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Abstract
The Jacobian decomposition and the Gauss–Seidel decomposition of augmented
Lagrangian method (ALM) are two popular methods for separable convex
programming. However, their convergence is not guaranteed for three-block
separable convex programming. In this paper, we present a modified hybrid
decomposition of ALM (MHD-ALM) for three-block separable convex programming,
which first updates all variables by a hybrid decomposition of ALM, and then corrects
the output by a correction step with constant step size α ∈ (0, 2 –

√
2) which is much

less restricted than the step sizes in similar methods. Furthermore, we show that
2 –

√
2 is the optimal upper bound of the constant step size α. The rationality of

MHD-ALM is testified by theoretical analysis, including global convergence, ergodic
convergence rate, nonergodic convergence rate, and refined ergodic convergence
rate. MHD-ALM is applied to solve video background extraction problem, and
numerical results indicate that it is numerically reliable and requires less computation.

Keywords: The augmented Lagrangian method; Three-block separable convex
programming; Step size; Global convergence

1 Introduction
Many problems encountered in applied mathematics area can be formulated as separable
convex programming, such as basis pursuit (BP) problem [1–3], video background extrac-
tion problem [4–7], image decomposition [8–10], and so on. Thus the solving of separa-
ble convex programming plays a fundamental role in applied mathematics and has drawn
persistent attention. In the existing literature, several forms of separable convex program-
ming have been investigated [11–15], in which the following three-block separable convex
programming rouses more interest:

min

{ 3∑
i=1

θi(xi)
∣∣∣ 3∑

i=1

Aixi = b, xi ∈Xi, i = 1, 2, 3

}
, (1)

where θi : Rni �→ (–∞, +∞] (i = 1, 2, 3) are lower semicontinuous proper convex func-
tions, Ai ∈Rl×ni (i = 1, 2, 3) and b ∈Rl , Xi (i = 1, 2, 3) are nonempty closed convex sets in
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Rni (i = 1, 2, 3). Throughout this paper, we assume that the solution set of problem (1) is
nonempty.

The Lagrangian and augmented Lagrangian functions of problem (1) are defined, re-
spectively, as

L(x1, x2, x3,λ) =
3∑

i=1

θi(xi) –

〈
λ,

3∑
i=1

Aixi – b

〉
, (2)

Lβ (x1, x2, x3,λ) = L(x1, x2, x3,λ) +
β

2

∥∥∥∥∥
3∑

i=1

Aixi – b

∥∥∥∥∥
2

, (3)

where λ ∈ Rl is the Lagrange multiplier associated with the linear constraints in (1), and
β > 0 is a penalty parameter. Applying the augmented Lagrangian method (ALM) [16] to
problem (1), we can obtain the following iterative scheme:

⎧⎨
⎩(xk+1

1 , xk+1
2 , xk+1

3 ) = argmin{Lβ (x1, x2, x3,λk)|x1 ∈X1, x2 ∈X2, x3 ∈X3},
λk+1 = λk – β(A1xk+1

1 + A2xk+1
2 + A3xk+1

3 – b).
(4)

Obviously, three variables x1, x2, x3 are all involved in the minimization problem of (4),
which makes the method often hard to implement. One technique to handle this is to
split the subproblem into several small scale subproblems. Based on this, if we split it in
a Gauss–Seidel manner and adopt the famous alternating direction method of multiplier
(ADMM) [11], we obtain the following iterative scheme:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin{Lβ (x1, xk

2, xk
3,λk)|x1 ∈X1},

xk+1
2 = argmin{Lβ (xk+1

1 , x2, xk
3,λk)|x2 ∈X2},

xk+1
3 = argmin{Lβ (xk+1

1 , xk+1
2 , x3,λk)|x3 ∈X3},

λk+1 = λk – β(A1xk+1
1 + A2xk+1

2 + A3xk+1
3 – b).

(5)

On the other hand, if we split it in a Jacobian manner, we get the following full parallel
iterative scheme:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin{Lβ (x1, xk

2, xk
3,λk)|x1 ∈X1},

xk+1
2 = argmin{Lβ (xk

1, x2, xk
3,λk)|x2 ∈X2},

xk+1
3 = argmin{Lβ (xk

1, xk
2, x3,λk)|x3 ∈X3},

λk+1 = λk – β(A1xk+1
1 + A2xk+1

2 + A3xk+1
3 – b).

(6)

Compared with the minimization problem in (4), the scale of the minimization procedures
in (5) and (6) is decreased, and they fully utilize the separable property of the objective
function of (1), thus the new iterative schemes (5) and (6) gain some solvability. However,
their convergence cannot be guaranteed under milder conditions as shown in [12, 17].
To overcome this drawback, several new techniques, such as the regularization method
with large proximal parameter [18–23], the prediction-correction method with shrunk
step size [12, 13, 24–26], etc., have been developed.
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Compared with the regularization method, the prediction-correction method has at-
tracted extensive interest, and during the past decades many scholars have performed
studies in this direction. For example, He et al. [24] proposed an ADMM-based contrac-
tion type method for solving multi-block separable convex programming, which first gen-
erates a temporal iterate by (5), and then corrects it with a Gaussian back substitution
procedure. Later, He et al. [12] developed a full Jacobian decomposition of the augmented
Lagrangian method for solving multi-block separable convex programming, which first
generates a temporal iterate by (6), and then corrects it with a constant step size or varying
step size. Different from the above, Han et al. [13] proposed a partial splitting augmented
Lagrangian method for solving three-block separable convex programming, which first
updates the primal variables x1, x2, x3 in a partially-parallel manner, and then corrects x3,
λ with a constant step size. Later, Wang et al. [25] presented a proximal partially-parallel
splitting method for solving multi-block separable convex programming, which first up-
dates all primal variables in a partially-parallel manner, and then corrects the output with
a constant step size or varying step size. Quite recently, Chang et al. [26] proposed a con-
vergent prediction-correction-based ADMM in which more minimization problems are
involved. In conclusion, the above iteration schemes first generate a temporal iterate by
(5) or (6) or their variants, and then generate the new iterate by correcting the temporal
iterate with varying step size or a constant step size.

