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Abstract
Here, for the first time, error estimation of the functions g ∈ H(w)

z and g̃ ∈ H(w)
z classes

using TC1 method of F. S. (Fourier Series) and C. F. S. (Conjugate Fourier Series),
respectively, are determined. The results of (Dhakal in Int. Math. Forum
5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Kushwaha and
Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013) become the particular cases of
our Theorem 2.1. Some important corollaries are also deduced from our main
theorems.
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1 Introduction
Several results on the error estimation of a function g in Lipschitz and Hölder classes by
a trigonometric polynomial using different single and product means have been obtained
by the researchers like [1–11], and [12].

Our motivation for this work is to consider a more advanced class of functions that can
provide best approximation by a trigonometric polynomial of degree not more than r.
Therefore, in this work, we generalize the results of Kushwaha and Dhakal [3] and Dhakal
[1, 2]. In fact, we obtain the results on the error estimation for the function f ∈ H (w)

z (z ≥ 1)
by T .C1 method by F. S. Thus, the results of Kushwaha and Dhakal [3] and Dhakal [1, 2]
become the particulars cases of our Theorem 2.1.

We also obtain the results on the error estimation of the function g̃ ∈ H (w)
z (z ≥ 1) by

T .C1 method of C. F. S.
Let “T = (ar,m) be an infinite triangular matrix satisfying the conditions of regularity

[13], i.e.,

r∑

m=0

ar,m = 1 as r → ∞,

ar,m = 0 for m > r,
r∑

m=0

|ar,m| ≤ M, a finite constant.

(1)
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The sequence-to-sequence transformation

tT
r :=

r∑

m=0

ar,msm =
r∑

m=0

ar,r–msr–m (2)

defines the sequence tT
r of triangular matrix means of the sequence {sr} generated by the

sequence of coefficients (ar,m).
If tT

r → s as r → ∞, then the infinite series
∑∞

r=0 hr or the sequence {sr} is summable to
s by a triangular matrix (T-method) [14].”

“Let

C1
r =

s0 + s1 + · · · + sr

r + 1

=
1

r + 1

r∑

m=0

sm → s as r → ∞. (3)

If C1
r → s as r → ∞, then the infinite series

∑∞
r=0 hr is summable to s by C1 means [14].”

The TC1 means (T-means of C1 means) is given by

tT .C1
r :=

r∑

m=0

ar,mC1
m

=
r∑

m=0

ar,m
1

m + 1

m∑

v=0

sm. (4)

If tT .C1
r → s as r → ∞, then the series

∑∞
r=0 hr or the sequence {sr} is summable to s by

T .C1 means.
The regularity of T and C1 methods implies the regularity of T .C1 method.

Remark 1 (Example) Consider an infinite series

1 +
∞∑

n=1

(–1)n.2n. (5)

The nth partial sum of (5) is given by

sn =

⎧
⎨

⎩
n + 1, n is even,

0, n is odd

and so

C1
n =

⎧
⎨

⎩
1, n is even,

0, n is odd.

Therefore, series (5) is not summable by (C, 1) means.
If we take an,k = 1

n+1 , then series (5) is also not summable by T means. But series (5) is
summable by T .C1 means. So, the product means is more powerful than the individual
means.
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Remark 2 TC1 means reduces to
(i) (H , 1

r+1 )C1 or H .C1 means if ar,m = 1
(r–m+1) log(r+1) ;

(ii) (N , pr)C1 or NpC1 means if ar,m = pr–m
Pr

, where Pr =
∑r

m=0 pm �= 0;
(iii) (N , p, q)(C, 1) or Np,qC1 means if ar,m = pr–mqm

Rr
, where Rr =

∑r
m=0 pmqr–m;

(iv) (N̄ , pr)(C, 1) or N̄pC1 means if ar,m = pm
Pr

.
Let Lz[0, 2π ] = {g : [0, 2π ] → R :

∫ 2π

0 |g(x)|z dx < ∞, z ≥ 1} be the space of functions (2π-
periodic and integrable). We define the norm ‖ · ‖(z) by

{
1

2π

∫ 2π

0

∣∣g(x)
∣∣z dx

} 1
z
, z ≥ 1.

