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Abstract
Based on a recent paper of Beg and Pathak (Vietnam J. Math. 46(3):693–706, 2018), we
introduce the concept ofH+

q -type Suzuki multivalued contraction mappings. We
establish a fixed point theorem for this type of mappings in the setting of complete
weak partial metric spaces. We also present an illustrated example. Moreover, we
provide applications to a homotopy result and to an integral inclusion of Fredholm
type. Finally, we suggest open problems for the class of 0-complete weak partial
metric spaces, which is more general than complete weak partial metric spaces.
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1 Introduction
Throughout this paper, we use following notation: N is the set of all natural numbers, R is
the set of all real numbers, and R

+ is the set of all nonnegative real numbers.

Definition 1.1 ([2]) A partial metric on a nonempty set X is a function p : X × X → R
+

such that, for all x, y, z ∈ X:
(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

The pair (X, p) is called a partial metric space. Many fixed point results in partial metric
spaces have been proved; see [3–17]. Recently, Beg and Pathak [1] introduced a weaker
form of partial metrics called a weak partial metric.

Definition 1.2 ([1]) Let X be a nonempty set. A function q : X × X →R
+ is called a weak

partial metric on X if for all x, y, z ∈ X, the following conditions hold:
(WP1) q(x, x) = q(x, y) if and only if x = y;
(WP2) q(x, x) ≤ q(x, y);
(WP3) q(x, y) = q(y, x);
(WP4) q(x, y) ≤ q(x, z) + q(z, y).

The pair (X, q) is called a weak partial metric space.
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Examples of weak partial metric spaces [1] are:
(1) (R+, q), where q : R+ ×R

+ →R
+ is defined as q(x, y) = |x – y| + 1 for x, y ∈ R

+.
(2) (R+, q), where q : R+ ×R

+ →R
+ is defined as q(x, y) = 1

4 |x – y| + max{x, y} for
x, y ∈R

+.
(3) (R+, q), where q : R+ ×R

+ →R
+ is defined as q(x, y) = max{x, y} + e|x–y| + 1 for

x, y ∈R
+.

Notice that
• If q(x, y) = 0, then (WP1) and (WP2) imply that x = y, but the converse need not be

true.
• (P1) implies (WP1), but the converse need not be true.
• (P4) implies (WP4), but the converse need not be true.

Example 1.1 ([1]) If X = {[a, b] : a, b ∈R, a ≤ b}, then q([a, b], [c, d]) = max{b, d}– min{a, c}
is a weak partial metric.

Each weak partial metric q on X generates a T0 topology τq on X. Topology τq has as
a base the family of open q-balls {Bq(x, ε) : x ∈ X, ε > 0}, where Bq(x, ε) = {y ∈ X : q(x, y) <
q(x, x) + ε} for all x ∈ X and ε > 0.

If q is a weak partial metric on X, then the function qs : X ×X → [0,∞) given by qs(x, y) =
q(x, y) – 1

2 [q(x, x) + q(y, y)] defines a metric on X.

Definition 1.3 Let (X, q) be a weak partial metric space.
(i) A sequence {xn} in (X, q) converges to a point x ∈ X , with respect to τq if

q(x, x) = limn→∞ q(x, xn);
(ii) A sequence {xn} in X is said to be a Cauchy sequence if limn,m→∞ q(xn, xm) exists

and is finite;
(iii) (X, q) is called complete if every Cauchy sequence {xn} in X converges to x ∈ X with

respect to topology τq.