Varying step size needs to be dynamically updated at each iteration, which might be
computationally demanding for large-scale (1). Hence in this paper, we consider the
prediction-correction method with constant step size for solving problem (1). To the best
of our knowledge, He et al. [12] first proposed a prediction-correction method with con-
stant step size for solving (1), and they proved that the upper bound of the constant step
size is 0.2679. By taking a hybrid splitting of (4) as the prediction step, Wang et al. [25]
relaxed the upper bound of the constant step size to 0.3670 and Han et al. [13] further
relaxed it to 0.3820. In practice, to enhance the numerical efficiency of the corresponding
iteration method, larger values of the step size are preferred as long as the convergence
is still guaranteed [26]. In this paper, based on the methods in [12, 13, 25], we propose a
modified hybrid decomposition of the augmented Lagrangian method with constant step
size, whose upper bound is relaxed to 0.5858.

The rest of this paper is organized as follows. Section 2 lists some notations and basic
results. In Sect. 3, we present a modified hybrid decomposition of the augmented La-
grangian method with larger step size for problem (1) and establish its global convergence
and refined convergence rate. Furthermore, a simple example is given to illustrate that
2 –

√
2 ∼= 0.5858 is the optimal upper bound of the constant step size in MHD-ALM.

In Sect. 4, some numerical results are given to demonstrate the numerical advantage of
larger step size. Finally, a brief conclusion including some possible future works is drawn
in Sect. 5.

2 Preliminaries
In this section, we give some notations and basic results about the minimization problem
(1), which will be used in the forthcoming discussions.

Throughout this paper, we define the following notations:

x = (x1, x2, x3), v = (x2, x3,λ), w = (x1, x2, x3,λ),
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θ (x) = θ1(x1) + θ2(x2) + θ3(x3)

and

A = (A1, A2, A3), X = X1 ×X2 ×X3, V = X2 ×X3 ×Rl, W = X ×Rl.

Definition 2.1 A tuple (x∗,λ∗) ∈W is called a saddle point of the Lagrangian function (2)
if it satisfies the inequalities

Lλ∈Rl
(
x∗,λ

)≤L
(
x∗,λ∗)≤Lx∈X

(
x,λ∗). (7)

Solving problem (1) is equivalent to finding a saddle point of L(x,λ) [26, 27]. Therefore,
to solve (1), we only need to solve the two inequalities in (7), which can be written as the
following mixed variational inequality:

θ (x) – θ
(
x∗) +

(
w – w∗)
F

(
w∗)≥ 0, ∀w ∈W , (8)

where

F(w) =

⎛
⎜⎜⎜⎝

–A

1 λ

–A

2 λ

–A

3 λ∑3

i=1 Aixi – b

⎞
⎟⎟⎟⎠ =

(
–A
λ

Ax – b

)
=

(
0 –A


A 0

)(
x
λ

)
–

(
0
b

)
. (9)

Because F(w) is a linear mapping with skew-symmetric coefficient matrix, it satisfies the
following property:

(
w′ – w

)
F
(
w′) =

(
w′ – w

)
F(w), ∀w′, w ∈W . (10)

The mixed variational inequality (8) is denoted by MVI(W , F , θ ), whose solution set is
denoted by W∗, which is nonempty from the assumption on problem (1).

To solve MVI(W , F , θ ), He et al. [28] presented the following prototype algorithm:

A prototype algorithm for MVI(W , F, θ ), denoted by ProAlo:
Prediction: For given vk , find ŵk ∈W and Q satisfying

θ (x) – θ
(
x̂k) +

(
w – ŵk)
F

(
ŵk)≥ (v – v̂k)
Q

(
vk – v̂k), ∀w ∈W , (11)

where the matrix Q has the property: (Q + Q
) is positive definite.
Correction: Determine a nonsingular matrix M, a scalar α > 0, and generate the new

iterate vk+1 via

vk+1 = vk – αM
(
vk – v̂k). (12)

Condition 2.1 The matrices Q, M in the ProAlo satisfy that the three matrices Q + Q
,
H := QM–1, G(α) := Q + Q
 – αM
HM are positive definite.
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Under Condition 2.1, He et al. [28] established the convergence results of ProAlo, includ-
ing the global convergence, the worst-case O(1/t) convergence rate in ergodic or noner-
godic sense, where t is the iteration counter. See Theorems 3.3, 4.2, 4.5 in [28].

To end this section, we give the following lemma which will be used in the subsequent
section.

Lemma 2.1 ([27]) Let X ⊆Rn be a closed nonempty convex set, θ (x) and f (x) be two con-
vex functions. If the function θ (x) is nondifferentiable, the function f (x) is differentiable,
and the solution set of the problem min{θ (x) + f (x)|x ∈X } is nonempty, then

x∗ ∈ argmin
{
θ (x) + f (x)|x ∈X

}

if and only if

x∗ ∈X , θ (x) – θ
(
x∗) +

(
x – x∗)
∇f

(
x∗)≥ 0, ∀x ∈X .

3 Algorithm and its convergence
In this section, we give the process of the modified hybrid decomposition of the augmented
Lagrangian method (MHD-ALM) for three-block separable convex programming (1) and
establish its convergence results, including global convergence, ergodic convergence rate,
nonergodic convergence rate, and refined ergodic convergence rate.

Algorithm: MHD-ALM
Step 0. Let parameters α ∈ (0, 2–

√
2), β > 0, tolerance error ε > 0. Choose an initial point

v0 = (x0
2, x0

3,λ0) ∈ V . Set k = 0.
Step 1. Compute the prediction iterate w̃k = (x̃k

1, x̃k
2, x̃k

3, λ̃k) via

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̃k
1 = argmin{Lβ (x1, xk

2, xk
3,λk)|x1 ∈X1},

x̃k
2 = argmin{Lβ (x̃k

1, x2, xk
3,λk)|x2 ∈X2},

x̃k
3 = argmin{Lβ (x̃k

1, xk
2, x3,λk)|x3 ∈X3},

λ̃k = λk – β(A1x̃k
1 + A2x̃k

2 + A3x̃k
3 – b).

(13)

Step 2. If max{‖A2xk
2 – A2x̃k

2‖,‖A3xk
3 – A3x̃k

3‖,‖λk – λ̃k‖} ≤ ε, then stop; otherwise, go to
Step 3.

Step 3. Generate the new iterate wk+1 = (xk+1
1 , xk+1

2 , xk+1
3 ,λk+1) by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = x̃k

1,

xk+1
2 = xk

2 – α(xk
2 – x̃k

2),

xk+1
3 = xk

3 – α(xk
3 – x̃k

3),

λk+1 = λk – α(λk – λ̃k).