As defined in “[14], w : [0, 2π ] → R is an arbitrary function with w(l) > 0 for 0 < l ≤ 2π

and liml→0+ w(l) = w(0) = 0.” Now we define

H (w)
z =

{
g ∈ Lz[0, 2π ] : sup

l �=0

‖g(·, +l) – g(·)‖z

w(l)
< ∞, z ≥ 1

}

and

‖ · ‖(w)
z = ‖g‖(w)

z = ‖g‖z + sup
l �=0

‖g(· + l) – g(·)‖z

w(l)
; z ≥ 1.

Note 1 w(l) and v(l) denote “Zygmund moduli of continuity [14].”
If we consider w(l)

v(l) as positive and non-decreasing,

‖g‖(v)
z ≤ max

(
1,

w(2π )
v(2π )

)
‖g‖(w)

z < ∞.

Thus,

H (w)
z ⊂ H (v)

z ⊂ Lz; z ≥ 1.

Remark 3
(i) If w(l) = lα in H (w), H (w) implies Hα class.

(ii) If w(l) = lα in H (w)
z , H (w) implies Hα,z class.

(iii) If z → ∞ in H (w)
z , H (w)

z implies H (w) class and Hα,z class implies Hα class.

Remark 4 We are not representing here the F. S. and C. F. S. as these trigonometric series
are well known and the detailed work on these series can be found in [14].

We denote the rth partial sum of the F. S. as

sr(g; x) – g(x) =
1

2π

∫ π

0
φx(l)

sin(r + 1
2 )l

sin l
2

dl.

The rth partial sum of C. F. S. is defined as

sr(g̃; x) – g̃(x) =
1

2π

∫ π

0
ψx(l)

cos(r + 1
2 )l

sin( l
2 )

dl,
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where

g̃ = –
1

2π

∫ π

0
ψx(l) cot

(
l
2

)
dl.

“The error estimation of function g is given by

Er(g) = min‖g – tr‖z,

where tr is a trigonometric polynomial of degree r [14].”
We write

φx(l) = φ(x, l) = g(x + l) + g(x – l) – 2g(x),

ψx(l) = ψ(x, l) = g(x + l) – g(x – l),

�pm = pm – pm+1, m ≥ 0,

Hr(l) =
1

2π

r∑

m=0

ar,m
1

m + 1

m∑

v=0

sin(v + 1
2 )l

sin( l
2 )

,

H̃r(l) =
1

2π

r∑

m=0

ar,m
1

m + 1

m∑

v=0

cos(v + 1
2 )l

sin( l
2 )

.

2 Main theorems
Theorem 2.1 If g ∈ H (w)

z class; z ≥ 1 and w(l)
v(l) are positive and non-decreasing, then the

error estimation of g by TC1 means of F. S. is

∥∥tT .C1
r – g

∥∥(v)
z = O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

,

where T = (ar,m) is an infinite triangular matrix satisfying (1) and w, v are defined as in
Note 1 provided

r–1∑

m=0

|�ar,m| = O
(

1
r + 1

)
and (r + 1)ar,r = O(1). (6)

Theorem 2.2 If g̃ ∈ H (w)
z class; z ≥ 1 and w(l)

v(l) are positive and non-decreasing, then the
error estimation of g̃ by TC1 means of C. F. S. is

∥∥t̃r
T .C1

– g̃
∥∥(v)

z = O
(

(log(r + 1) + 1)
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

,

where T = (ar,m) is an infinite triangular matrix satisfying (1), (6) and w, v are defined as
in Note 1.

3 Lemmas
Lemma 3.1 Under condition (1), Hr(l) = O(r + 1) for 0 < l < 1

r+1 .
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Proof For 0 < l < 1
r+1 , sin( l

2 ) ≥ l
π

, sin(rl) ≤ rl.