Clearly, we also have the following:

Lemma 1.1 Let (X, q) be a weak partial metric space. Then
(a) A sequence {xn} in X is Cauchy sequence in (X, q) if and only if it is a Cauchy

sequence in the metric space (X, qs);
(b) (X, q) is complete if and only if the metric space (X, qs) is complete. Furthermore, a

sequence {xn} converges in (X, qs) to a point x ∈ X if and only if

lim
n,m→∞ q(xn, xm) = lim

n→∞ q(xn, x) = q(x, x). (1.1)

Let (X, q) be a weak partial metric space. Let CBq(X) be the family of all nonempty closed
bounded subsets of (X, q). Here, the boundedness is given as follows: E is a bounded subset
in (X, q) if there exist x0 ∈ X and M ≥ 0 such that, for all a ∈ E, we have a ∈ Bq(x0, M), that
is, q(x0, a) < q(a, a) + M.

For E, F ∈ CBq(X) and x ∈ X, define

q(x, E) = inf
{

q(x, a), a ∈ E
}

, δq(E, F) = sup
{

q(a, F) : a ∈ E
}
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and

δq(F , E) = sup
{

q(b, E) : b ∈ F
}

.

Now, q(x, E) = 0 implies qs(x, E) = 0, where qs(x, E) = inf{qs(x, a), a ∈ E}.

Remark 1.1 ([1]) Let (X, q) be a weak partial metric space, and let E be a nonempty set in
(X, q). Then

a ∈ E if and only if q(a, E) = q(a, a), (1.2)

where E denotes the closure of E with respect to the weak partial metric q.

Note that E is closed in (X, q) if and only if E = E.
First, we study properties of the mapping δq : CBq(X) × CBq(X) → [0,∞).

Proposition 1.1 ([1]) Let (X, q) be a weak partial metric space,We have the following:
(i) δq(E, E) = sup{q(a, a) : a ∈ E};

(ii) δq(E, E) ≤ δq(E, F);
(iii) δq(E, F) = 0 implies E ⊆ F ;
(iv) δq(E, F) ≤ δq(E, H) + δq(H , F) for all E, F , H ∈ CBq(X).

Definition 1.4 ([1]) Let (X, q) be a weak partial metric space. For E, F ∈ CBq(X), define

H+
q (E, F) =

1
2
{
δq(E, F) + δq(F , E)

}
. (1.3)

The following proposition is a consequence of Proposition 1.1.

Proposition 1.2 ([1]) Let (X, q) be a weak partial metric space. Then, for all E, F , H ∈
CBq(X), we have

(wh1) H+
q (E, E) ≤H+

q (E, F);
(wh2) H+

q (E, F) = H+
q (F , E);

(wh3) H+
q (E, F) ≤H+

q (E, H) + H+
q (H , F).

The mapping H+
q : CBq(X) × CBq(X) → [0, +∞), is called the H+-type Pompeiu–

Hausdorff metric induced by q.

Definition 1.5 ([1]) Let (X, q) be a complete weak partial metric space. A multivalued
map T : X → CBq(X) is called an H+

q -contraction if
(1◦) there exists k in (0, 1) such that

H+
q
(
Tx \ {x}, Ty \ {y}) ≤ kq(x, y) for every x, y ∈ X, (1.4)

(2◦) for all x in X, y in Tx, and ε > 0, there exists z in Ty such that

q(y, z) ≤H+
q (Ty, Tx) + ε. (1.5)
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Beg and Pathak [1] proved the following fixed point theorem.

Theorem 1.1 ([1]) Let (X, q) be a complete weak partial metric space. Every H+
q -type mul-

tivalued contraction mapping T : X → CBq(X) with Lipschitz constant k < 1 has a fixed
point.

In this paper, we generalize the concept of H+
q -type multivalued contractions by intro-

ducing H+
q -type Suzuki mult-valued contraction mappings.

2 Fixed point results
First, let ψ : [0, 1) → (0, 1] be the nonincreasing function

ψ(r) =

⎧
⎨

⎩
1 if 0 ≤ r < 1

2 ,

1 – r if 1
2 ≤ r < 1.

(2.1)

Now, we state a fixed point result for H+
q -type Suzuki multivalued contraction mappings.