(14)

Replace k + 1 by k, and go to Step 1.

Remark 3.1 Different from the iterative schemes (5) and (6), the iterative scheme (13) first
updates the primal variable x1 and then updates the primal variables x2, x3 in a parallel
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manner. Furthermore, the feasible set of the step size α in MHD-ALM is extended from
(0, 0.2679) in [12], (0, 0.3820) in [13], (0, 0.3670) in [25] to (0, 0.5858).

The methods in [12, 13, 24–26] and MHD-ALM all fall into the algorithmic framework
of prediction-correction methods. The main differences among these methods are: (i) in
the prediction step, the methods in [24, 26] update all the primal variables in a sequential
order; the method in [12] updates all the primal variables in a parallel manner; the methods
in [13, 25] and MHD-ALM update all the primal variables in a partial parallel manner, i.e.,
they first update x1 and then update x2, x3 in a parallel manner; (ii) in the correction step,
the method in [13] updates x3, λ; the method in [26] and MHD-ALM update x2, x3, λ, and
the methods in [12, 24, 25] update all the variables.

The convergence analysis of MHD-ALM needs the following assumption and auxiliary
sequence.

Assumption 3.1 The matrices A2, A3 in problem (1) are both full column rank.

Define an auxiliary sequence ŵk = (x̂k
1, x̂k

2, x̂k
3, λ̂k) as

x̂k
i = x̃k

i (i = 1, 2, 3), λ̂k = λk – β
(
A1x̃k

1 + A2xk
2 + A3xk

3 – b
)
. (15)

To prove the convergence results of MHD-ALM, we only need cast it into the ProAlo
and ensure the following two conditions hold: (i) the generated sequence satisfying (11),
(12); (ii) the resulting matrices Q, M satisfying Condition 2.1 in Sect. 2. We first verify the
first condition. Based on Lemma 2.1, we can derive the first order optimality conditions
of the subproblems in (13), which are summarized in the following lemma.

Lemma 3.1 Let {wk} be the sequence generated by MHD-ALM and {ŵk} be defined as in
(15). Then it holds that

θ (x) – θ
(
x̂k) +

(
w – ŵk)
F

(
ŵk)≥ (v – v̂k)
Q

(
vk – v̂k), ∀w ∈W , (16)

where the matrix Q is defined by

Q =

⎛
⎜⎝

βA

2 A2 0 0
0 βA


3 A3 0
–A2 –A3 Il/β

⎞
⎟⎠ . (17)

Proof Based on Lemma 2.1 and using the notation of ŵk in (15), the first order optimality
conditions for the three minimization problems in (13) can be summarized as the follow-
ing inequalities:

θ1(x1) – θ1
(
x̂k

1
)

+
(
x1 – x̂k

1
)
(–A


1 λ̂k)≥ 0, ∀x1 ∈X1,

θ2(x2) – θ2
(
x̂k

2
)

+
(
x2 – x̂k

2
)
(–A


2 λ̂k – βA

2 A2

(
xk

2 – x̂k
2
))≥ 0, ∀x2 ∈X2,

θ3(x3) – θ3
(
x̂k

3
)

+
(
x3 – x̂k

3
)
(–A


3 λ̂k – βA

3 A3

(
xk

3 – x̂k
3
))≥ 0, ∀x3 ∈X3.
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Furthermore, the definition of the variable λ̂k in (15) gives

(
λ – λ̂k)
(A1x̂k

1 + A2x̂k
2 + A3x̂k

3 – b + A2
(
xk

2 – x̂k
2
)

+ A3
(
xk

3 – x̂k
3
)

+
1
β

(
λ̂k – λk)) = 0,

∀λ ∈Rl.

Adding the above four inequalities, rearranging terms, and using the definition of the ma-
trix Q, the function F(w), we can get the result (16). This completes the proof. �

Remark 3.2 When max{‖A2xk
2 –A2x̃k

2‖,‖A3xk
3 –A3x̃k

3‖,‖λk – λ̃k‖} = 0, by (15), we get A2xk
2 =

A2x̂k
2, A3xk

3 = A3x̂k
3, λk = λ̂k . Thus, Q(vk – v̂k) = 0. This and inequality (16) indicate that

θ (x) – θ
(
x̂k) +

(
w – ŵk)
F

(
ŵk)≥ 0, ∀w ∈W .

Therefore, wk ∈W∗, and the stopping criterion of MHD-ALM is reasonable.

By the definition of λ̂k in (15), the updating formula of λ̃k can be represented as

λ̃k = λk – β
(
A1x̃k

1 + A2x̃k
2 + A3x̃k

3 – b
)

= λk –
(
λk – λ̂k – β

(
A2
(
xk

2 – x̂k
2
)

+ A3
(
xk

3 – x̂k
3
)))

= λk – (–βA2, –βA3, Il)
(
vk – v̂k).

This together with (14), (15) gives

⎧⎨
⎩xk+1

1 = x̃k
1,

vk+1 = vk – αM(vk – v̂k),
(18)

where the matrix M is defined as

M =

⎛
⎜⎝

Il 0 0
0 Il 0

–βA2 –βA3 Il

⎞
⎟⎠ . (19)

Now to establish the convergence results of MHD-ALM, we only need to verify that the
matrices Q, M satisfy Condition 2.1 in Sect. 2.

Lemma 3.2 Let the matrices Q, M be defined as in (17) and (19). If α ∈ (0, 0.5858) and
Assumption 3.1 hold, then we have

(i) the symmetric matrix Q + Q
 is positive definite;
(ii) the matrix H = QM–1 is symmetric and positive definite;

(iii) the matrix G(α) = Q + Q
 – αM
HM is symmetric and positive definite.

Proof (i) From the definition of Q, we have

Q + Q
 =

⎛
⎜⎝

2βA

2 A2 0 –A


2

0 2βA

3 A3 –A


3

–A2 –A3 2Il/β

⎞
⎟⎠ .
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Therefore, for any v = (x2, x3,λ) �= 0, we have

v
(Q + Q
)v = 2β‖A2x2‖2 + 2β‖A3x3‖2 + 2λ
(A2x2 + A3x3) +
2
β

‖λ‖2. (20)

• If (x2, x3) = 0, then λ �= 0, so by (20), we get v
(Q + Q
)v = 2
β
‖λ‖2 > 0.

