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Abstract
In the present paper, we investigate majorization properties for the classMα

β (p,γ ) of
uniformly starlike functions and the class Nα

β (p,θ ) of spiral-like functions related to an
exponential function, which are defined through the Liu–Owa integral operator Qα

β ,p
given by (1.5). Also, some special cases of our main results in a form of corollaries are
shown.
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1 Introduction and definitions
Let C be a complex plane and assume that Ap denotes the class of analytic and p-valent
functions of the form

f (z) = zp +
∞∑

k=1

ak+pzk+p (
p ∈N = {1, 2, . . .}) (1.1)

in the open unit disk

U =
{

z : z ∈C and |z| < 1
}

.

Specially, for p = 1, we write A := A1.
In 1967, MacGregor [22] introduced the notion of majorization as follows.

Definition 1.1 Let f and g be analytic in U. We say that f is majorized by g in U and write

f (z) � g(z) (z ∈U),

if there exists a function ϕ(z), analytic in U, satisfying

∣∣ϕ(z)
∣∣ ≤ 1 and f (z) = ϕ(z)g(z) (z ∈ U). (1.2)
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In 1970, Roberston [28] gave the concept of quasi-subordination as follows.

Definition 1.2 For two analytic functions f and g in U, we say that f is quasi-subordinate
to g in U and write

f (z) ≺q g(z) (z ∈U),

if there exist two analytic functions ϕ(z) and ω(z) in U such that f (z)
ϕ(z) is analytic in U and

∣∣ϕ(z)
∣∣ ≤ 1, ω(0) = 0 and

∣∣ω(z)
∣∣ ≤ |z| < 1 (z ∈U),

satisfying

f (z) = ϕ(z)g
(
ω(z)

)
(z ∈U). (1.3)

Remark 1.3
(i) For ϕ(z) ≡ 1 in (1.3), we have

f (z) = g
(
ω(z)

)
(z ∈U)

and say that f is subordinate to g in U, denoted by (see [29])

f (z) ≺ g(z) (z ∈ U).

(ii) For ω(z) = z in (1.3), the quasi-subordination (1.3) becomes the majorization (1.2).

In 1991, Ma and Minda [21] introduced the following function class S∗(φ), which is
defined by using the above subordination principle:

S∗(φ) :=
{

f ∈A :
zf ′(z)
f (z)

≺ φ(z) (z ∈U)
}

,

where φ(z) is analytic and univalent in U and for which φ(U) is convex with φ(0) = 1 and

(φ(z)) > 0 for z ∈U.

We notice that, for choosing a suitable function φ(z), the class S∗(φ) reduces to one of
the well-known classes of functions. For instance:

(i) If we take

φ(z) =
1 + Az
1 + Bz

(–1 ≤ B < A ≤ 1; z ∈U),

then we obtain the class

S∗(A, B) :=
{

f ∈A :
zf ′(z)
f (z)

≺ 1 + Az
1 + Bz

(–1 ≤ B < A ≤ 1; z ∈U)
}

,

which was introduced by Janowski [16]. As a special case, for A = 1 – 2α and B = –1,
we have the class S∗(1 – 2α, –1) = S∗(α) of starlike functions of order α (0 ≤ α < 1).
Further, for A = 1 and B = –1, we have the familiar class S∗(1, –1) = S∗ of starlike
functions in U.
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(ii) If we put

φ(z) = ez (z ∈U),

then we get the class

S∗
e :=

{
f ∈A :

zf ′(z)
f (z)

≺ ez (z ∈ U)
}

,

which was introduced and investigated by Mendiratta et al. [23] and implies that

f ∈ S∗
e ⇐⇒

∣∣∣∣log
zf ′(z)
f (z)

∣∣∣∣ < 1 (z ∈ U). (1.4)

In 2004, Liu and Owa [20] (see also [4–9, 32]) introduced the integral operator Qα
β ,p :

Ap −→Ap as follows:

Qα
β ,pf (z) =

(
p + α + β – 1

p + β – 1

)
α

zβ

∫ z

0

(
1 –

t
z

)α–1

tβ–1f (t) dt (α > 0;β > –1; p ∈N) (1.5)

and

Q0
β ,pf (z) = f (z) (α = 0;β > –1).