Theorem 2.1 Let (X, q) be a complete weak partial metric space, and let F : X → CBq(X)
be a multivalued mapping. Let ψ : [0, 1) → (0, 1] be the nonincreasing function defined by
(2.1). Suppose that there exists 0 ≤ s < 1 such that T satisfies the condition

ψ(s)q(x, Fx) ≤ q(x, y) implies H+
q
(
Fx \ {x}, Fy \ {y}) ≤ sq(x, y) (2.2)

for all x, y ∈ X. Suppose also that, for all x in X, y in Fx, and t > 1, there exists z in Fy such
that

q(y, z) ≤ tH+
q (Fy, Fx). (2.3)

Then F has a fixed point.

Proof Let s1 ∈ (0, 1) be such that 0 ≤ s ≤ s1 < 1 and w0 ∈ X. Since Fw0 is nonempty, it
follows that if w0 ∈ Fw0, then the proof is completed. Let w0 /∈ Fw0. Then there exists
w1 ∈ Fw0 such that w1 	= w0.

Similarly, there exists w2 ∈ Fw1 such that w1 	= w2, and from (2.3) we have

q(w1, w2) ≤ 1√s1
H+

q (Fw0, Fw1). (2.4)

Since

ψ(s)q(w1, Fw1) ≤ q(w1, Fw1) ≤ q(w1, w2),

from (2.2) and (2.4) we get

q(w1, w2) ≤ 1√s1
H+

q (Fw0, Fw1) ≤ 1√s1
H+

q
(
Fw0 \ {w0}, Fw1 \ {w1}

)

≤ 1√s1
.s.q(w0, w1) <

√
s1.q(w0, w1).
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By repeating this process n times we obtain

q(wn, wn+1) ≤ (
√

s1)n · q(w0, w1). (2.5)

Hence

lim
n→∞ q(wn, wn+1) = 0. (2.6)

Now we prove that {wn} is a Cauchy sequence in (X, qs). For all m ∈ N , we have

qs(wn, wn+m) = q(wn, wn+m) –
1
2
[
q(wn, wn) + q(wn+m, wn+m)

]

≤ q(wn, wn+m)

≤ q(wn, wn+1) + q(wn+1, wn+2) + · · · + q(wn+m–1, wn+m)

≤ [
(
√

s1)n + (
√

s1)n+1 + · · · + (
√

s1)n+m–1]q(w0, w1)

≤ (
√

s1)n 1
1 – √s1

q(w0, w1).

Hence

lim
n→∞ qs(wn, wn+m) = 0. (2.7)

This implies that {wn} is a Cauchy sequence in the complete metric space (X, qs). It follows
that there exists u ∈ X such that

lim
n→∞ q(wn, u) = lim

n,m→∞ q(wn, wm) = q(u, u). (2.8)

From (WP2) we obtain

1
2
[
q(wn, wn) + q(wn+1, wn+1)

] ≤ q(wn, wn+1). (2.9)

By taking the limit as n → ∞ from (2.6) we get

lim
n→∞ q(wn, wn) = lim

n→∞ q(wn+1, wn+1) = lim
n→∞ q(wn, wn+1) = 0. (2.10)

Also, from (2.7) and (2.10) we find

lim
n→∞ qs(wn, wn+m) = 0 = lim

n→∞ q(wn, wn+m) –
1
2

lim
n→∞

[
q(wn, wn) + q(wn+m, wn+m)

]
. (2.11)

Therefore

lim
n→∞ q(wn, wn+m) = 0 = lim

n→∞ q(wn, u) = q(u, u). (2.12)

Now, we prove that

q(u, Fx) ≤ 2sq(u, x) for all x ∈ X \ {u}. (2.13)
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Since limn→∞ q(wn, u) = 0, there exists n0 ∈N such that

q(wn, u) ≤ 1
3

q(x, u) for all n ≥ n0.