• If (x2, x3) �= 0, then from (20) we get

v
(Q + Q
)v ≥ β‖A2x2‖2 + β‖A3x3‖2 > 0,

where the first inequality follows from the inequality 2x
y ≥ –(β‖x‖2 + ‖y‖2/β), and
the second inequality comes from Assumption 3.1.

(ii) From the definition of Q, M, we have

H =

⎛
⎜⎝

βA

2 A2 0 0
0 βA


3 A3 0
0 0 Il/β

⎞
⎟⎠ ,

which is obviously positive definite by Assumption 3.1.
(iii) Similarly, from the definition of Q, M, we have

G(α) =

⎛
⎜⎝

β(2 – 2α)A

2 A2 –αβA


2 A3 –(1 – α)A

2

–αβA

3 A2 β(2 – 2α)A


3 A3 –(1 – α)A

3

–(1 – α)A2 –(1 – α)A3 (2 – α)Il/β

⎞
⎟⎠

= L
R(α)L,

where

L =

⎛
⎜⎝

√
βA2 0 0
0

√
βA3 0

0 0 Il/
√

β

⎞
⎟⎠ , R(α) =

⎛
⎜⎝

(2 – 2α)Il –αIl –(1 – α)Il

–αIl (2 – 2α)Il –(1 – α)Il

–(1 – α)Il –(1 – α)Il (2 – α)Il

⎞
⎟⎠ .

This together with Assumption 3.1 implies that we only need to prove the matrix R(α) is
positive definite. In fact, it can be written as

R(α) =

⎛
⎜⎝

2 – 2α –α –(1 – α)
–α 2 – 2α –(1 – α)

–(1 – α) –(1 – α) 2 – α

⎞
⎟⎠⊗ Il,

where ⊗ denotes the matrix Kronecker product. Thus, we only need to prove the 3 order
matrix

⎛
⎜⎝

2 – 2α –α –(1 – α)
–α 2 – 2α –(1 – α)

–(1 – α) –(1 – α) 2 – α

⎞
⎟⎠
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is positive definite, whose three eigenvalues are λ1 = 2 – α, λ2 = 2 – 2α –
√

3α2 – 4α + 2,
λ3 = 2 – 2α +

√
3α2 – 4α + 2. Then, solving the following three inequalities simultaneously

⎧⎪⎪⎨
⎪⎪⎩

2 – α > 0,

2 – 2α –
√

3α2 – 4α + 2 > 0,

2 – 2α +
√

3α2 – 4α + 2 > 0,

we get 0 < α < 2 –
√

2 ∼= 0.5858. Therefore, the matrix G is positive definite for any α ∈
(0, 0.5858). This completes the proof. �

Lemma 3.2 indicates that the matrices Q, M defined as in (17) and (19) satisfy Condi-
tion 2.1 in Sect. 2, and thus we get the following convergence results of MHD-ALM based
on Theorems 3.3, 4.2, 4.5 in [28].

Theorem 3.1 (Global convergence) Let {wk} be the sequence generated by MHD-ALM.
Then it converges to a vector w∞, which belongs to W∗.

Theorem 3.2 (Ergodic convergence rate) Let {wk} be the sequence generated by MHD-
ALM, {ŵk} be the corresponding sequence defined in (15). Set

w̄t =
1
t

t∑
k=0

ŵk .

Then, for any integer t ≥ 1, we have

θ
(
x̄t) – θ (x) +

(
w̄t – w

)
F(w) ≤ 1
2αt
∥∥v – v0∥∥2

H , ∀w ∈W . (21)

Theorem 3.3 (Nonergodic convergence rate) Let {wk} be the sequence generated by MHD-
ALM. Then, for any w∗ ∈W∗ and integer t ≥ 1, we have

∥∥M
(
vt – v̂t)∥∥2

H ≤ 1
c0t
∥∥v0 – v∗∥∥2

H ,

where c0 > 0 is a constant.

The term

1
2αt
∥∥v – v0∥∥2

H

on the right-hand side of (21) is used to measure the ergodic convergence rate of MHD-
ALM. However, it is not only independent of the distance between the initial iterate w0

and the solution set W∗ but also hard to estimate due to the variable v. Therefore, in-
equality (21) is not a reasonable criterion to measure the nonergodic convergence rate of
MHD-ALM. In the following, we shall give a refined result from the objective function and
constraint condition of problem (1), which is more reasonable, accurate, and intuitive.
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Lemma 3.3 Let {wk} be the sequence generated by MHD-ALM. Then, for any w ∈ W , we
have

α
(
θ (x) – θ

(
x̂k) +

(
w – ŵk)
F

(
ŵk))≥ 1

2
(∥∥v – vk+1∥∥2

H –
∥∥v – vk∥∥2

H

)
+

α

2
∥∥vk – v̂k∥∥2

H . (22)

Proof The proof is similar to that of Lemma 3.1 in [28] and is omitted for brevity of this
paper. This completes the proof. �

Theorem 3.4 (Refined ergodic convergence rate) Let {wk} be the sequence generated by
MHD-ALM, {ŵk} be the sequence defined in (15). Set

w̄t =
1
t

t–1∑
k=0

ŵk .

Then, for any integer t ≥ 1, there exists a constant c > 0 such that

⎧⎨
⎩|θ (x̄t) – θ (x∗)| ≤ c

2αt ,

‖Ax̄t – b‖ ≤ c
2αt .

Proof Choose w∗ = (x∗,λ∗) ∈ W∗. Then, for any λ ∈ Rl , we have w̃∗ := (x∗,λ) ∈ W . From
the definition of F(w) in (9), we have

(
w̃∗ – ŵk)
F

(
ŵk)

=
(
w̃∗ – ŵk)
F

(
w̃∗)

=

(
x∗ – x̂k

λ – λ̂k

)
(
–A
λ

Ax∗ – b

)

= –λ
(Ax∗ – Ax̂k)
= λ
(Ax̂k – b

)
,

where the first equation follows from (10). Setting w = w̃∗ in (22), we get

α
(
θ
(
x̂k) – θ

(
x∗) –

(
w̃∗ – ŵk)
F

(
ŵk))≤ 1

2
(∥∥ṽ∗ – vk∥∥2

H –
∥∥ṽ∗ – vk+1∥∥2

H

)
–

α

2
∥∥vk – v̂k∥∥2

H .