Hr(l) =
1

2π

r∑

m=0

ar,m
1

m + 1

m∑

v=0

sin(v + 1
2 )l

sin( l
2 )

,

∣∣Hr(l)
∣∣ ≤ 1

2π
× π

l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

m∑

v=0

sin

(
v +

1
2

)
l

∣∣∣∣∣

=
1
2l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

m∑

v=0

sin(2v + 1)
l
2

∣∣∣∣∣

≤ 1
2l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

m∑

v=0

(2v + 1)
l
2

∣∣∣∣∣

=
1
4

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

m∑

v=0

(2v + 1)

∣∣∣∣∣

=
1
4

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1
× (m + 1)2

∣∣∣∣∣

=
1
4

∣∣∣∣∣

r∑

m=0

ar,m(m + 1)

∣∣∣∣∣

=
1
4

(m + 1)
r∑

m=0

|ar,m|

= O(r + 1). �

Lemma 3.2 Under conditions (1) and (6), Hr(l) = O( 1
(r+1)l2 ) for 1

r+1 ≤ l ≤ π .

Proof For 1
r+1 ≤ l ≤ π , sin( l

2 ) ≥ l
π

, sin2 rl ≤ 1 and using Abel’s lemma, we have

Hr(l) =
1

2π

r∑

m=0

ar,m
1

r + 1

r∑

v=0

sin(v + 1
2 )l

sin( l
2 )

,

∣∣Hr(l)
∣∣ ≤ 1

2π
× π

l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

m∑

v=0

sin

(
v +

1
2

)
l

∣∣∣∣∣

=
1
2l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1
Im

{ m∑

v=0

ei(v+ 1
2 )l

}∣∣∣∣∣

=
1
2l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1
Im

{
ei l

2

m∑

v=0

eivl

}∣∣∣∣∣

=
1
2l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1
Im

{
e

il
2

1 – ei(m+1)l

1 – eil

}∣∣∣∣∣

=
1
2l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1
Im

{
ei(m+1)l – 1
2i sin( l

2 )

}∣∣∣∣∣

≤ 1
2l

× π

l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1
sin2(m + 1)

l
2

∣∣∣∣∣
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≤ π

2l2

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

∣∣∣∣∣

=
π

2l2

∣∣∣∣∣

r–1∑

m=0

(ar,m – ar,m+1)
m∑

v=0

1
v + 1

+ ar,r

r∑

m=0

1
m + 1

∣∣∣∣∣

≤ π

2l2

∣∣∣∣∣

r–1∑

m=0

�ar,m

m∑

v=0

1
v + 1

∣∣∣∣∣ + ar,r

∣∣∣∣∣

r∑

m=0

1
m + 1

∣∣∣∣∣

≤ π

2l2

[ r–1∑

m=0

|�ar,m| + ar,r

]
max

0≤m≤d

∣∣∣∣∣

d∑

m=0

1
m + 1

∣∣∣∣∣

= O
(

1
(r + 1)l2

)
. �

Lemma 3.3 Under condition (1), H̃r(l) = O( 1
l ) for 0 < l < 1

r+1 .

Proof For 0 < l ≤ 1
r+1 , using sin( l

2 ) ≥ l
π

and | cos rl| ≤ 1, we obtain

H̃r(l) =
1

2π

r∑

m=0

ar,m
1

m + 1

m∑

v=0

cos(v + 1
2 )l

sin( l
2 )

,

∣∣H̃r(l)
∣∣ ≤ 1

2π
× π

l

r∑

m=0

ar,m
1

m + 1

m∑

v=0

∣∣∣∣cos

(
v +

1
2

)
l
∣∣∣∣

≤ 1
2l

r∑

m=0

ar,m
1

m + 1

m∑

v=0

1

≤ 1
2l

r∑

m=0

ar,m,

∴ H̃r(l) = O
(

1
l

)
. �

Lemma 3.4 Under conditions (1) and (6), H̃r(l) = O( 1
(r+1)l2 ) for 1

r+1 ≤ l ≤ π .