Then

ψ(s)q(wn, Fwn) ≤ q(wn, Fwn)

≤ q(wn, wn+1)

≤ q(wn, u) + q(u, wn+1)

≤ 1
3

q(u, x) +
1
3

q(u, x)

≤ q(u, x) –
1
3

q(u, x)

≤ q(u, x) – q(u, wn) ≤ q(x, wn).

This implies that

H+
q (Fwn, Fx) ≤ sq(wn, x).

Since wn+1 ∈ Fwn, we have

q(wn+1, Fx) ≤ δq(Fwn, Fx)

≤ 2H+
q (Fwn, Fx)

≤ 2sq(wn, x)

≤ 2s
[
q(wn, u) + q(u, x)

]
.

By taking the limit as n → ∞ we get

lim
n→∞ q(wn+1, Fx) ≤ 2sq(u, x). (2.14)

Also, since

q(u, Fx) ≤ q(u, wn+1) + q(wn+1, Fx)

and

q(wn+1, Fx) ≤ q(wn+1, wn) + q(wn, u) + q(u, Fx),

we have

lim
n→∞ q(wn+1, Fx) = q(u, Fx). (2.15)

From (2.14) and (2.15) we find that

q(u, Fx) ≤ 2sq(u, x) for all x ∈ X \ {u}. (2.16)
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We claim that

H+
q (Fx, Fu) ≤ sq(u, u) for all x ∈ X.

If x = u, then at that point, this clearly holds. So, let x 	= u. Then for every positive integer
n ∈N, there exists yn ∈ Fx such that

q(u, yn) ≤ q(u, Fx) +
1
n

q(u, x).

Therefore

q(x, Fx) ≤ q(x, yn)

≤ q(x, u) + q(u, yn)

≤ q(x, u) + q(u, Fx) +
1
n

q(x, u). (2.17)

From (2.16) and (2.17) we get

q(x, Fx) ≤ q(u, x) + 2sq(u, x) +
1
n

q(x, u) (2.18)

=
[

1 + 2s +
1
n

]
q(x, u). (2.19)

Hence

1
1 + 2s + 1

n
q(x, Fx) ≤ q(u, x).

This implies that

H+
q (Fu, Fx) ≤ sq(u, x).

Finally, we show that u ∈ Fu. For this,

q(u, Fu) = lim
n→∞ q(wn+1, Fu)

≤ lim
n→∞ δq(Fwn, Fu)

≤ 2 lim
n→∞ H+

q (Fwn, Fu)

≤ 2s lim
n→∞ q(wn, u) = 0.

We deduce that q(u, u) = q(u, Fu) = 0. Since Fu is closed, u ∈ Fu = Fu. �

We provide the following example.

Example 2.1 Let X = {0, 1
2 , 1} and define a weak partial metric q : X × X → [0,∞) as

follows: q(0, 0) = 0, q( 1
2 , 1

2 ) = 1
3 , q(1, 1) = 1

4 , q(0, 1
2 ) = q( 1

2 , 0) = 1
2 , q( 1

2 , 1) = q(1, 1
2 ) = 3

4 , and
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q(1, 0) = q(0, 1) = 1. It is clear that (X, q) is a weak partial metric space. Note that

q(1, 0) = 1 � q
(

1,
1
2

)
+ q

(
1
2

, 0
)

– q
(

1
2

,
1
2

)
=

3
4

+
1
2

–
1
3

.

Then (X, q) is not a partial metric space. Define the mapping F : X → CBq(X) by F(0) =
F( 1

2 ) = {0} and F(1) = {0, 1
3 }. Choose s = 0.5. From the definition of ψ we have ψ(s) = 1.

To prove the contraction condition (2.2), we need the following cases:
Case 1. At x = 0, we have

ψ(s)q
(
0, F(0)

)
= q(0, 0) = 0 ≤ q(0, y) for all x ∈ X.

For y = 0, we have

H+
q
(
F(0) \ {0}, F(0) \ {0}) = H+

q (φ,φ) = 0 ≤ sq(0, 0).