Combining the above two inequalities gives

α
(
θ
(
x̂k) – θ

(
x∗) – λ
(Ax̂k – b

))≤ 1
2
(∥∥w̃∗ – wk∥∥2

H –
∥∥ṽ∗ – vk+1∥∥2

H

)
–

α

2
∥∥vk – v̂k∥∥2

H .

Summing the above inequality from k = 0 to t – 1 yields

t–1∑
k=0

θ
(
x̂k) – tθ

(
x∗) – λ


(
A

t–1∑
k=0

x̂k – tb

)
≤ 1

2α

∥∥ṽ∗ – v0∥∥2
H .
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Dividing both sides of the above inequality by t, we get

1
t

t–1∑
k=0

θ
(
x̂k) – θ

(
x∗) – λ
(Ax̄t – b

)≤ 1
2αt
∥∥ṽ∗ – v0∥∥2

H .

Then it follows from the convexity of θi (i = 1, 2, 3) that

θ
(
x̄t) – θ

(
x∗) – λ
(Ax̄t – b

)≤ 1
2αt

∥∥∥∥∥
(

y0 – y∗

λ0 – λ

)∥∥∥∥∥
2

H

, (23)

where y0 = (x0
2, x0

3), y∗ = (x∗
2, x∗

3). Since (23) holds for any λ, we can set

λ = –
Ax̄t – b

‖Ax̄t – b‖ ,

and consequently,

θ
(
x̄t) – θ

(
x∗) + ‖Ax̄t – b‖ ≤ 1

2αt
sup

‖λ‖≤1

∥∥∥∥∥
(

y0 – y∗

λ0 – λ

)∥∥∥∥∥
2

H

.

Set

c = sup
‖λ‖≤1

∥∥∥∥∥
(

y0 – y∗

λ0 – λ

)∥∥∥∥∥
2

H

,

and we thus get

θ
(
x̄t) – θ

(
x∗) +

∥∥Ax̄t – b
∥∥≤ c

2αt
.

Since x∗ ∈X ∗ (here X ∗ denotes the solution set of problem (1)), we have

θ
(
x̄t) – θ

(
x∗)≥ 0.

Combining the above two inequalities gives

⎧⎨
⎩|θ (x̄t) – θ (x∗)| ≤ c

2αt ,

‖Ax̄t – b‖ ≤ c
2αt ,

which completes the proof. �

As mentioned in Sect. 1, He et al. [12] used a simple example to show that the iterative
scheme (6) may diverge for two-block separable convex programming. If we set θ1 = 0,
A1 = 0 in (1) and MHD-ALM, then MHD-ALM reduces to the method in [12]. In this
case, the feasible set of α in [12] is (0,0.3670), the same as that of the method in [25] for
three-block separable convex programming. Now we use this example given in [12] to
show that: (i) larger values of α ∈ (0, 2 –

√
2) can enhance the performance of MHD-ALM;

(ii) MHD-ALM with α ≥ 2 –
√

2 ∼= 0.5858 may diverge.
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Example 3.1 Consider the linear equation

x2 + x3 = 0. (24)

Obviously, the linear equation (24) is a special case of problem (1) with the specifications:
θ1 = θ2 = θ3 = 0, A1 = 0, A2 = A3 = 1, b = 0, X1 = X2 = X3 = R. Due to θ1 = 0, A1 = 0, in the
following we do not consider the variable x1. The solution set of the corresponding mixed
variation inequalities is

W∗ =
{(

x∗
2, x∗

3,λ∗)|x∗
2 + x∗

3 = 0,λ∗ = 0
}

.

For MHD-ALM, we set β = 1, the initial point x0
2 = x0

3 = 0, λ0 = 1, and choose

α ∈ {0.20, 0.21, 0.22, . . . , 0.55}.

The stopping criterion is set as

max
{∣∣xk

2 + xk
3
∣∣, ∣∣λk∣∣}≤ 10–5,

or the number of iterations exceeds 10,000.
The numerical results are graphically shown in Fig. 1, which illustrates that when α ≤

0.5, the number of iterations is descending with respect to α, while when α ∈ (0.5, 0.55),
the number of iterations increases quickly. Therefore, α = 0.5 is optimal for this problem,
and larger values of α in its feasible set indeed can enhance the numerical performance
of MHD-ALM. Of course, some extreme values, such as the values near the upper bound
0.5858, are not appropriate choices.

Figure 1 Sensitivity test on the step size α
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Now, we show that MHD-ALM may diverge for α ≥ 2 –
√

2. By some simple manipula-
tions, the iterative scheme of (13) and (14) for problem (24) can be written in the following
compact form:

⎛
⎜⎝

xk+1
2

xk+1
3

λk+1

⎞
⎟⎠ = P(α)

⎛
⎜⎝

xk
2

xk
3

λk

⎞
⎟⎠ , (25)

where

P(α) =

⎛
⎜⎝

1 – α –α α

–α 1 – α α

α α 1 – 2α

⎞
⎟⎠ .

Three eigenvalues of the matrix P(α) are

λ1 = 1, λ2 = 1 – 2α +
√

2α, λ3 = 1 – 2α –
√

2α.

Now let us consider the following two cases:
(1) For any α > 2 –

√
2, we have

λ3 = 1 – (2 +
√

2)α < 1 – (2 +
√

2)(2 –
√

2) = –1.

Then ρ(P(α)) > 1 for α > 2 –
√

2, where ρ(P(α)) is the spectral radius of P(α). Hence, the
iterative scheme (25) with α > 2 –

√
2 is divergent for this problem.

(2) For α = 2 –
√

2, by eigenvalue decomposition, the matrix P(2 –
√

2) can be decom-
posed as

P(2 –
√

2) = VDV 
,

where

V =

⎛
⎜⎝

–1/2 –
√

2/2 1/2
–1/2

√
2/2 1/2√

2/2 0
√

2/2

⎞
⎟⎠ , D =

⎛
⎜⎝

–1 0 0
0 1 0
0 0 4

√
2 – 5

⎞
⎟⎠ .