If the function f ∈Ap given by (1.1), then from (1.5) we show that

Qα
β ,pf (z) = zp +

	(α + β + p)
	(β + p)

∞∑

k=1

	(β + p + k)
	(α + β + p + k)

ak+pzk+p

(α ≥ 0;β > –1; p ∈N). (1.6)

Also, we easily find the relationship, from (1.6), that (see [20])

z
(
Qα

β ,pf (z)
)′ = (α + β + p – 1)Qα–1

β ,p f (z) – (α + β – 1)Qα
β ,pf (z). (1.7)

On the other hand, we observe that
(i) for p = 1, we get the Jung–Kim–Srivastava integral operator Qα

β := Qα
β ,1 (see [17];

also see [3, 11]);
(ii) for α = 1 and β = δ, we obtain the generalized Libera operator Jδ,p := Q1

δ,p, which is
presented as follows (see [10]; see also [19, 25]):

Jδ,p(f )(z) := Q1
δ,pf (z) =

δ + p
zδ

∫ z

0
tδ–1f (t) dt (δ > –p; p ∈ N). (1.8)

Inspired by the above class S∗
e , we now use the Liu–Owa integral operator Qα

β ,p to define
the following two subclasses Mα

β (p,γ ) and Nα
β (p, θ ) of functions f ∈Ap.
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Definition 1.4 Let p ∈N; α ≥ 0; β > –1 and γ ≥ 0. A function f ∈Ap belongs to the class
Mα

β (p,γ ) of uniformly starlike functions, related to exponential function, if and only if

[(z(Qα
β ,pf (z))′

Qα
β ,pf (z)

+ 1 – p
)

– γ

∣∣∣∣
z(Qα

β ,pf (z))′

Qα
β ,pf (z)

– p
∣∣∣∣

]
≺ ez. (1.9)

Remark 1.5
(i) For p = 1 in (1.9), we have the function class

Mα
β (γ ) := Mα

β (1,γ ) =
{

f ∈A :
[z(Qα

β f (z))′

Qα
β f (z)

– γ

∣∣∣∣
z(Qα

β f (z))′

Qα
β f (z)

– 1
∣∣∣∣

]
≺ ez (γ ≥ 0)

}
.

(ii) For γ = 0 in (1.9), we get the function class

Mα
β (p) := Mα

β (p, 0) =
{

f ∈Ap :
z(Qα

β ,pf (z))′

Qα
β ,pf (z)

≺ (
ez + p – 1

)
(p ∈N)

}
.

(iii) Further, for γ = p – 1 = 0 in (1.9), we obtain the function class

Mα
β := Mα

β (1, 0) =
{

f ∈A :
z(Qα

β f (z))′

Qα
β f (z)

≺ ez
}

.

Definition 1.6 Let p ∈N; α ≥ 0; β > –1 and – π
2 < θ < π

2 . A function f ∈Ap belongs to the
class Nα

β (p, θ ) of spiral-like functions, related to an exponential function, if and only if

eiθ
(z(Qα

β ,pf (z))′

Qα
β ,pf (z)

)
≺ ez cos θ + i sin θ . (1.10)

Remark 1.7
(i) For p = 1 in (1.10), we obtain the function class

Nα
β (θ ) := Nα

β (1, θ )

=
{

f ∈A : eiθ
(z(Qα

β f (z))′

Qα
β f (z)

)
≺ ez cos θ + i sin θ

(
–

π

2
< θ <

π

2

)}
.

(ii) For θ = 0 in (1.10), we have the function class

Nα
β (p) := Nα

β (p, 0) =
{

f ∈Ap :
z(Qα

β ,pf (z))′

Qα
β ,pf (z)

≺ ez (p ∈N)
}

.

(iii) Further, for θ = p – 1 = 0 in (1.10), we get the function class Mα
β = Nα

β := Nα
β (1, 0).

A majorization problem for the normalized class of starlike functions has been investi-
gated by MacGregor [22] and Altintas et al. [1] (see also [2]). Recently, many researchers
have studied several majorization problems for univalent and multivalent functions or
meromorphic and multivalent meromorphic functions, which are all subordinate to cer-
tain function φ(z) = 1+Az

1+Bz (–1 ≤ B < A ≤ 1), involving various different operators; the in-
terested reader can, for example, see [13–15, 18, 26, 27, 30, 31, 33]. However, we note that
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there is no article dealing with the above-mentioned problems for functions which are
subordinate to φ(z) = ez . Hence, in the present paper, we investigate the problems of ma-
jorization of the classes Mα

β (p,γ ) and Nα
β (p, θ ) defined by the Liu–Owa integral operator

Qα
β ,p given by (1.5), which are related to an exponential function.