Proof For 1
r+1 ≤ l ≤ π , using sin( l

2 ) ≥ l
π

, Abel’s lemma, and |∑r
m=0

sin(m+1)l
m+1 | ≤ 1 + π

2 ∀r and
l [15], we get

∣∣H̃r(l)
∣∣

≤ 1
2π

× π

l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

m∑

v=0

cos

(
v +

1
2

)
l

∣∣∣∣∣

≤ 1
2l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1

{2 sin( l
2 ) cos l

2 + 2 sin( l
2 ) cos 3l

2 + · · · + 2 sin( l
2 ) cos( (2m+1)l

2 )
2 sin( l

2 )

}∣∣∣∣∣

≤ 1
4l

× π

l

∣∣∣∣∣

r∑

m=0

ar,m
1

m + 1
{
sin l + sin 2l – sin l + sin 3l – sin 2l + · · ·

+ sin (m + 1)l – sin ml
}
∣∣∣∣∣
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≤ π

4l2

∣∣∣∣∣

r∑

m=0

ar,m
sin(m + 1)l

m + 1

∣∣∣∣∣

≤ π

4l2

∣∣∣∣∣

r–1∑

m=0

(ar,m – ar,m+1)
m∑

v=0

sin(v + 1)l
v + 1

+ ar,r

r∑

m=0

sin(m + 1)l
m + 1

∣∣∣∣∣

≤ π

4l2

[ r–1∑

m=0

|�ar,m|
∣∣∣∣∣

m∑

v=0

sin(v + 1)l
v + 1

∣∣∣∣∣ + ar,r

∣∣∣∣∣

r∑

m=0

sin(m + 1)l
m + 1

∣∣∣∣∣

]

≤
[

1
l2

( r–1∑

m=0

|�ar,m| + ar,r

)]
.

=
[

1
l2

{
O

(
1

r + 1

)
+ O

(
1

r + 1

)}]

= O
(

1
(r + 1)l2

)
. �

Lemma 3.5 “([16], p. 93)” Let g ∈ Hz
(w), then for 0 < l ≤ π :

(i) ‖φ(·, l)‖z = O(w(l));
(ii) ‖φ(· + y, l) – φ(·, l)‖z =

{ O(w(l)),
O(w(|y|));

(iii) If w(l) and v(l) are defined as in Note 1, then ‖φ(· + y, l) – φ(·, l)‖z = O(v(|y|)( w(l)
v(l) )).

Lemma 3.6 Let g̃ ∈ Hz
(w), then for 0 < l ≤ π :

(i) ‖ψ(·, l)‖z = O(w(l));
(ii) ‖ψ(· + y, l) – ψ(·, l)‖z =

{ O(w(l)),
O(w(|y|));

(iii) If w(l) and v(l) are defined as in Note 1, then ‖ψ(· + y, l) – ψ(·, l)‖z = O(v(|y|)( w(l)
v(l) )).

Proof This lemma can be proved along the same lines as the proof of Lemma 3.5(iii). �

4 Proof of the main theorems
4.1 Proof of Theorem 2.1

Proof Following Titchmarsh [17], sr(g; x) of F. S. is given by

sr(g; x) – g(x) =
1

2π

∫ π

0
φx(l)

sin(m + 1
2 )l

sin( l
2 )

dl.

Now, denoting T .C1 transform of sr(g; x) by tr
T .C1 ,

tr
T .C1

(x) – g(x) =
r∑

m=0

ar,m
(
C1

m(x) – g(x)
)

=
r∑

m=0

ar,m

(
1

m + 1

m∑

v=0

sv(g; x) – g(x)

)

=
∫ π

0
φx(l)

(
1

2π

r∑

m=0

ar,m
1

m + 1

m∑

v=0

sin(v + 1
2 )l

sin( l
2 )

)
dl,

tr
T .C1

(x) – g(x) =
∫ π

0
φx(l)Hr(l) dl. (7)
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Let

Rr(x) = tr
T .C1

(x) – g(x) =
∫ π

0
φx(l)Hr(l) dl. (8)

Then

Rr(x + y) – Rr(x) =
∫ π

0

(
φ(x + y, l) – φ(x, l)

)
Hr(l) dl.