For y = 1
2 , we get

H+
q

(
F(0) \ {0}, F

(
1
2

∖ {
1
2

})
= H+

q
(
φ, {0}) = 0 ≤ sq

(
0,

1
2

)
.

If f y = 1, then

H+
q
(
F(0) \ {0}, F(1) \ {1}) = H+

q

(
φ,

{
0,

1
2

})
= 0 ≤ sq(0, 1).

Case 2. At x = 1
2 , we have

ψ(s)q
(

1
2

, F
(

1
2

))
= q

(
1
2

, 0
)

=
1
2

≤ q
(

1
2

, y
)

for all y ∈ X
∖ {

1
2

}
.

Similarly, if y = 0, then

H+
q

(
F
(

1
2

∖ {
1
2

}
, F(0) \ {0}

)
= H+

q
({0},φ)

= 0 ≤ sq
(

1
2

, 0
)

,

If y = 1, then

H+
q

(
F
(

1
2

) ∖ {
1
2

}
, F(1) \ {1}

)
= H+

q

(
{0},

{
0,

1
2

})
=

1
4

< sq
(

1
2

, 1
)

=
3
8

.

Case 3. At x = 1, we have

ψ(s)q
(
1, F(1)

)
= q

(
1,

1
2

)
=

3
4

≤ q(1, y) for all y ∈ X \ {1}.

Again, if y = 0, then

H+
q
(
F(1) \ {1}, F(0) \ {0}) = H+

q

({
0,

1
2

}
,φ

)
= 0 ≤ sq(1, 0).
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If y = 1
2 , then

H+
q

(
F(1) \ {1}, F

(
1
2

∖ {
1
2

})
= H+

q

({
0,

1
2

}
, {0}

)
=

1
4

< sq
(

1,
1
2

)
=

3
8

.

Finally, we will enquire the condition (2.3) with t = 2. For this, we discuss the following
situations:

(i) If x = 0 or x = 1
2 , then y ∈ F(0) = F( 1

2 ) = {0}. This yields that y = 0, so there exists
z ∈ F(y) such that

0 = q(y, z) ≤ 2H+
q
(
F(x), F(y)

)
.

(ii) If x = 1, then y ∈ F(1) = {0, 1
2 }. If y = 0, then z = 0, and condition (2.3) is satisfied.

Also, If y = 1
2 , then z = 0, so that

1
2

= q(y, z) = 2H+
q

(
F(1), F

(
1
2

))
=

1
2

.

Therefore all conditions of Theorem 2.1 are satisfied, and the function F has a fixed
point u = 0.

On the other hand, the result of Beg and Pathak [1] is not applicable. Indeed,

H+
q
(
F(1) \ {1}, F(1) \ {1}) =

1
3

>
1
2

q(1, 1) =
1
8

.

3 Applications
First, we present an application concerning a homotopy result for complete weak partial
metric spaces.

Theorem 3.1 Let (X, q) be a complete weak partial metric space, let D be an open subset
of X, and let W be a closed subset of X with D ⊂ W . Let F : W × [0, 1] → CBq(X) be an
operator satisfying:

(i) x /∈ F(x, t) for each x ∈ W \ D and each t ∈ [0, 1];
(ii) there exists s ∈ (0, 1

2 ) such that, for each t ∈ [0, 1] and each x, y ∈ W , we have

ψ(s)q
(
x, F(x, t)

) ≤ q(x, y) ⇒ H+
q
(
F(x, t) \ {x}, F(y, t) \ {y}) ≤ sq(x, y);

(iii) for all x ∈ W , y ∈ F(x, t), and h > 1, there exists z ∈ F(y, t) such that

q(y, z) ≤ hH+
q
(
F(y, t), F(x, t)

)
;

(iv) there exists a continuous function η : [0, 1] →R such that

H+
q
(
F(x, t1) \ {x}, F(x, t2) \ {x}) ≤ s

∣∣η(t1) – η(t2)
∣∣

for all t1, t2 ∈ [0, 1] and x ∈ W ;
(v) if x ∈ F(x, t), then F(x, t) = {x}. Then F(·, 0) has a fixed point if and only if F(·, 1) has

a fixed point.
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Proof Define the set

� :=
{

t ∈ [0, 1]; x ∈ F(x, t) for some x ∈ D
}

.