Thus, by (25), we get

⎛
⎜⎝

xk+1
2

xk+1
3

λk+1

⎞
⎟⎠ =

⎛
⎜⎜⎝

–
√

2((–1)k –(4
√

2–5)k )
4

–
√

2((–1)k –(4
√

2–5)k )
4

(–1)k

2 + (4
√

2–5)k

2

⎞
⎟⎟⎠ ,

from which it holds that

⎛
⎜⎝

x2k
2

x2k
3

λ2k

⎞
⎟⎠→

⎛
⎜⎝

–
√

2
4

–
√

2
4

1
2

⎞
⎟⎠ ,

⎛
⎜⎝

x2k+1
2

x2k+1
3

λ2k+1

⎞
⎟⎠→

⎛
⎜⎝

√
2

4√
2

4
– 1

2

⎞
⎟⎠ .
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Hence, the iterative scheme (25) with α = 2–
√

2 is also divergent for this problem. Overall,
2 –

√
2 is the optimal upper bound of the step size α in MHD-ALM.

Now let us consider some special cases and extensions of MHD-ALM:
(1) Problem (1) with θ1 = 0, A1 = 0 reduces to two-block separable convex programming,

which can be solved by MHD-ALM as follows:
⎧⎪⎪⎨
⎪⎪⎩

x̃k
2 = argmin{Lβ (x2, xk

3,λk)|x2 ∈X2},
x̃k

3 = argmin{Lβ (xk
2, x3,λk)|x3 ∈X3},

λ̃k = λk – β(A2x̃k
2 + A3x̃k

3 – b),

(26)

and ⎧⎪⎪⎨
⎪⎪⎩

xk+1
2 = xk

2 – α(xk
2 – x̃k

2),

xk+1
3 = xk

3 – α(xk
3 – x̃k

3),

λk+1 = λk – α(λk – λ̃k).

(27)

Since the iterative scheme (26), (27) is a special case of MHD-ALM, it is convergent for
any α ∈ (0, 2 –

√
2). Furthermore, by Example 3.1, 2 –

√
2 is the optimal upper bound of

the constant step size α in (26), (27).
(2) Similarly, problem (1) with θ3 = 0, A3 = 0 also reduces to two-block separable convex

programming, which can be solved by MHD-ALM as follows:
⎧⎪⎪⎨
⎪⎪⎩

x̃k
1 = argmin{Lβ (x1, xk

2,λk)|x1 ∈X1},
x̃k

2 = argmin{Lβ (x̃k
1, x2,λk)|x2 ∈X2},

λ̃k = λk – β(A1x̃k
1 + A2x̃k

2 – b),

(28)

and ⎧⎪⎪⎨
⎪⎪⎩

xk+1
1 = x̃k

1,

xk+1
2 = xk

2 – α(xk
2 – x̃k

2),

λk+1 = λk – α(λk – λ̃k).

(29)

Following a similar analysis procedure, we can prove that the iterative scheme (28), (29) is
convergent for any α ∈ (0, 1).

(3) Extending MHD-ALM to solve four-block separable convex programming:

min

{ 4∑
i=1

θi(xi)
∣∣∣ 4∑

i=1

Aixi = b, xi ∈Xi, i = 1, 2, 3, 4

}
,

we can get the following iterative scheme:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃k
1 = argmin{Lβ (x1, xk

2, xk
3, xk

4,λk)|x1 ∈X1},
x̃k

2 = argmin{Lβ (x̃k
1, x2, xk

3, xk
4,λk)|x2 ∈X2},

x̃k
3 = argmin{Lβ (x̃k

1, xk
2, x3, xk

4,λk)|x3 ∈X3},
x̃k

4 = argmin{Lβ (x̃k
1, xk

2, xk
3, x4,λk)|x4 ∈X4},

λ̃k = λk – β(A1x̃k – b),

(30)
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and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = x̃k

1,

xk+1
2 = xk

2 – α(xk
2 – x̃k

2),

xk+1
3 = xk

3 – α(xk
3 – x̃k

3),

xk+1
4 = xk

4 – α(xk
4 – x̃k

4),

λk+1 = λk – α(λk – λ̃k).

(31)

With similar reasoning, we can prove that the iterative scheme (30), (31) is convergent for
any α ∈ (0, 2 –

√
3).

4 Numerical results
In this section, we demonstrate the practical efficiency of MHD-ALM by applying it to
recover low-rank and sparse components of matrices from incomplete and noisy obser-
vation. Furthermore, to give more insight into the behavior of MHD-ALM, we compare
it with the full Jacobian decomposition of the augmented Lagrangian method (FJD-ALM)
[12] and the proximal partially parallel splitting method with constant step size (PPPSM)
[25]. All experiments are performed on a Pentium(R) Dual-Core CPU T4400@2.2 GHz
PC with 4 GB of RAM running on 64-bit Windows operating system.

The mathematical model of recovering low-rank and sparse components of matrices
from incomplete and noisy observation is [20]

min
L,S,U

{
‖L‖∗ + τ‖S‖1 +

1
2μ

∥∥P	(U)
∥∥2
}

,

s.t. L + S + U = D,
(32)

where D ∈ Rp×q is a given matrix, τ > 0 is a balancing parameter, μ > 0 is a penalty pa-
rameter, 	 ⊆ {1, 2, . . . , p} × {1, 2, . . . , q} is the index set of the observable entries of D, and
P	 : Rp×q →Rp×q is the projection operator defined by

[
P	(X)

]
ij =

⎧⎨
⎩Xij, if (i, j) ∈ 	,

0, otherwise,
1 ≤ i ≤ p, 1 ≤ j ≤ q.

Problem (32) is a concrete model of the generic problem (1), and MHD-ALM is applicable.
For this problem, the three minimization problems in (13) all admit closed-form solutions,
which can be found in [20].

4.1 Simulation example
We generate the synthetic data of (32) in the same way as [5, 20]. Specifically, let L∗, S∗

be the low-rank matrix, the sparse matrix, respectively, and rr, spr, and sr represent
the ratios of the low-rank ratio of L∗ (i.e., r/p), the number of nonzero entries of S∗ (i.e.,
‖S∗‖0/(pq)), and the observed entries (i.e., |	/(pq)), respectively. The observed part of the
matrix D is generated by the following Matlab scripts, in which b is the vectorization of D:

X = randn(m,rr ∗ m) ∗ randn(rr ∗ m,n); Omega = randperm(m ∗ n);

p = round(sr ∗ m ∗ n); Omega = Omega(1 : p); Omega = Omega′;
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Y = zeros(m,n); L = round
(
min(spr,sr) ∗ m ∗ n); nzp = Omega(1 : L);

Y(nzp) =
(
rand(L,1) ∗ 2 – 1

) ∗ 500;b = X + Y;

b = b(Omega); sigma = 0.001; b = b + sigma ∗ randn(p,1);

In this experiment, we set τ = 1/√p, μ =
√

p +
√

8pσ /10, β = 0.06|	|
‖P	(D)‖1

, the initial iterate
(L0, S0, U0,λ0) = (0, 0, 0, 0), and use the stopping criterion

max

{‖L̃k – Lk‖
1 + ‖Lk‖ ,

‖S̃k – Sk‖
1 + ‖Sk‖

}
< 10–4, (33)

or the number of iterations exceeds 500.
The parameters in the three tested methods are listed as follows:

FJD-ALM: α = 0.38.
PPPSM: Si = 0, H = βI , Q = I , α = 0.36.
MHD-ALM: α = 0.5.