“Using generalized Minkowski’s inequality Chui [18],” we get

∥∥Rr(·, +y) – Rr(·)∥∥z ≤
∫ π

0

∥∥φ(· + y, l) – φ(·, l)
∥∥

zHr(l) dt

=
(∫ 1

r+1

0
+

∫ π

1
r+1

)∥∥φ(· + y, l) – φ(·, l)
∥∥

zHr(l) dl

= I1 + I2. (9)

Using Lemmas 3.1 and 3.5(iii), we have

I1 =
∫ 1

r+1

0

∥∥φ(· + y, l) – φ(·, l)
∥∥

zHr(l) dl

= O(r + 1)
(

v
(|y|)

∫ 1
r+1

0

w(l)
v(l)

dl
)

= O
(

v
(|y|)w( 1

r+1 )
v( 1

r+1 )

)
. (10)

Also, using Lemmas 3.2 and 3.5(iii), we get

I2 =
∫ π

1
r+1

∥∥φ(· + y, l) – φ(·, l)
∥∥

zHr(l) dl

= O
(

1
r + 1

∫ π

1
r+1

v
(|y|) w(l)

l2v(l)
dl

)
. (11)

By (9), (10), and (11), we have

sup
y�=0

‖Rr(·, +y) – Rr(·)‖z

v(|y|) = O
(w( 1

r+1 )
v( 1

r+1 )

)
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

. (12)

Again applying Minkowski’s inequality, Lemma 3.1, Lemma 3.2, and ‖φ(·, l)‖z = O(w(l)),
we obtain

∥∥Rr(·)∥∥z =
∥∥tT .C1

r – g
∥∥

z

≤
(∫ 1

r+1

0
+

∫ π

1
r+1

)∥∥φ(·, l)
∥∥

zHr(l) dl
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= O
(

(r + 1)
∫ 1

r+1

0
w(l) dl

)
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2 dl

)

= O
(

w
(

1
r + 1

))
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2 dl

)
. (13)

Now, we have

∥∥Rr(·)∥∥v
z =

∥∥Rr(·)∥∥z + sup
y�=0

‖Rr(·, +y) – Rr(·)‖z

v(|y|) . (14)

Using (12) and (13), we get

∥∥Rr(·)∥∥v
z = O

(
w

(
1

r + 1

))
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2 dl

)

+ O
(w( 1

r+1 )
v( 1

r+1 )

)
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

. (15)

By the monotonicity of v(l), w(l) = w(l)
v(l) v(l) ≤ v(π ) w(l)

v(l) for 0 < l ≤ π , we get

∥∥Rr(·)∥∥v
z = O

(w( 1
r+1 )

v( 1
r+1 )

)
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

. (16)

Since w and v are moduli of continuity such that w(l)
v(l) is positive and non-decreasing, there-

fore

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl ≥ w( 1
r+1 )

v( 1
r+1 )

(
1

r + 1

)∫ π

1
r+1

1
l2 dl ≥ w( 1

r+1 )
2v( 1

r+1 )
.

Then

w( 1
r+1 )

v( 1
r+1 )

= O
(

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

. (17)

From (16) and (17), we get

∥∥Rr(·)∥∥(v)
z = O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

,

∥∥tT .C1
r – g

∥∥(v)
z = O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.
(18)

�

4.2 Proof of Theorem 2.2

Proof The integral representation of sr(g̃; x) is given by

sr(g̃; x) – g̃(x) =
1

2π

∫ π

0
ψx(l)

cos(r + 1
2 )l

sin( l
2 )

dl.
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Now, denoting T .C1 transform of sr(g̃; x) by t̃r
T .C1

, we get

t̃r
T .C1

(x) – g̃(x) =
r∑

m=0

ar,m
(
C1

m(x) – g̃(x)
)

=
r∑

m=0

ar,m

(
1

m + 1

m∑

v=0

sv(g̃; x) – g̃(x)

)

=
∫ π

0
ψx(l)

(
1

2π

r∑

m=0

ar,m
1

m + 1

m∑

v=0

cos(v + 1
2 )

sin( l
2 )

)
dl,

t̃r
T .C1

(x) – g̃(x) =
∫ π

0
ψx(l)H̃r(l) dl.