2 Majorization problem for the class Mα
β (p,γ )

Firstly, we give and prove majorization property for the class Mα
β (p,γ ).

Theorem 2.1 Let the function f ∈Ap and suppose that g ∈ Mα
β (p,γ ) with |α + β + p – 2| ≥

γ (α + β + p – 1) + e. If Qα
β ,pf (z) is majorized by Qα

β ,pg(z) in U, that is,

Qα
β ,pf (z) � Qα

β ,pg(z) (z ∈U),

then, for |z| ≤ r1, we have

∣∣Qα–1
β ,p f (z)

∣∣ ≤ ∣∣Qα–1
β ,p g(z)

∣∣,

where r1 = r1(p,α,β ,γ ) is the smallest positive root of the equation

r2er –
[|α + β + p – 2| – γ (α + β + p – 1)

]
r2 – er – 2(1 + γ )r

+ |α + β + p – 2| – γ (α + β + p – 1) = 0 (p ∈ N;α ≥ 0;β > –1;γ ≥ 0). (2.1)

Proof Since g ∈ Mα
β (p,γ ), then, from (1.9) and the subordination relationship, we get

[(z(Qα
β ,pg(z))′

Qα
β ,pg(z)

+ 1 – p
)

– γ

∣∣∣∣
z(Qα

β ,pg(z))′

Qα
β ,pg(z)

– p
∣∣∣∣

]
= eω(z), (2.2)

where ω(z) = c1z+c2z2 + · · · is bounded and analytic in U, satisfying (see, for details, Good-
man [12])

ω(0) = 0 and
∣∣ω(z)

∣∣ ≤ |z| (z ∈U). (2.3)

Letting

� =
z(Qα

β ,pg(z))′

Qα
β ,pg(z)

+ 1 – p (2.4)

in (2.2), we have

� – γ |� – 1| = eω(z),

which implies that

� =
eω(z) – γ e–iφ

1 – γ e–iφ . (2.5)
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From (2.4) and (2.5), we easily obtain

z(Qα
β ,pg(z))′

Qα
β ,pg(z)

=
p – 1 – pγ e–iφ + eω(z)

1 – γ e–iφ . (2.6)

Now, using (1.7) in (2.6) and making simple computations, we have

Qα–1
β ,p g(z)

Qα
β ,pg(z)

=
(α + β + p – 2) – γ (α + β + p – 1)e–iφ + eω(z)

(α + β + p – 1)(1 – γ e–iφ)
, (2.7)

which, by virtue of (2.3), yields the inequality

∣∣Qα
β ,pg(z)

∣∣ ≤ (1 + γ )(α + β + p – 1)
|α + β + p – 2| – γ (α + β + p – 1) – e|z|

∣∣Qα–1
β ,p g(z)

∣∣. (2.8)

Again, because Qα
β ,pf (z) is majorized by Qα

β ,pg(z) in U, so we find from (1.2) that

Qα
β ,pf (z) = ϕ(z)Qα

β ,pg(z). (2.9)

Differentiating (2.9) on both sides with respect to z and multiplying by z, we obtain

z
(
Qα

β ,pf (z)
)′ = zϕ′(z)Qα

β ,pg(z) + zϕ(z)
(
Qα

β ,pg(z)
)′. (2.10)

By using (1.7) in (2.10), together with (2.9), we have

Qα–1
β ,p f (z) =

1
α + β + p – 1

zϕ′(z)Qα
β ,pg(z) + ϕ(z)Qα–1

β ,p g(z). (2.11)

On the other hand, noticing that the Schwarz function ϕ satisfies the inequality (see, e.g.,
Nehari [24])

∣∣ϕ′(z)
∣∣ ≤ 1 – |ϕ(z)|2

1 – |z|2 (z ∈ U), (2.12)

and in terms of (2.8) and (2.12) in (2.11), we get

∣∣Qα–1
β ,p f (z)

∣∣ ≤
[∣∣ϕ(z)

∣∣ +
|z|(1 + γ )(1 – |ϕ(z)|2)