Since F(·, 0) has a fixed point, from condition (i), we get 0 ∈ �, so � 	= φ. First, we want
to show that � is an open set. Let t1 ∈ � and x1 ∈ D be such that x1 ∈ F(x1, t1). Since D is
open in (X, q), there exists r > 0 such that B(x1, r) ⊂ D. Consider ε = ( 1–2s

2 )(q(x1, x1) + r) > 0.
Since η is continuous at t1, there exists δ(ε) > 0 such that |η(t) – η(t1)| < ε for all t ∈ (t1 –
δ(ε), t1 + δ(ε)).

Let t ∈ (t1 – δ(ε), t1 + δ(ε)) and x ∈ B(x1, r) = {x ∈ X; q(x1, x) ≤ q(x1, x1) + r}. Since x1 ∈
F(x1, t1), from (WP2) we have

ψ(s)q
(
x1, F(x1, t1)

) ≤ q(x1, x1) ≤ q(x1, x) for all x ∈ X.

Thus

q
(
x1, F(x, t)

) ≤ 2H+
q
(
F(x, t), F(x1, t1)

)

≤ 2
[
H+

q
(
F(x, t), F(x, t1)

)
+ H+

q
(
F(x, t1), F(x1, t1)

)]

= 2
[
H+

q
(
F(x, t) \ {x}, F(x, t1) \ {x}) + H+

q
(
F(x, t1) \ {x}, F(x1, t1) \ {x1}

)]

≤ 2
[∣∣η(t) – η(t1)

∣∣ + sq(x, x1)
]

≤ 2
[
ε + s

(
q(x1, x1) + r

)]

≤ 2
[(

1 – 2s
2

)(
q(x1, x1) + r

)
+ s

(
q(x1, x1) + r

)]

≤ q(x1, x1) + r.

Therefore F(x, t) ⊂ B(x1, r). Since F(·, t) : B(x1, r) → CBq(X) for each fixed t ∈ (t1 – δ(ε), t –
1 + δ(ε)) and (ii) holds, all the hypotheses of Theorem 2.1 are satisfied. We conclude that
F(·, t) has a fixed point in B(x1, r) ⊂ W . This fixed point must be in D due to (i). Hence
(t1 – δ(ε), t – 1 + δ(ε)) ⊂ �, and therefore � is open in [0, 1].

Second, we prove that � is closed in [0, 1]. To show this, choose a sequence {tn} in �

such that tn → t∗ ∈ [0, 1] as n → ∞. We must show that t∗ ∈ �. By the definition of �

there exists xn ∈ D with xn ∈ F(xn, tn). Then

ψ(s)q
(
xn, F(xn, tn)

) ≤ q(xn, xn) ≤ q(xn, x) for all x ∈ X.

This implies that, for all positive integers m, n ∈N, using (v) and (Wh3), we have

q(xn, xm) ≤ 2H+
q
(
F(xn, tn), F(xm, tm)

)

≤ 2H+
q
(
F(xn, tn), F(xn, tm)

)
+ 2H+

q
(
F(xn, tm), F(xm, tm)

)

= 2H+
q
(
F(xn, tn) \ {xn}, F(xn, tm) \ {xn}

)

+ 2H+
q
(
F(xn, tm) \ {xn}, F(xm, tm) \ {xm})

≤ 2s
∣∣η(tn) – η(tm)

∣∣ + 2sq(xn, xm).
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This implies that

q(xn, xm) ≤ 2s
1 – 2s

(∣∣η(tn) – η(tm)
∣∣).