Let

R̃r(x) = t̃T .C1
r (x) – g̃(x) =

∫ π

0
ψx(l)H̃r dl.

Then

R̃r(x + y) – R̃r(x) =
∫ π

0

{
ψx(x + y, l) – ψx(x, l)

}
H̃r(l) dl.

Using “generalized Minkowski’s inequality Chui [18],” we get

∥∥R̃r(· + y) – R̃r(·)∥∥z ≤
∫ π

0

∥∥ψx(· + y, l)
∥∥

zH̃r(l) dl

=
(∫ 1

r+1

0
+

∫ π

1
r+1

)∥∥ψ(· + y, l) – ψ(·, l)
∥∥

zR̃r(l) dl

= I1 + I2. (19)

Using Lemmas 3.3 and 3.6(iii), we have

I1 =
∫ 1

r+1

0

∥∥ψ(· + y, l) – ψ(·, l)
∥∥

zH̃r(l) dl

= O
(

v
(|y|)w( 1

r+1 )
v( 1

r+1 )

∫ 1
r+1

0

1
l

dl
)

= O
(

v
(|y|)w( 1

r+1 )
v( 1

r+1 )
log(r + 1)

)
. (20)

Again using Lemmas 3.4 and 3.6(iii), we have

I2 =
∫ π

1
r+1

∥∥ψ(· + y, l) – ψ(·, l)
∥∥

zH̃r(l) dl

= O
(

1
r + 1

∫ π

1
r+1

v
(|y|) w(l)

l2v(l)
dl

)
. (21)
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Using (19), (20), and (21), we have

sup
y�=0

‖R̃r(· + y) – R̃r(·)‖z

v(|y|) = O
(w( 1

r+1 )
v( 1

r+1 )
log(r + 1)

)
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

. (22)

Again applying Minkowski’s inequality, Lemma 3.3, Lemma 3.4, and ‖ψ(·, l)‖z = O(w(l)),
we have

∥∥R̃r(·)∥∥z =
∥∥t̃r

T .C1
– g̃

∥∥
z ≤

(∫ 1
r+1

0
+

∫ π

1
r+1

)∥∥ψ(·, l)
∥∥

zH̃r(l) dl

= O
(∫ 1

r+1

0

w(l)
l

dl
)

+ O
(

1
r + 1

∫ π

1
r+1

w(l)
l2 dl

)

= O
(

w
(

1
r + 1

)
log(r + 1)

)
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2 dl

)
. (23)

Now, we have

∥∥R̃r(·)∥∥(v)
z =

∥∥R̃r(·)∥∥z + sup
y�=0

‖R̃r(· + y) – R̄r(·)‖z

v(|y|) .

Using (22) and (23), we get

∥∥R̃r(·)∥∥(v)
z = O

((
log(r + 1)

)
w

(
1

r + 1

))
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2 dl

)

+ O
(w( 1

r+1 )
v( 1

r+1 )
log(r + 1)

)
+ O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.

By the monotonicity of v(l), we have w(l) = w(l)
v(l) v(l) ≤ v(π ) w(l)

v(l) , 0 < l ≤ π , we get

∥∥R̃r(·)∥∥(v)
z = O

(w( 1
r+1 )

v( 1
r+1 )

log(r + 1)
)

+ O
(

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

. (24)

Using the fact that w(l)
v(l) is positive and non-decreasing, we have

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl ≥ w( 1
r+1 )

v( 1
r+1 )

1
r + 1

∫ π

1
r+1

1
l2 dl

≥ w( 1
r+1 )

2v( 1
r+1 )

.