(1 – |z|2)(|α + β + p – 2| – γ (α + β + p – 1) – e|z|)

]∣∣Qα–1
β ,p g(z)

∣∣,

which, by taking

|z| = r,
∣∣ϕ(z)

∣∣ = ρ (0 ≤ ρ ≤ 1),

reduces to the inequality

∣∣Qα–1
β ,p f (z)

∣∣ ≤ �1(r,ρ)
∣∣Qα–1

β ,p g(z)
∣∣,

where

�1(r,ρ) =
r(1 + γ )(1 – ρ2)

(1 – r2)[|α + β + p – 2| – γ (α + β + p – 1) – er]
+ ρ.
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In order to determine r1, we must choose

r1 = max
{

r ∈ [0, 1) : �1(r,ρ) ≤ 1,∀ρ ∈ [0, 1]
}

= max
{

r ∈ [0, 1) : �1(r,ρ) ≥ 0,∀ρ ∈ [0, 1]
}

,

where

�1(r,ρ) =
(
1 – r2)[|α + β + p – 2| – γ (α + β + p – 1) – er] – r(1 + γ )(1 + ρ).

Obviously, for ρ = 1, the function �1(r,ρ) takes its minimum value, namely

min
{
�1(r,ρ) : ρ ∈ [0, 1]

}
= �1(r, 1) := ψ1(r),

where

ψ1(r) =
(
1 – r2)[|α + β + p – 2| – γ (α + β + p – 1) – er] – 2r(1 + γ ).

Further, because ψ1(0) = |α + β + p – 2| > γ (α + β + p – 1) + e and ψ1(1) = –2(1 + γ ) < 0, so
there exists r1 such that ψ1(r) ≥ 0 for all r ∈ [0, r1], where r1 = r1(p,α,β ,γ ) is the smallest
positive root of equation (2.1). This completes the proof of Theorem 2.1. �

3 Majorization problem for the class Nα
β (p,θ )

Next, we discuss majorization property for the class Nα
β (p, θ ).

Theorem 3.1 Let the function f ∈ Ap and assume that g ∈ Nα
β (p, θ ) with |α + β – 1| ≥

| tan θ ||α + β| + e. If Qα
β ,pf (z) is majorized by Qα

β ,pg(z) in U, that is,

Qα
β ,pf (z) � Qα

β ,pg(z) (z ∈U),

then, for |z| ≤ r2, we have

∣∣Qα–1
β ,p f (z)

∣∣ ≤ ∣∣Qα–1
β ,p g(z)

∣∣, (3.1)

where r2 = r2(α,β , θ ) is the smallest positive root of the equation

r2er –
[|α + β – 1| – | tan θ ||α + β|]r2 – er – 2| sec θ |r + |α + β – 1| – | tan θ ||α + β| = 0

(
α ≥ 0;β > –1; –

π

2
< θ <

π

2

)
. (3.2)

Proof Because g ∈ Nα
β (p, θ ), so from (1.10) we show that

eiθ
(z(Qα

β ,pg(z))′

Qα
β ,pg(z)

)
= eω(z) cos θ + i sin θ , (3.3)

where ω(z) is defined as (2.3).
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From (3.3) it follows that

z(Qα
β ,pg(z))′

Qα
β ,pg(z)

=
eω(z) + i tan θ

1 + i tan θ
. (3.4)

Now, putting (1.7) in (3.4) and making some calculations, we get

Qα–1
β ,p g(z)

Qα
β ,pg(z)

=
(α + β – 1) + i tan θ (α + β) + eω(z)

(1 + i tan θ )(α + β + p – 1)
,

which, using (2.3), becomes the inequality

∣∣Qα
β ,pg(z)

∣∣ ≤ | sec θ |(α + β + p – 1)
|α + β – 1| – | tan θ ||α + β| – e|z|

∣∣Qα–1
β ,p g(z)

∣∣. (3.5)

Next, in view of (2.12) as well as (3.5) in (2.11), and just as the proof of Theorem 2.1, we
have

∣∣Qα–1
β ,p f (z)

∣∣ ≤
[∣∣ϕ(z)

∣∣ +
|z|| sec θ |(1 – |ϕ(z)|2)

(1 – |z|2)(|α + β – 1| – | tan θ ||α + β| – e|z|)

]∣∣Qα–1
β ,p g(z)