Hence limn,m→∞ q(xn, xm) = 0. Therefore {xn} is a Cauchy sequence in (X, q). Since (X, q)
is complete, there exists x∗ ∈ W such that

q
(
x∗, x∗) = lim

n→∞ q
(
x∗, xn

)
= lim

n,m→∞ q(xn, xm) = 0.

On the other hand, we have

q
(
xn, F

(
x∗, t∗)) ≤ 2H+

q
(
F(xn, tn), F

(
x∗, t∗))

≤ 2H+
q
(
F(xn, tn), F

(
xn, t∗) + 2H+

q
(
F
(
xn, t∗)), F

(
x∗, t∗))

= 2H+
q
(
F(xn, tn) \ {xn}, F

(
xn, t∗) \ {xn}

)

+ 2H+
q
(
F
(
xn, t∗) \ {xn}, F

(
x∗, t∗) \ {

x∗})

≤ 2s
∣∣η(tn) – η

(
t∗)∣∣ + 2sq

(
xn, x∗).

Taking the limit as n → ∞ in the above inequality, we get

q
(
x∗, F

(
x∗, t∗)) = lim

n→∞ q
(
xn, F

(
x∗, t∗)) = 0.

It follows that x∗ ∈ F(x∗, t∗). Thus t∗ ∈ �, and hence � is closed in [0, 1]. By the connect-
edness of [0, 1] we have � = [0, 1].

The reverse implication easily follows by applying the same strategy. This completes the
proof. �

Now, we give another application to the solvability of integral inclusions of Fredholm
type. Let I = [0, 1], and let C(I,R) be the space of all continuous functions f : I → R. Con-
sider the weak partial metric on X given by

q(x, y) = sup
t∈I

∣∣x(t) – y(t)
∣∣ + α

for all x, y ∈ C(I, R) and α > 0. We have qs(x, y) = supt∈I |x(t) – y(t)|, so by Lemma 1.1
(C(I,R), q) is a complete weak partial metric space. Denote by Pcv(R) the family of all
nonempty compact and convex subsets of R and by Pcl(R) the family of all nonempty
closed subsets of R.

Theorem 3.2 Consider the integral inclusion of Fredholm type

h(t) ∈ f (t) +
∫ 1

0
K

(
t, u, h(u)

)
du, t ∈ [0, 1]. (3.1)

Suppose that:
(i) K : I × I × R → Pcv(R) is such that Kh(t, u) := K(t, u, h(u)) is a lower semicontinuous

for all (t, u) ∈ I × I and h ∈ C(I,R),
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(ii) f ∈ C(I, R);
(iii) for each t ∈ I , there exists l(t, ·) ∈ L1(I) such that supt∈I

∫ 1
0 l(t, u) du = s

2 with
s ∈ [0, 1) and

H+
q
(
K

(
t, u, h(u)

)
, K

(
t, u, r(u)

)) ≤ l(t, u)
(

sup
u∈I

∣∣h(u) – r(u)
∣∣ + α

)

for all t, u ∈ I and all h, r ∈ C(I,R).
Then the integral inclusion (3.1) has at least one solution in C(I,R).

Proof Consider the multivalued operator T : C(I, R) → PCL(C(I, R)) defined by

Tx(t) =
{

h ∈ C(I,R) such that h(t) ∈ f (t) +
∫ 1

0
K

(
t, u, x(u)

)
du, t ∈ I

}

for x ∈ C(I,R). For each Kx(t, u) : I × I → Pcv(R), by the Michael selection theorem there
exists a continuous operator kx : I × I → R such that kx(t, u) ∈ Kx(t, u) for all t, u ∈ I . This
implies that f (t) +

∫ 1
0 kx(t, u) du ∈ Tx, and so Tx 	= ∅. It is easy to prove that Tx is closed,

and so we omit the details (see also [18]). This implies that Tx is closed in (C(I,R), q).
Now, we will show that T is H+

q -type Suzuki multivalued contraction mapping. Let
x1, x2 ∈ C(I,R) and h ∈ Tx. Then there exists kx1 (t, u) ∈ Kx1 (t, u) with t, u ∈ I such that
h(t) = f (t) +

∫ 1
0 kx(t, u) du, t ∈ I . Also, by hypothesis (iii),

H+
q
(
K

(
t, u, x1(u)

)
, K

(
t, u, x2(u)

)) ≤ l(t, u)
(

sup
u∈I

∣∣x1(u) – x2(u)
∣∣ + α

)
∀t, u ∈ I.