Then

w( 1
r+1 )

v( 1
r+1 )

= O
(

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

. (25)
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From (24) and (25), we get

∥∥R̃r(·)∥∥(v)
z = O

(
log(r + 1)

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

+ O
(

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

,

∴
∥∥t̃r

T .C1
– g̃

∥∥(v)
z = O

(
log(r + 1) + 1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.
(26)

�

5 Corollary
Corollary 5.1 Let 0 ≤ β < α ≤ 1 and g̃ ∈ H(α),z; z ≥ 1. Then

∥∥t̃r
T .C1

– g̃
∥∥

(β),z =

⎧
⎨

⎩
O[(log(r + 1)e)(r + 1)β–α] if 0 ≤ β < α < 1,

O[ (log(r+1)e)(log(r+1)π )
r+1 ] if β = 0,α = 1.

Proof Putting w(l) = lα , v(l) = lβ , 0 ≤ β < α ≤ 1 in (26)

∥∥t̃r
T .C1

– g̃
∥∥

(β),z = O
[

log(r + 1)e
r + 1

∫ π

1
r+1

tα–β–2 dl
]

�⇒ ∥∥t̃r
T .C1

– g̃
∥∥

(β),z =

⎧
⎨

⎩
O( (log(r+1)e)

(r+1)
∫ π

1
r+1

lα–β–2 dl) if 0 ≤ β < α < 1,

O( log(r+1)e
r+1

∫ π
1

r+1
l–1 dl) if β = 0,α = 1,

∴
∥∥t̃r

T .C1
– g̃

∥∥
(β),z =

⎧
⎨

⎩
O[(log(r + 1)e)(r + 1)β–α] if 0 ≤ β < α < 1,

O[ (log(r+1)e)
r+1 × log(r + 1)π ] if β = 0,α = 1. �

Corollary 5.2 Let 0 ≤ β < α ≤ 1, a, b ∈R and suppose w(l) = lα
(log 1

l )a , w(l) = lβ
(log 1

l )b , 0 < l ≤
π , g̃ ∈ H (w)

z , z ≥ 1. Then

∥∥t̃r
T .C1

– g̃
∥∥(v)

z =

⎧
⎨

⎩
O[ log(r+1)e

{log(r+1)}b–a ] if α = β and a – b ≥ –1,

O[ (log(r+1)e)
log(r+1) ] if α = β and a – b = –1.

Proof We have

∥∥t̃r
T .C1

– f̃
∥∥(v)

z = O
(

log(r + 1)e
r + 1

∫ π

1
r+1

lα

l2(log 1
l )a × lβ

(log 1
l )b

dl
)

= O
(

log(r + 1)e
r + 1

∫ π

1
r+1

lα–β–2
(

log
1
l

)b–a

dl
)

∴
∥∥t̃η

T .C1
– g̃

∥∥(v)
z =

⎧
⎨

⎩
O[ log(r+1)e

{log(r+1)}b–a ] if α = β and a – b ≥ –1.

O[ (log(r+1)e)
log(r+1) ] if α = β and a – b = –1. �

Corollary 5.3 If ar,m = 1
(r–m+1) log(r+1) , then T .C1 means reduces to (H , 1

r+1 )(C, 1) means and
error estimation of a function g ∈ H (w)

z by (H , 1
r+1 )(C, 1) means of F. S. is

∥∥tH.C1
r – g

∥∥(v)
z = O

(
1

r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.
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Corollary 5.4 If ar,m = pr–m
Pr

, then T .C1 means reduces to Np.C1 and the error estimation
of g ∈ H (w)

v by Np.C1 means of F. S. is

∥∥tNp .C1

r – g
∥∥(v)

z = O
(

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.