∣∣,

which, by setting

|z| = r,
∣∣ϕ(z)

∣∣ = ρ (0 ≤ ρ ≤ 1),

reduces to the inequality

∣∣Qα–1
β ,p f (z)

∣∣ ≤ �2(ρ)
(1 – r2)[|α + β – 1| – | tan θ ||α + β| – er]

∣∣Qα–1
β ,p g(z)

∣∣, (3.6)

where the function �2(ρ) given by

�2(ρ) = –r| sec θ |ρ2 +
(
1 – r2)[|α + β – 1| – | tan θ ||α + β| – er]ρ + r| sec θ |

takes its maximum value at ρ = 1 with r2 = r2(p,α,β , θ ) defined by (3.2). Furthermore, if
0 ≤ σ ≤ r2(p,α,β , θ ), then the function

�2(ρ) = –σ | sec θ |ρ2 +
(
1 – σ 2)[|α + β – 1| – | tan θ ||α + β| – eσ

]
ρ + σ | sec θ |

increases on the interval 0 ≤ ρ ≤ 1, therefore

�2(ρ) ≤ �2(1) =
(
1 – σ 2)[|α + β – 1| – | tan θ ||α + β| – eσ

] (
0 ≤ σ ≤ r2(p,α,β , θ )

)
.

Hence, from this fact and (3.6), we conclude that inequality (3.1) holds true for |z| ≤ r2,
where r2 = r2(p,α,β , θ ) is given by (3.2). We complete the proof of Theorem 3.1. �
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4 Some corollaries
As a special case of Theorem 2.1, when p = 1, we get the following result.

Corollary 4.1 Let the function f ∈A and assume that g ∈ Mα
β (γ ) with |α + β – 1| ≥ γ (α +

β) + e. If Qα
β f (z) is majorized by Qα

βg(z) in U, then, for |z| ≤ r3, we have

∣∣Qα–1
β f (z)

∣∣ ≤ ∣∣Qα–1
β g(z)

∣∣,

where r3 := r1(1,α,β ,γ ) is the smallest positive root of the equation

r2er –
[|α + β – 1| – γ (α + β)

]
r2 – er – 2(1 + γ )r + |α + β – 1| – γ (α + β) = 0

(α ≥ 0;β > –1;γ ≥ 0).

Setting γ = 0 in Theorem 2.1, we obtain the following corollary.

Corollary 4.2 Let the function f ∈Ap and assume that g ∈ Mα
β (p) with |α + β + p – 2| ≥ e.

If Qα
β ,pf (z) is majorized by Qα

β ,pg(z) in U, then, for |z| ≤ r4, we have

∣∣Qα–1
β ,p f (z)

∣∣ ≤ ∣∣Qα–1
β ,p g(z)

∣∣,

where r4 := r1(p,α,β , 0) is the smallest positive root of the equation

r2er – |α + β + p – 2|r2 – er – 2r + |α + β + p – 2| = 0 (p ∈N;α ≥ 0;β > –1).

Taking θ = 0 in Theorem 3.1, we state the following corollary.

Corollary 4.3 Let the function f ∈ Ap and suppose that g ∈ Nα
β (p) with |α + β – 1| ≥ e. If

Qα
β ,pf (z) is majorized by Qα

β ,pg(z) in U, then, for |z| ≤ r5, we have

∣∣Qα–1
β ,p f (z)

∣∣ ≤ ∣∣Qα–1
β ,p g(z)

∣∣,

where r5 := r2(α,β , 0) is the smallest positive root of the equation

r2er – |α + β – 1|r2 – er – 2r + |α + β – 1| = 0 (α ≥ 0;β > –1). (4.1)

5 Conclusions
In this paper, we investigate the problems of majorization of the classes Mα

β (p,γ ) and
Nα

β (p, θ ) defined by the Liu–Owa integral operator Qα
β ,p given by (1.5), which are also re-

lated to an exponential function. The results obtained generalize and unify the theory of
majorization in geometric function theory. In addition, we notice that, if we put p = 1
and α = 1, β = δ in Theorems 2.1 and 3.1, as well as Corollaries 4.2 and 4.3 of this paper,
respectively, then we easily get the corresponding majorization results for the Jung–Kim–
Srivastava integral operator Qα

β and the generalized Libera operator Jδ,p (δ > –p; p ∈ N),
which are mentioned in the Introduction.
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