In Tables 1 and 2, we report the numerical results of three tested methods, in which
the number of iterations (denoted by ‘Iter.’), the elapsed CPU time in seconds (denoted by
‘Time’), the relative error of the recovered low-rank matrix, and the relative error of the
recovered sparse matrix are reported when the stopping criterion (33) is satisfied.

Numerical results in Tables 1 and 2 indicate that: (i) all methods successfully solved all
the tested cases; (ii) both MHD-ALM and PPPSM perform better than FJD-ALM, and
MHD-ALM performed the best. The reason maybe that FJD-ALM updates all the pri-
mal variables in a parallel manner, while PPPSM and MHD-ALM update x2, x3 based
on the newest updated x1 to accelerate the convergence speed. Furthermore, the step
size α of MHD-ALM is larger than that of PPPSM, and the latter is larger than that of
FJD-ALM. Therefore, larger values of α can enhance the efficiency of the corresponding
method.

Table 1 Numerical comparisons between different algorithms for p = q = 500

rr spr sr Method Iter. Time ‖Lk–L∗‖
‖L∗‖

‖Sk–S∗‖
‖S∗‖

0.05 0.05 0.9 FJD-ALM 97 7.42 5.7325e–04 9.7830e–05
PPPSM 133 14.70 2.4034e–04 3.6358e–05
MHD-ALM 44 5.17 7.5910e–04 1.5025e–04

0.05 0.05 0.6 FJD-ALM 120 11.03 1.6528e–03 1.3102e–04
PPPSM 181 17.62 5.4329e–04 5.1513e–05
MHD-ALM 75 6.76 1.7148e–03 1.1343e–04

0.1 0.1 0.9 FJD-ALM 127 11.39 2.2566e–03 2.2374e–04
PPPSM 175 17.79 5.2215e–04 6.1755e–05
MHD-ALM 80 6.86 1.5097e–03 1.5994e–04

0.1 0.1 0.8 FJD-ALM 188 17.45 4.2439e–03 2.7536e–04
PPPSM 222 20.78 1.2697e–03 9.5339e–05
MHD-ALM 119 10.15 2.8338e–03 1.9242e–04

0.1 0.15 0.9 FJD-ALM 209 20.18 3.9031e–03 2.3423e–04
PPPSM 222 25.95 1.3444e–03 9.5133e–05
MHD-ALM 120 12.37 3.2420e–03 2.0704e–04
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Table 2 Numerical comparisons between different algorithms for p = q = 1000

rr spr sr Method Iter. Time ‖Lk–L∗‖
‖L∗‖

‖Sk–S∗‖
‖S∗‖

0.05 0.05 0.9 FJD-ALM 105 93.16 2.6808e–04 6.1154e–05
PPPSM 129 131.08 9.9216e–05 2.3683e–05
MHD-ALM 46 46.82 3.5053e–04 9.5144e–05

0.05 0.05 0.6 FJD-ALM 139 117.67 7.1439e–04 6.8845e–05
PPPSM 147 138.08 2.1260e–04 3.4427e–05
MHD-ALM 57 53.31 5.9883e–04 9.8047e–05

0.1 0.1 0.9 FJD-ALM 119 100.13 9.3082e–04 1.6381e–04
PPPSM 188 179.91 2.3296e–04 4.2820e–05
MHD-ALM 61 57.04 8.9591e–04 1.6198e–04

0.1 0.1 0.8 FJD-ALM 133 114.80 1.2760e–03 1.8083e–04
PPPSM 192 182.46 3.7423e–04 5.2624e–05
MHD-ALM 76 67.08 1.3497e–03 1.6979e–04

0.1 0.15 0.9 FJD-ALM 139 117.89 1.9819e–03 2.3040e–04
PPPSM 206 188.47 4.4773e–04 5.7452e–05
MHD-ALM 84 76.34 1.6396e–03 1.8795e–04

4.2 Application example
In this subsection, we apply the proposed method to solve the video background extrac-
tion problem with missing and noisy data [29]. There is a video taken in an airport, which
consists of 200 grayscale frames with each frame having 144×176 pixels. We need to sep-
arate its background and foreground. Vectorizing all frames of the video, we get a matrix
D ∈ R25,344×50, and each column represents a frame. Let L, S ∈ R25,344×200 be the matrix
representations of its background and foreground (i.e., the moving objects), respectively.
Then the rank of L is equal to one exactly, and S should be sparse with only a small num-
ber of nonzero elements. We consider only a fraction entries of D can be observed, whose
indices are collected in the index set 	. Then the background extraction problem with
missing and noisy data can be casted as problem (32). In the experiment, the parameters
in MHD-ALM are set as α = 0.5, β = 0.005|	|

‖P	(D)‖1
, the parameters in (32) are set as τ = 1/√p,

μ = 0.01, and the initial iterate (L0, S0, U0,λ0) = (0, 0, 0, 0). We use the same stopping cri-
terion as (33) with the tolerance 10–2.

Figure 2 displays the separation results of the 10th and 125th frames of the video with
sr = 0.7, which indicate that the proposed MHD-ALM successfully separates the back-
ground and foreground of the two frames.

5 Conclusion
In this paper, a hybrid decomposition of the augmented Lagrangian method is proposed
for three-block separable convex programming, whose most important characteristic is
that its correction step adopts a constant step size. We showed that the optimal upper
bound of the constant step size is 2 –

√
2. Preliminary numerical results indicate that the

proposed method is more efficient than similar methods in the literature.
The following two issues deserve further researching: (i) Due to Condition 2.1 being

only a sufficient condition to ensure the convergence of the ProAlo, is 1 the optimal upper
bound of α in the iterative scheme (28), (29)? Similarly, is 2 –

√
2 the optimal upper bound

of α in the iterative scheme (30), (31)? (ii) If we choose different step sizes for x2, x3, λ in the
correction step of MHD-ALM, the feasible set of these step sizes needs more discussion.
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Figure 2 The 10th and 125th frames of the clean video and the corresponding corrupted frames with
sr = 0.7 (the top and third lines); the extracted background and foreground by MHD-ALM (the second and
fourth lines)

Acknowledgements
The authors gratefully acknowledge the valuable comments of the editor and the anonymous reviewers.