Corollary 5.5 If ar,m = pr–mqm
Rr

, then T .C1 means reduces to Np,q.C1 and the error estima-
tion of g ∈ H (w)

v by Np,q.C1 means of F. S. is

∥∥tNp,q .C1

r – g
∥∥(v)

z = O
(

1
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.

Corollary 5.6 If ar,m = 1
(r–m+1) log(r+1) , then T .C1 means reduces to (H , 1

r+1 )(C, 1) means and
the error estimation of a function g̃ ∈ H (w)

z by (H , 1
r+1 )(C, 1) means of C. F. S. is

∥∥t̃r
H.C1

– g̃
∥∥(v)

z = O
(

(log(r + 1) + 1)
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.

Corollary 5.7 If ar,m = pr–m
Pr

, then T .C1 means reduces to Np.C1 and the error estimation
of g̃ ∈ H (w)

v by Np.C1 means of C. F. S. is

∥∥t̃r
Np .C1

– f̃
∥∥(v)

z = O
(

(log(r + 1) + 1)
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.

Corollary 5.8 If ar,m = pr–mqm
Rr

, then T .C1 means reduces to Np,q.C1 and the error estima-
tion of f̃ ∈ H (w)

v by Np,q.C1 means of C. F. S. is

∥∥t̃r
Np,q .C1

– g̃
∥∥(v)

z = O
(

(log(r + 1) + 1)
r + 1

∫ π

1
r+1

w(l)
l2v(l)

dl
)

.

Remark 5
(i) If z → ∞ in H (w)

z class, then H (w)
z class reduces to H (w) class. Also putting w(l) = lα

and v(l) = lβ in our Theorem 2.1, H (w) class reduces to Hα class; then, by putting
β = 0 in Hα class, Hα class reduces to Lipα class.

(ii) In our Theorem 2.1, by putting w(l) = lα , v(l) = lβ in H (w)
z class, H (w)

z class reduces to
Hα,z ; then, by putting β = 0 in Hα,z class, Hα,z class reduces to Lip(α, z) class.

6 Particular cases
6.1. Using Remark 4(i), our Theorem 2.1 becomes a particular case of Dhakal [1].
6.2. Using Remark 4(ii) and putting ar,m = pr–mqm

Rr
, where Rr =

∑r
m=0 pμqr–m in our of

Theorem 2.1, our result of Theorem 2.1 becomes a particular case of the main
theorem of Kushwaha and Dhakal [3].

6.3. Using Remark 4(i) and putting ar,m = pr–mqm
Rr

, where Rr =
∑r

m=0 pmqr–m in our
Theorem 2.1, our Theorem 2.1 becomes a particular case of the main theorem of
Dhakal [2].
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7 Conclusion
Approximation by trigonometric polynomials is at the heart of approximation theory.
Much of the advances in the theory of trigonometric approximation are due to the period-
icity of the functions. The study of error approximation of periodic functions in Lipschitz
and Hölder classes has been of great interest among the researchers [1–11], and [12] in re-
cent past. The trigonometric Fourier approximation (TFA) is of great importance due to its
wide applications in different branches of engineering such as electronics and communi-
cation engineering, electrical and electronics engineering, computer science engineering,
etc. Several elegant results on TFA can be found in a monograph [14].

In this paper, we, for the first time, obtain the best approximation of the functions g and
g̃ in a generalized Hölder class H (w)

r (r ≥ 1) using Matrix-C1 (T .C1) method of F. S. and
C. F. S. respectively. Since, in view of Remark 2, the product summability means H .C1,
NpC1, Np,qC1, and N̄pC1 are the particular cases of Matrix-C1 method, so our results also
hold for these methods, which are represented in a form of corollaries. In view of Remark 1,
it has been shown that (TC1) method is more powerful than the individual T method and
C1 method. Moreover, in view of Remark 5, some previous results (see Sect. 6) become the
particular cases of our Theorem 2.1. We also deduce a corollary for the Hα,r class (r ≥ 1).

Some other studies regarding the modulus of continuity (smoothness) of functions using
more generalized functional spaces may be addressed as a future work.
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