)→ ̂∂�+

(�zn)α

(�ϕ(zn))2+1/p

∣

∣ψ2(zn)ϕ′(zn)
∣

∣ = 0, (44)

from which it follows that condition (i) holds.
By considering families of functions

gn(z) = 12
(�wn)2–1/p

π1/p(z – wn)2 – 32i
(�wn)3–1/p

π1/p(z – wn)3 – 24
(�wn)4–1/p

π1/p(z – wn)4

and

hn(z) = 8
(�wn)2–1/p

π1/p(z – wn)2 – 28i
(�wn)3–1/p

π1/p(z – wn)3 – 24
(�wn)4–1/p

π1/p(z – wn)4

and proceeding as before, we can similarly show that

lim
ϕ(zn)→ ̂∂�+

(�zn)α

(�ϕ(zn))1+1/p

∣

∣ψ1(zn)ϕ′(zn) + ψ ′
2(zn)

∣

∣ = 0 (45)
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and

lim
ϕ(zn)→ ̂∂�+

(�zn)α

(�ϕ(zn))1/p

∣

∣ψ ′
1(zn)

∣

∣ = 0, (46)

from which it follows that conditions (ii) and (iii) hold, respectively. �

Corollary 17 Let 1 ≤ p < ∞, α > 0 and ϕ ∈ S(�+). Then Cϕ : Hp(�+) → Bα(�+) is com-
pact if and only if it is bounded and

lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ϕ′(z)
∣

∣ = 0.

Corollary 18 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then MψCϕ : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ(z)ϕ′(z)
∣

∣ = 0.

Corollary 19 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then CϕMψ : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ
(

ϕ(z)
)

ϕ′(z)
∣

∣ = 0.

Corollary 20 Let 1 ≤ p < ∞, α > 0 and ϕ ∈ S(�+). Then CϕD : Hp(�+) → Bα(�+) is com-
pact if and only if it is bounded and

lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ϕ′(z)
∣

∣ = 0.

Corollary 21 Let 1 ≤ p < ∞, α > 0 and ϕ ∈ S(�+). Then DCϕ : Hp(�+) → Bα(�+) is com-
pact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ϕ′′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ϕ′(z)
∣

∣

2 = 0.

Corollary 22 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then MψCϕD : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ ′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ(z)ϕ′(z)
∣

∣ = 0.
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Corollary 23 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then CϕMψD : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ
(

ϕ(z)
)

ϕ′(z)
∣

∣ = 0.

Corollary 24 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then MψDCϕ : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣

(

ψϕ′)′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ(z)
(

ϕ′(z)
)2∣

∣ = 0.

Corollary 25 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then DMψCϕ : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣2ψ ′(z)ϕ′(z) + ψ(z)ϕ′′(z)
∣

∣ = 0,

(iii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ(z)
(

ϕ′(z)
)2∣

∣ = 0.

Corollary 26 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then CϕDMψ : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′′(ϕ(z)
)

ϕ′(z)
∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′(z)
∣

∣ = 0,

(iii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ
(

ϕ(z)
)

ϕ′(z)
∣

∣ = 0.

Corollary 27 Let 1 ≤ p < ∞, α > 0, ψ ∈ H(�+) and ϕ ∈ S(�+). Then DCϕMψ : Hp(�+) →
Bα(�+) is compact if and only if it is bounded and

(i) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1/p

∣

∣ψ ′(ϕ(z)
)

ϕ′′(z) + ψ ′′(ϕ(z)
)(

ϕ′(z)
)2∣

∣ = 0,

(ii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))1+1/p

∣

∣2ψ ′(ϕ(z)
)(

ϕ′(z)
)2 + ψ

(

ϕ(z)
)

ϕ′′(z)
∣

∣ = 0,

(iii) lim
ϕ(z)→ ̂∂�+

(�z)α

(�ϕ(z))2+1/p

∣

∣ψ
(

ϕ(z)
)(

ϕ′(z)
)2∣

∣ = 0.
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10. Sehba, B., Stević, S.: On some product-type operators from Hardy–Orlicz and Bergman–Orlicz spaces to

weighted-type spaces. Appl. Math. Comput. 233C, 565–581 (2014)
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45. Stević, S., Sharma, A.K., Bhat, A.: Products of multiplication composition and differentiation operators on weighted
Bergman spaces. Appl. Math. Comput. 217, 8115–8125 (2011)
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