Funding
This work is supported by the National Natural Science Foundation of China and Shandong Province (No. 11671228,
11601475, ZR2016AL05).

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable
request.

Competing interests
The authors declare that there are no competing interests.



Sun and Wang Journal of Inequalities and Applications  (2018) 2018:269 Page 19 of 19

Authors’ contributions
The first author provided the problems and gave the proof of the main results, and the second author finished the
numerical experiment. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 July 2018 Accepted: 21 September 2018

References
1. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61

(1998)
2. Sun, M., Liu, J.: A proximal Peaceman–Rachford splitting method for compressive sensing. J. Appl. Math. Comput. 50,

349–363 (2016)
3. Sun, M., Liu, J.: An accelerated proximal augmented Lagrangian method and its application in compressive sensing.

J. Inequal. Appl. 2017, 263 (2017)
4. Candés, E.J., Li, X.D., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(1), 1–37 (2011)
5. Tao, M., Yuan, X.M.: Recovering low-rank and sparse components of matrices from incomplete and noisy

observations. SIAM J. Optim. 21, 57–81 (2011)
6. Sun, M., Wang, Y.J., Liu, J.: Generalized Peaceman–Rachford splitting method for multiple-block separable convex

programming with applications to robust PCA. Calcolo 54(1), 77–94 (2017)
7. Sun, M., Sun, H.C., Wang, Y.J.: Two proximal splitting methods for multi-block separable programming with

applications to stable principal component pursuit. J. Appl. Math. Comput. 56, 411–438 (2018)
8. He, B.S., Yuan, X.M., Zhang, W.X.: A customized proximal point algorithm for convex minimization with linear

constraints. Comput. Optim. Appl. 56, 559–572 (2013)
9. He, B.S., Liu, H., Wang, Z.R., Yuan, X.M.: A strictly contractive Peaceman–Rachford splitting method for convex

programming. SIAM J. Optim. 24(3), 1011–1040 (2014)
10. He, B.S., Tao, M., Yuan, X.M.: A splitting method for separable convex programming. IMA J. Numer. Anal. 35(1),

394–426 (2015)
11. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element

approximations. Comput. Math. Appl. 2, 17–40 (1976)
12. He, B.S., Hou, L.S., Yuan, X.M.: On full Jacobian decomposition of the augmented Lagrangian method for separable

convex programming. SIAM J. Optim. 25(4), 2274–2312 (2015)
13. Han, D.R., Kong, W.W., Zhang, W.X.: A partial splitting augmented Lagrangian method for low patch-rank image

decomposition. J. Math. Imaging Vis. 51(1), 145–160 (2015)
14. Wang, Y.J., Zhou, G.L., Caccetta, L., Liu, W.Q.: An alternative Lagrange-dual based algorithm for sparse signal

reconstruction. IEEE Trans. Signal Process. 59, 1895–1901 (2011)
15. Wang, Y.J., Liu, W.Q., Caccetta, L., Zhou, G.L.: Parameter selection for nonnegative �1 matrix/tensor sparse

decomposition. Oper. Res. Lett. 43, 423–426 (2015)
16. Hestenes, M.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
17. Chen, C.H., He, B.S., Ye, Y.Y., Yuan, X.M.: The direct extension of ADMM for multi-block convex minimization problems

is not necessarily convergent. Math. Program. 155(1), 57–79 (2016)
18. Sun, D.F., Toh, K.C., Yang, L.: A convergent 3-block semi-proximal alternating direction method of multipliers for conic

programming with 4-type of constraints. SIAM J. Optim. 25, 882–915 (2015)
19. He, B.S., Xu, H.K., Yuan, X.M.: On the proximal Jacobian decomposition of ALM for multiple-block separable convex

minimization problems and its relationship to ADMM. J. Sci. Comput. 66(3), 1204–1217 (2016)
20. Hou, L.S., He, H.J., Yang, J.F.: A partially parallel splitting method for multiple-block separable convex programming

with applications to robust PCA. Comput. Optim. Appl. 63(1), 273–303 (2016)
21. Wang, J.J., Song, W.: An algorithm twisted from generalized ADMM for multi-block separable convex minimization

models. J. Comput. Appl. Math. 309, 342–358 (2017)
22. Sun, M., Liu, J.: The convergence rate of the proximal alternating direction method of multipliers with indefinite

proximal regularization. J. Inequal. Appl. 2017, 19 (2017)
23. Sun, M., Sun, H.C.: Improved proximal ADMM with partially parallel splitting for multi-block separable convex

programming. J. Appl. Math. Comput. 58, 151–181 (2018)
24. He, B.S., Tao, M., Yuan, X.M.: Alternating direction method with Gaussian back substitution for separable convex

programming. SIAM J. Optim. 22, 313–340 (2012)
25. Wang, K., Desai, J., He, H.J.: A proximal partially-parallel splitting method for separable convex programs. Optim.

Methods Softw. 32(1), 39–68 (2017)
26. Chang, X.K., Liu, S.Y., Zhao, P.J., Li, X.: Convergent prediction-correction-based ADMM for multi-block separable

convex programming. J. Comput. Appl. Math. 335, 270–288 (2018)
27. He, B.S., Ma, F., Yuan, X.M.: Linearized alternating direction method of multipliers via positive-indefinite proximal

regularization for convex programming. Optimization-online, 5569 (2016)
28. He, B.S., Yuan, X.M.: On the direct extension of ADMM for multi-block separable convex programming and beyond:

from variational inequality perspective. Optimization-online, 4293 (2014)
29. Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview.

Comput. Sci. Rev. 11–12, 31–66 (2014)


	Modiﬁed hybrid decomposition of the augmented Lagrangian method with larger step size for three-block separable convex programming
	Abstract
	Keywords

	Introduction
	Preliminaries
	Algorithm and its convergence
	Numerical results
	Simulation example
	Application example

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