Then there exists z(t, u) ∈ Kx2 (t, u) such that

∣∣kx1 (t, u) – z(t, u)
∣∣ + n ≤ l(t, u)

[∣∣x1(u) – x2(u)
∣∣ + α

]

for all t, u ∈ I . Now, we define the multivalued operator M(t, u) by

M(t, u) = Kx2 (t, u) ∩ {
m ∈R,

∣
∣kx1 (t, u) – m

∣
∣ + α ≤ l(t, u)

(∣∣x1(u) – x2(u)
∣
∣ + α

)}

for t, u ∈ I . Since M is a lower semicontinuous operator, there exists a continuous operator
kx2 : I × I →R such that kx2 (t, u) ∈ M(t, u) for all t, u ∈ I and

w(t) = f (t) +
∫ 1

0
kx2 (t, u) du ∈ f (t) +

∫ 1

0
K

(
t, u, x2(u)

)
du.

Therefore

q
(
h(t), Tx2(t)

) ≤ q
(
h(t), w(t)

)

= sup
t∈I

∣∣h(t) – w(t)
∣∣ + α

= sup
t∈I

∣∣∣∣

∫ 1

0

[
kx1 (t, u) – kx2 (t, u)

]
du

∣∣∣
∣ + α

≤ sup
t∈I

∫ 1

0

(∣∣kx1 (t, u) – kx2 (t, u)
∣∣ + α – α

)
du + α
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≤ sup
t∈I

∫ 1

0
l(t, u)

[∣∣x1(u) – x2(u)
∣∣ + α

]
du –

∫ 1

0
α du + α

=
(

sup
t∈I

∣∣x1(u) – x2(u)
∣∣ + α

)∫ 1

0
l(t, u) du

≤ sq
(
x1(t), x2(t)

)
.

Since h(t) ∈ Tx1 is arbitrary, we have

δq(Tx1, Tx2) ≤ sq(x1, x2). (3.2)

Similarly, we can get

δq(Tx2, Tx1) ≤ sq(x1, x2). (3.3)

From (3.2) and (3.3) we have

H+
q (Tx1, Tx2) =

δq(Tx1, Tx2) + δq(Tx2, Tx1)
2

≤ sq(x1, x2).

In particular, the previous inequality holds for any t ∈ I , so that

ψ(s)q(x1, Tx1) ≤ q(x1, x2).

Thus all conditions of Theorem 2.1 are satisfied, and hence a solution of (3.1) exists. �

4 Perspectives
In 2010, Romaguera [19] introduced the notions of 0-Cauchy sequences and 0-complete
partial metric spaces and proved some characterizations of partial metric spaces in terms
of completeness and 0-completeness. Adapting the same concepts, we introduce the con-
cepts of 0-Cauchy sequences and 0-complete weak partial metric spaces.

Definition 4.1 Let (X, q) be a weak partial metric space.
(i) A sequence {xn}in X is said to be 0-Cauchy if lim

n,m→∞ q(xn, xm) = 0;
(iii) (X, q) is called 0-complete if every 0-Cauchy sequence {xn} in X converges to x ∈ X

such that q(x, x) = 0.

Open problems: Since 0-completeness is more general than completeness, we would
like to prove

(i) Theorem 1.1 and Theorem 2.1, and
(ii) a Hardy–Rogers-type result

in the class of 0-complete weak partial metric spaces.
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